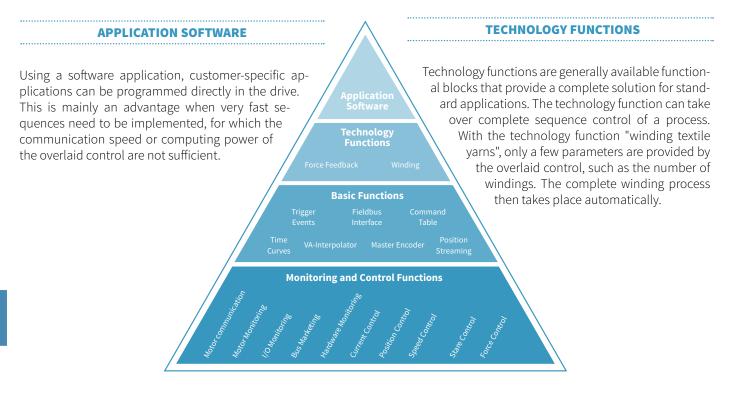


SERVO DRIVES


The wide range of drive products allows rapid implementation of simple applications with two end positions, up to complex, high-precision multi-axis applications with synchronization to a main electronic shaft.

The servo drives cover a wide range in terms of performance. Controlling small actuators with low power as well as high-power servomotors with direct feed from the three-phase network can be realized.

LinMot Servo Drives

LinMot Servo Drives are highly integrated inverters with one or more power elements, for controlling the motors, and an intelligent control element with integrated position regulation. The control element performs all drive-related control and monitoring functions. It allows direct position set points, or travel along internally stored motion profiles from the overlaid control, using simple analog or digital signals. Additionally, using the technology functions or a customer-specific software application, complete sequences or functions can be implemented for customerspecific applications.

BASIC FUNCTIONS

The basic functions include communication with the overlaid control, generation of target values for speed and acceleration-limited point-to-point motions, travel along motion profiles, synchronization of drives to an electronic main or master shaft, and synchronization in multi-axis applications.

MONITORING AND CONTROL

The basic functions of the Servo Drive, such as position and current control; control and monitoring of the power element; and monitoring the motor temperature, power, and position are handled by the control, monitoring, and regulation element, which also controls the entire finite state machine of the drive.

SPS LIBRARIES AND PROGRAMMING EXAMPLES

LinMot Drives have all common fieldbus interfaces available for connection to a master controller. In order to realize simple control concept integration, extensive function blocks and programming examples are provided for the customer. These function blocks allow for direct and quick LinMot drive integration. The function blocks run standard functions as well as commands such as drive parameterization and configuration directly from the controller. The complete drive

configuration of the corresponding axis is thus stored on the controller. Maintenance or replacement can be easily realized via automatic drives detection and configuration over the communication bus. Thus manual and time-consuming configuration of the drives in case of failure is eliminated.

Characteristics

POINT-TO-POINT MOTIONS

Because of their high dynamic capabilities, long life, and ability to travel to several positions, LinMot linear motors are often used as a replacement for pneumatic cylinders.

Various end positions can be stored in the drive and are invoked via digital signals, just as with a pneumatic cylinder. Once the end position is reached, this is reported to the overlaid control via the In-position signal on a digital output. Speed and acceleration can be configured freely for each motion.

NC MOTION

Travel along paths from an overlaid NC drive can be implemented via the +/-10V interface, or in streaming mode (PVT, PV).

The predetermined points are calculated rapidly, so that even irregular and complex curves are realized dynamically.

HIGH-END APPLICATIONS

Complex applications with synchronization to a main or master shaft can be implemented without trouble using the integrated master encoder interface. All incoming signals from the main shaft are processed by the LinMot Drive and depend on the movement type of the linear motor.

Together with a high-resolution, external position sensor, even high-precision positioning tasks in µm range can be handled.

MULTI-AXIS OPERATION

In multi-axes or linked operation, the master encoder interface can control both individually and synchronous to a main or master shaft.

For complex designs, several axes can be synchronized in master-booster or mastergantry mode. This allows simple implementation of portal designs with two synchronized axes, which are controlled by the overlaid control as a single axis.

LINEAR AND ROTARY DRIVES

Using LinMot Servo Drives, rotary servomotors can be used as well as linear motors, or any 1/2/3-phase actuators.

Primarily in assembly automation and feeding applications, small, light brushless DC motors (EC motors) are often needed to rotate a gripper about the Z-axis. The flexibility of the Servo Drive allows such rotary motors to be integrated into the existing controls concept in the same simple manner as linear motors.

STANDARDIZED DEVICE PROFILES

To simplify the integration of different axes, the C Series Servo Drives are equipped with PROFIdrive, Sercos III, SoE (SercosOver-Ethercat) and CoE (CiA402). By using device profiles, the integration of "foreign" Drives in the motion control is simplified. Further positive aspects are the automatic data exchange in real time and the increase of determinism in the system.

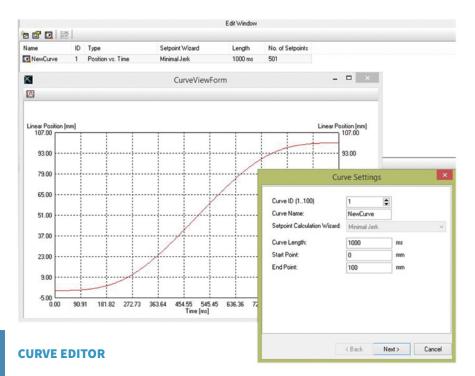
PLUG AND PLAY

LinMot motors with the plug and play functionality are automatically recognized by the A1100 / C1200 / C1100 / E1200 / E1400 servo drives and are immediately ready for use.

The servo drive reads these values when it boots up, and sets the parameters accordingly. This automatic device detection eliminates the selection of the required model parameters from an extensive library. Without having the configuration software to boot, first commands can be sent directly by the PLC control.

INTEGRATED SAFETY FUNCTION

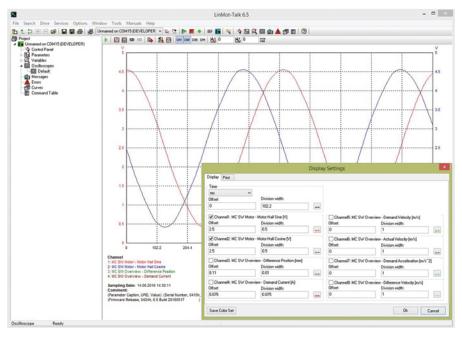
In order to prevent unintended startup, the model C1200 / C1100 / E1200 / E1400 drives have an STO function to safely shut off the output stage. The drive cannot produce any more force when shut off using the "Safe Torque Off" function. A functional safety is currently under preparation and can already be solved today with external components.


CERTIFICATION

The current LinMot Drives are marked with CE and approved as components according to the UL regulation for variable-frequency controllers. Thus they meet the requirements for the US and Canadian market.

Configuration with LinMot Talk

LinMot Talk configuration software is a Windows- based interface that supports the user during start-up and configuration of the LinMot Servo Drives. The software has a powerful, modular, graphical interface that covers all the tasks surrounding the LinMot Servo Drive. Using LinMot Talk PC interface, the engineer can configure LinMot servo drives. The motors are also monitored during operation and the current motion sequences are analysed (monitoring). The integrated control panel gives the user direct access to the control and status words, as well as all commands that are invoked by the upper-level controller.



PARAMETERIZATION

Using the "Parameter Inspector," the drives are parameterized in a simple manner. The user has a wide range of adjustments available for operating modes, error management, warning messages, and regulating parameters. Entire parameter sets can be stored, loaded, and printed out.

CURVE EDITOR

The "Curve Editor" allows creation of travel curves. In addition, existing curves can be loaded, stored, edited, combined, and printed out. Further, complex motion sequences can be generated as desired in MS Excel, and loaded into the drive.

OSCILLOSCOPE

OPTIMIZATION

The integrated oscilloscope helps the user during start-up and optimization of the Parameterization Optimization Monitoring drive system. Internal variables, such as the target and actual position, can be shown in real time on the screen, and then printed out. The displayed data can be stored in CSV format for further processing in MS Excel, or stored for documentation purposes.

MONITORING

Using the "Error Inspector," the user can read out stored errors, as well as the currently active warnings and error messages in the LinMot Servo Drive. A list of the last error messages are stored in non-volatile memory on the Servo Drive, together with the operating hours counter.

LinMot®

Overview Servo Drives

A1100

Space-saving servo drive for instrument engineering

C1100

Compact drive for an ideal use in point-to-point applications.

C1200

Servo Drive for demanding tasks with axis, NC synchronization and an industrial ETHERNET interface.

E1200

High-End Servo Drive with configuration via ETHERNET.

C1400

Servo Drive with direct power supply for simple motions as well as complex axis synchronization. Designed to control the P10 motor family.

E1400

Servo Drive for P10 motors with direct main supply and 3x400 VAC technology. Equipped with an ETHERNET Config. interface.

Technical Specifications

	A1100	C1100	C1200	
Motor Supply				
	2472VDC	2472VDC	2472VDC	
Motor Current				
	8A _{pk}	25A _{pk}	25A _{pk}	
Control of				
LinMot Motors P0x/ PR01	•	•	•	
LinMot Motors P10				
Rotary Motors		•	•	
EC02 Motors		•		
AC Servo Motors				
3rd Party Motors				
Functionality				
	Point-to-Point	Point-to-Point	Point-to-Point	
	Command Table	Closed Loop Force Control	Limited jerk motion commands	
	Motion Profiles	Command Table	NC Motion	
		Motion Profiles	Closed Loop Force Control	
			Command Table	
			Motion Profiles	
Ethernet & Fieldbuses				
	CANOpen	PROFINET	PROFINET	
		EtherCAT (LinMot Profile)	PROFINET Profidrive	
		EtherCAT (CiA402)	EtherNet/IP Sercos III	
		EtherCAT (SoE) CANOpen	Powerlink	
		САНОРЕН	LinUDP	
			EtherCAT	
			EtherCAT (CiA402)	
			EtherCAT (SoE)	
			20.00.20.11 (0002)	
Interfaces				
Analog Inputs 010V / +-10V	1/0	1/1	1/1	
Number of digital Inputs / Outputs	6/2	4/2	4/2	
Brake Output	(-)	24V/0.5A	24V/0.5A	
External Encoder				
		A/B/Z (RS422)	A/B/Z (RS422)	
		SSI	SSI	
		BISS	BISS	
			EnDat	
Timings				
Min. Bus Cycle Time	250 μs	250 μs	125 µs	
PWM Frequency	16 kHz	16 kHz	16 kHz	
Trigger Commands	≥ 250 µs	≥ 250 µs	≥ 125 µs	
Position Drive	250 μs	250 μs	125 µs	
Configuration RS 232				
	•	•	•	
ETHERNET			•	
ETHERNET – Maintenance				

E1200	C1400	E1400
2472VDC	1x200240VAC	3x400480VAC
32A _{pk}	15A _{pk}	28A _{pk}
•		
	•	
	•	
•		·
•		
	•	•
•		
Point-to-Point	Point-to-Point	Point-to-Point
NC Motion	Limited jerk motion commands	Limited jerk motion commands
Master Encoder / CAM	NC Motion	NC Motion
Belt Synchronization	Master Encoder / CAM	Master Encoder / CAM
Master Booster (up to 4 slaves)	Belt Synchronization	Belt Synchronization
Master Gantry (up to 4 slaves)	Closed Loop Force Control	Master Booster (up to 4 slaves)
Winding Application	Command Table	Master Gantry (up to 4 slaves)
Closed Loop Force Control	Motion Profiles	Winding Application
Command Table		Closed Loop Force Control
Motion Profiles		Command Table
		Motion Profiles
PROFINET	PROFINET	PROFINET
PROFINET Profidrive	PROFINET Profidrive	PROFINET Profidrive
EtherNet/IP	EtherNet/IP	EtherNet/IP
Sercos III	Sercos III	Sercos III
Powerlink	Powerlink	Powerlink
LinUDP	LinUDP	LinUDP
Profibus DP	CANOpen	Profibus DP
CANOpen	EtherCAT	CANOpen
EtherCAT	EtherCAT (CiA402)	EtherCAT
EtherCAT (CiA402)	EtherCAT (SoE)	EtherCAT (CiA402)
EtherCAT (SoE)		EtherCAT (SoE)
LinRS		LinRS
2/1	1/1	2/1
8	4/2	8
24V/1.0A	24V/1.5A	24V/1.5A
A/B/Z (RS422)	A/B/Z (RS422)	A/B/Z (RS422)
Sin/Cos (1Vpp)	SSI	SSI
SSI (only position recovery)	BISS	BISS
	EnDat	EnDat
200 μs	250 μs	250 μs
20 kHz	8 kHz	8 kHz
≥ 100 µs	≥ 125 µs	≥ 125 µs
100 μs	125 μs	125 μs
100 μ3	123 μ3	125 μ5
_		
	•	•
	•	•

SERIES A1100

- Absolute / relative positioning commands
- Limited jerk motion commands
- Time Curves
- PLC or Stand-Alone Solutions
- Digital IO's
- Supports Plug and Play
- CE/UL/CSA

Servo Drive A1100

Series A1100 drives are compact servo drives with 32-bit position resolution and integrated power stage, for linear motors.

The drives are suitable for simple and standard position tasks with point-to-point motions and have a plug and play function.

CONNECTION TO MACHINE CONTROL

The Series A1100 Servo Drives can be actuated by machine controls from many manufacturers or brands, via digital inputs, outputs, serial interface, or by CANopen interfaces.

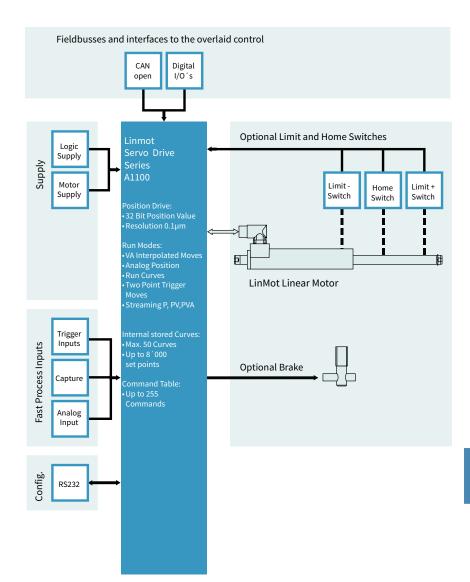
PROCESS AND SENSOR INTERFACES

Fast process interfaces for direct processing of sensor signals are available as freely programmable analog and digital inputs and fast trigger inputs.

LOGIC AND POWER SUPPLY

The Servo Drives need two separate power supplies for the logic and power elements.

In an E-stop and safe stop of the drive, only the motor power supply is cut off from the drive. The logic supply and the drive continue to run.



System Integration

Series A1100 Servo Drives have analog inputs and digital inputs and outputs, serial interfaces, and Bus connections. The user is therefore not dependent on the selection of the higher level controller.

Additionally, the drives can be equipped with optional peripherals, such as reference and end stop switches.

With flexibility and a compact form factor, LinMot Series A1100 Servo Drives provide a complete solution for a flexible drive concept in single and multiple axes applications, with linear motors.

POSITION STREAMING

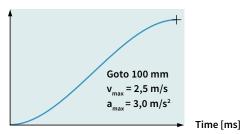
With a cyclical target value, or "position streaming," the overarching NC or CNC drive communicates with the Servo Drive through CANopen.

The position and velocity calculated in the overarching drive is transmitted to the Servo Drive cyclically. The P, PV, or PVA mode is available for this transmission.

MOTOR INTERFACES

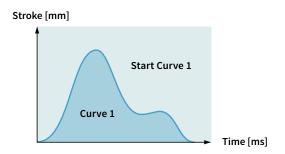
A1100 Servo Drives provide all necessary interfaces to operate linear motors with optional external peripherals, such as end position and reference switches.

CONFIGURATION


Parameterization and configuration of the Servo Drive is done via RS232.

LinMot Talk user-friendly PC software is available for configuration. In addition to online documentation, LinMot Talk provides extensive debugging tools, such as an oscilloscope and an error inspector, for simple and rapid start-up of the axes.

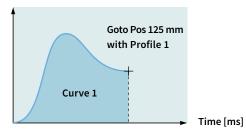
INTERPOLATED MOVES


Stroke [mm]

For direct position targets, using absolute or relative positioning, the desired position is reached using acceleration and velocity-limited motion profiles or jerk optimized profiles (jerk limited and Bestehorn). Positioning commands can be invoked via the serial interface, CANopen or a trigger input.

 $\begin{array}{ll} \textbf{Stroke range:} & \pm 100 \text{ m} \\ \textbf{Position Resolution:} & 0.1 \, \mu \text{m} \, (32 \text{Bit}) \\ \textbf{Velocity Resolution:} & 1.0 \, \mu \text{m/s} \, (32 \text{Bit}) \\ \textbf{Acceleration Resol.:} & 10.0 \, \mu \text{m/s}^2 \, (32 \text{Bit}) \\ \end{array}$

TIME CURVES

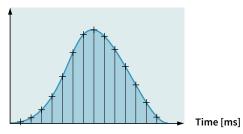


Up to 50 different time curves can be stored in Series A1100 drives, with up to 8,000 individual set points. The motor can thus travel along time curves of any complexity, such as those generated by CAD programs and stored in the drive (Excel CSV format). The time curves can be invoked via the serial interface, fieldbusses or the trigger input.

 $\begin{array}{lll} \textbf{Stroke range:} & \pm 100 m \\ \textbf{Position Resolution:} & 0.1 \, \mu m \, (32 \text{Bit}) \\ \textbf{Motion profiles:} & \text{Max. 50 Time Curves} \\ \textbf{Curve points:} & \text{Max. 8'000 points} \\ \end{array}$

PROFILED MOVES

Stroke [mm]

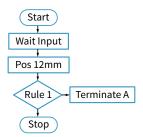


For travel to an absolute position, or shifting by a relative position, any desired motion rules can be stored besides the VA interpolator. They are stored in the drive as motion profiles (Excel CSV format). The positions can be approached, for example, with a sinusoidal motion to optimize power loss, or special reverse optimized motion profiles.

Stroke range: ±100m
Position Resolution: 0.1 µm (32Bit)
Motion profiles: Max. 50 Time Curves
Curve points: Max. 8'000 points

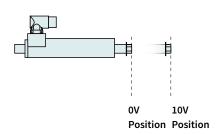
SETPOINT STREAMING

Stroke [mm]



Overlaid NC drives with fieldbus or Ethernet interfaces communicate with the servo drives via "Position Streaming". The position and velocity calculated in the overlaid control is transmitted to the Servo Drive cyclically. The P, PV, or PVA mode is available for this transmission.

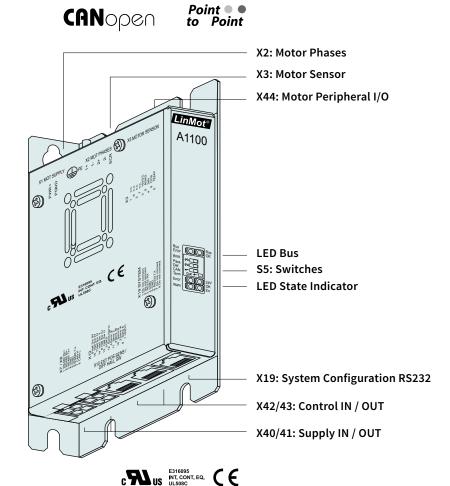
Position Resolution:32 BitVelocity Resolution:32 BitInterpolator:4 kHzCycle times:0.5 - 5 ms


COMMAND TABLE

Entire motion sequences with up to 255 individual motion commands can be stored in the Command Table. This is primarily advantageous if complete motion sequences need to be executed very quickly, without dead time from the overlaid PLC. In the Command Table, the programmer has access to all motion commands, internal parameters, and digital inputs and outputs.

Commands: max. 255
Cycle time: 250 µsec

ANALOG POSITION


For an analog position target, the linear motor travels to a position proportional to the input voltage. The position is either scanned continuously, or only after a rising edge of the trigger signal. In order to prevent uncontrolled jumps in position, the motor travels to the positions with a programmable maximum acceleration and velocity (VA interpolator).

Inputs:Analog Input X44Voltage range:0-10VDCResolution:10 BitScanning rate:250 μsec

LinMot®

A1100-GP

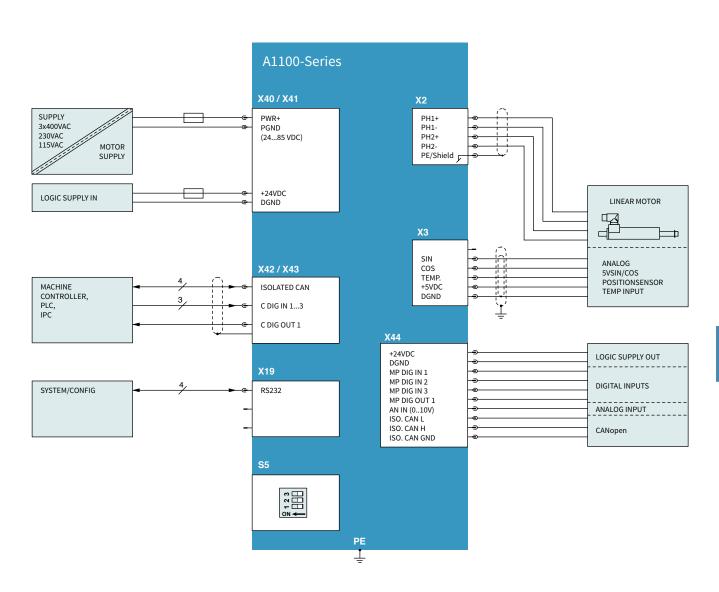
- » Absolute & Relative Positioning
- » Time based motion profiles
- » Internally stored Motion Sequences
- » Position Streaming
- » Analog Position Target
- » Customer-Specific Functions

CANOPEN

The LinMot A1100-GP drives support the CiA DS301 communications protocol. The following resources are available: 4 T_PDO, 4 R_PDO, 1 T_SDO, 1 R_SDO

The following protocols are also supported by the drives:

- » NMT Error Control (Nodeguarding Protocol or HeartBeat Protocol)
- » PDO (Transmission type 1 to 254)
- » SDO Upload and Download
- » NMT (Start, Stop, Enter PreOp, Reset Node, Reset Communication, Boot-Up Message)


REPLACING PNEUMATICS

Due to their simple controls via digital inputs and outputs, A1100 drives make excellent substitutes for pneumatic cylinders.

Using digital inputs or CAN bus, the linear motor can move to programmable positions. As soon as the linear motor has reached the set position, the In-Postion output is actuated.

The linear motor can thus be controlled like a programmable pneumatic cylinder with end position switches.

X2 MOTOR PHASES

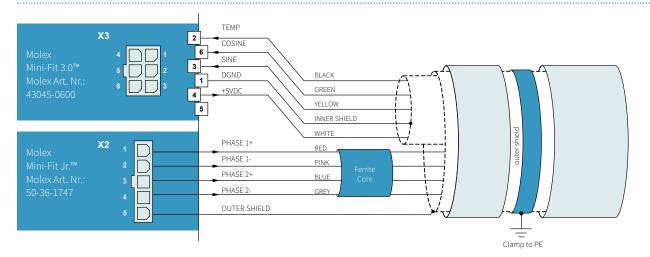
1	
2	
3 [
4	
5	

Nr	Designation	LinMot Linear Motor	Color
1	PH1+/U	Motor Phase 1+	red
2	PH1- /V	Motor Phase 1-	pink
3	PH2+/W	Motor Phase 2+	blue
4	PH2- /X	Motor Phase 2-	grey
5	SCRN	Shield	

Molex Mini-Fit Jr.™ Molex Art. Nr.: 50-36-1747

- » Use 60/75°C copper conductors only
- » Cable length <30m</p>
- » 13A max. current per circuit when header is mated to a receptacle loaded with a 45750 Mini-Fit® Plus HCS Crimp Terminal crimped to a 16 AWG wire

X3 MOTOR SENSOR



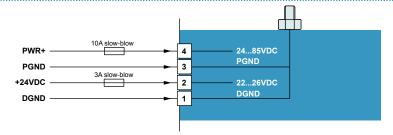
Molex Mini-Fit 3.0™ Molex Art. Nr.: 43045-0600

Nr	LinMot Motor
1	DGND
2	Temp
3	Sensor Sine
4	+5VDC
5	(Do not connect)
6	Sensor Cosine Sensor Cosine

- » Use +5V (X3.4) and DGND (X3.1) only for motor internal hall sensor supply (max. 100 mA)
- » Cable length < 30m</p>
- » Caution: Do NOT connect DGND (X3.1) to ground or earth!

MOTOR LINEAR MOTOR WIRING WITH LINMOT MOTOR CABLE (K-, KS- AND KR-TYPES)

- » For the connection between the linear motor and servo drive, only the specially shielded LinMot cables of type K, KS or KR should be used.
- » The length of the cable can be up to 30 m between the linear motor and the servo drive.
- » Motor cables fabricated by the customer are to be tested with a test voltage of 1500VDC.
- » An improperly fabricated motor cable can damage both the linear motor and the servo drive.
- » The minimum bend radius is to be observed for stationary cables as well as for moving motor cables
- » The motor cable must not be plugged in or unplugged while voltage is still applied.
- » The outer shield of the motor cable has to be clamped to PE as close as possible to the drive.
- » A ferrite core (5mm, 1440hm @ 100MHz, e.g. Würth Elektronik, Art.Nr.: 7427114) has to be mounted around the motor phases as close to the drive as possible.

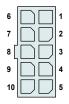


X40 / X41 SUPPLY IN / OUT

Molex Art. Nr.: 50-36-2306

- » Motor Supply: 72VDC nominal, 24...85VDC
- » Absolute max. Rating: 72VDC +20%
- » External Fuse: Motor Supply = 10AT (10A slow blow) / min. 100VDC Logic Supply = 3AT (3A slow blow) / min. 100VDC
- » If motor supply voltage exceeds 90VDC, the drive will go into error state
- » Use 60/75°C copper conductors only
- » 13A max. current per circuit when header is mated to a receptacle loaded with a 45750 Mini-Fit® Plus HCS Crimp Terminal crimped to a 16 AWG wire

X42 / X43 CONTROL IN / OUT



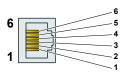
RJ-45 shielded

Nr		
1	C Dig IN 1	Input high voltage: Vin > 16VDC, Input low voltage: Vin < 8VDC
2	C Dig IN 2	Input high voltage: Vin > 16VDC, Input low voltage: Vin < 8VDC
3	C Dig IN 3	Input high voltage: Vin > 16VDC, Input low voltage: Vin < 8VDC
4	CAN GND	
5	CAN GND	
6	C Dig OUT 1	Open Collector Output, 100k Pull-Up to +24VDC
7	Isolated CAN H	
8	Isolated CAN L	
Case	Shield	

- » Use twisted pair (1-2, 3-6, 4-5, 7-8) cable for wiring
- » X42 is internally connected to X43 (1:1 connection)
- » Cable length < 30m.
- Galvanically isolated CAN transceiver meets the specifications of the ISO11898-2 standard
- » Note: A termination resistor of 120 Ohm can be connected drive internally with the switch S5.1.

X44 MOTOR PERIPHERAL I/O

Molex Mini-Fit 3.0™


Molex Art. Nr.: 43045-1000

Nr		
1	DGND	
2	MP Dig IN 1	Input high voltage: Vin > 16VDC, Input low voltage: Vin < 8VDC
3	MP Dig IN 2	Input high voltage: Vin > 16VDC, Input low voltage: Vin < 8VDC
4	CANGND	Use a seperate shielded twisted pair cable for the CAN connection
5	Isolated CAN H	Use a seperate shielded twisted pair cable for the CAN connection
6	+24VDC OUT	Max. Current: 2.5A
7	MP Dig OUT 1	Open Collector Output, No Pull-Up, Max. Current: 1.4A
8	MP Dig IN 3	Input high voltage: Vin > 16VDC, Input low voltage: Vin < 8VDC
9	AN IN (010V)	Analog Input 0V10V
10	Isolated CAN L	Use a seperate shielded twisted pair cable for the CAN connection

- » Galvanically isolated CAN transceiver meets the specifications of the ISO11898-2 standard
- » The CAN bus on X44 is the same one as on X42/43
- » Note: A termination resistor of 120 Ohm can be connected drive internally with the switch S5.1.
- » Use a seperate shielded cable with a twisted pair for CAN L and CAN H when connecting the CAN bus to X44. Clamp the shielding of the cable as close as possible to the drive to PE.
- » Cable length < 30m

X19 SYSTEM

RJ-12 6P6C unshielded

Nr	Description
1	RS232 Tx
2	GND
3	GND
4	RS232 Rx
5	(Do not connect)
6	(Do not connect)

BUS LEDS BUS STATE DISPLAY

BUS State Disp	olay
Green	ОК
Red	Error

The use of these LEDs depends on the type of fieldbus which is used. Please see the corresponding manual for further information.

S5


S5.3	Bootstrap (Default = off)
S5.2	Parameter Default (Default = off)
S5.1	CAN Termination (Default = on)

LEDS STATE DISPLAY

State Display		
Green	24V Logic Supply OK	
Yellow	Motor Enabled / Error Code Low Nibble	
Yellow	Warning / Error Code High Nibble	
Red	Error	

Dimensions in mm Mounting points for M3 screws

	A1100 Single a	xis drive
Width	mm (in)	25.5 (1.0)
Height	mm (in)	124 (4.9)
Depth	mm (in)	84.5 (3.3)
Weight	g (lb)	340 (0.75)
Case	IP	20
Storage temperature	°C	-2540
Transport temperature	°C	-2570
Operating temperature	°C	040 at rated data (UL) 4050 with power derating
Relative humidity	%	95 (non-condensing)
Pollution	IEC/EN 60664-1	Pollution degree 2
Max. case temperature	°C	70
Max. power dissipation	W	30
Min. distance between drives	mm (in)	20 (0.8) horizontal 50 (2) vertical

Servo Drive			
Item	Description	Part Number	
A1100-GP-LC-0S-000	Mini CANopen Drive (72V/8A)	<u>0150-2499</u>	

Accessories				
Item	Description	Part Number		
DC01-X44-4m	Cable IO´s for A1100/X44, 4 m flying leads	<u>0150-3553</u>		
DC01-X40-4m	Cable Supply A1100/X40, 4 m flying leads	<u>0150-3545</u>		
DC01-X40/41-0.15 m	Cable IO for A1100/X40-X41, 0.15 m daisy chain	0150-3552		

SERIES C1100

- Absolute / relative positioning commands
- Limited jerk motion commands
- Time Curves
- PLC or Stand-Alone Solutions
- Digital and Analog IO's
- Safe Torque Off
- Interface for optional incremental or absolute sensor
- Supports Plug and Play
- CE/UL/CSA

Servo Drive C1100

Series C1100 servo drives are axis controllers, with 32-bit position resolution and an integrated power stage, for linear motors and rotary drives.

The controllers are suitable for simplest and standard positioning tasks with point to point motions.

CONNECTION TO MACHINE CONTROL

The C1100 servo drives can be actuated by machine controls from many manufacturers or brands, via digital inputs and outputs, over CAN Bus or Industrial Ethernet

Bus-Interfaces:

- » Profinet
- » EtherCat, SoE, CoE
- » CANopen

Serial Interfaces RS422 / RS485:

» LinRS

PROCESS AND SENSOR INTERFACES

Fast process interfaces for direct processing of sensor signals are available as freely programmable analog and digital inputs, a fast trigger input, and a capture input.

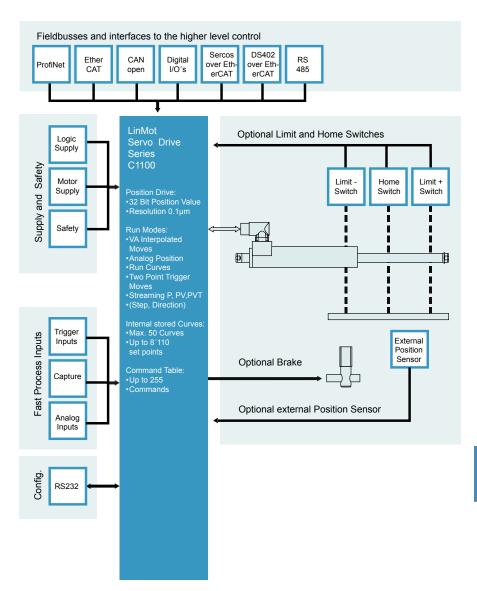
The safety IO's on Servo Drives with the -1S option with CAN or industrial ETH-ERNET allows safe torque off (STO) of the drives via control signals, without interrupting the power supply.

Drives with -0S option come without safety IO's and are easier to wire in applications without safety needs.

LOGIC AND POWER SUPPLY

The servo drives have two separate inputs for the logic supply and motor elements.

This has the advantage that the drive and linear motor do not need to be reinitialized when the machine is restarted, since all process data, including the actual position of the linear motor, is still up to date.


System Integration

Flexible hardware enables control of many 1/2/3-phase motors. Thus, low-power rotary servomotors, such as brushless DC motors, can be integrated in the same control concept.

Additionally, the drives can be equipped with optional peripherals, such as reference and end stop switches, high-precision external position sensors, or a mechanical holding brake.

Series C1100 servo drives have analog inputs and digital inputs and outputs, serial interfaces, CAN bus, and Ethernet. The user therefore is not dependent on the selection of the higher level controller. An appropriate interface is available, with associated protocols, for many PLC or IPC solution.

With flexibility and a compact form factor, LinMot Series C1100 servo drives provide a complete solution for a flexible drive concept in single and multiple axes applications, with linear motors and other actuators.

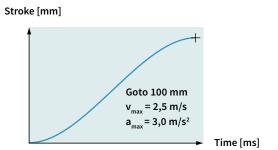
IDEAL FOR POINT TO POINT MOTIONS

Serial interfaces, CAN and industrial Ethernet guarantees flexible and fast communication.

The cost-optimized design of the C1100 series make it the ideal drive for point-to-point motions and replacement of pneumatic cylinders. The control is also characterized by higher speeds, longer service life and high flexibility.

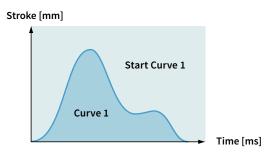
MOTOR INTERFACES

C1100 servo drives provide all necessary interfaces to operate linear or rotary motors with optional external peripherals, such as end position and reference switches, a mechanical brake, or a high-resolution external position sensor.


CONFIGURATION

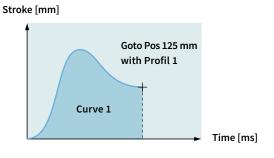
LinMot Talk, a user-friendly PC software is available for configuration. In addition to online documentation, LinMot Talk provides extensive debugging tools, such as an oscilloscope and an error inspector, for simple and rapid start-up of the Axis.

Fieldbus and Ethernet drives can also be configured directly by the higher level control, by downloading the configuration parameters via Bus/Ethernet


CONNECTION TO MACHINE DRIVE

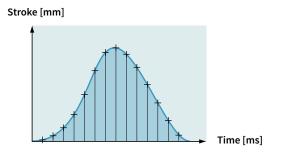
For direct position targets, using absolute or relative positioning, the desired position is reached using acceleration and velocity-limited motion profiles, sine motion profiles or jerk optimized profiles (jerk limited Bestehorn). Positioning commands can be invoked via the serial interfaces, CANopen, Ethernet or a trigger input.

 $\begin{array}{ll} \textbf{Stroke range:} & \pm 100 \text{ m} \\ \textbf{Position Resolution:} & 0.1 \, \mu\text{m} \, (32 \text{Bit}) \\ \textbf{Velocity Resolution:} & 1.0 \, \mu\text{m/s} \, (32 \text{Bit}) \\ \textbf{Acceleration Resol.:} & 10.0 \, \mu\text{m/s}^2 \, (32 \text{Bit}) \\ \end{array}$


TIME CURVES

Up to 50 different time curves can be stored Series C1100 drives, with up to 8'110 individual waypoints. The motor can thus travel along time curves of any complexity, such as those generated by CAD programs and stored in the drive (Excel CSV format). The time curves can be invoked via the serial interface, fieldbusses, Ethernet, or the trigger input.

Stroke range:±100mPosition Resolution:0.1 μm (32Bit)Motion profiles:Max. 50 Time CurvesCurve points:Max. 8'110 points


PROFILED MOVES

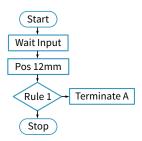
For travel to an absolute position, or shifting by a relative position, any desired motion rules can be stored besides the VA interpolator. They are stored in the drive as motion profiles (Excel CSV format). The positions can be approached, for example, with a sinusoidal motion to optimize power loss, or special reverse optimized motion profiles.

Stroke range: ±100m
Position Resolution: 0.1 µm (32Bit)
Motion profiles: Max. 50 Time Curves
Curve points: Max. 8'110 points

SETPOINT STREAMING

Higher level NC motion controllers with fieldbus or Ethernet interfaces communicate with the servo drives via "Position Streaming". The position and velocity calculated in the higher level control is transmitted to the Servo Drive cyclically. The P, PV, or PVT mode is available for this transmission.

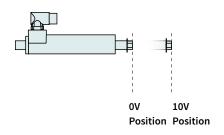
Position Resolution:32 BitVelocity Resolution:32 BitInterpolator:4 kHzCycle times:0.5 - 5 ms


EASY STEPS

Input 1	Pos 125 mm
Input 2	Pos 250 mm
Input 3	Curve 1
Input 4	Pos -30 mm

With the Easy Steps function, up to 4 positions or independent travel commands can be stored on the drive, and addressed via 4 digital inputs or fieldbus interfaces/Ethernet.

Digital inputs:4Interface:X4Scanning rate:250 μsec


COMMAND TABLE

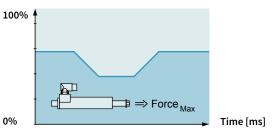
Entire motion sequences with up to 255 individual motion commands can be stored in the Command Table. This is primarily advantageous if complete motion sequences need to be executed very quickly, without dead time from the higher level drive. In the Command Table, the programmer has access to all motion commands, internal parameters, and digital inputs and outputs.

Commands: max. 254
Cycle time: 250 µsec

ANALOG POSITION

For an analog position target, the linear motor travels to a position proportional to the input voltage. The position is either scanned continuously, or only after a rising edge of the trigger signal. In order to prevent uncontrolled jumps in position, the motor travels to the positions with a programmable maximum acceleration and velocity (VA interpolator).

 Inputs:
 Analog Input X4

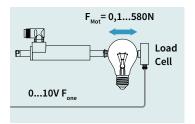

 Voltage range:
 0-10VDC or ±10V

 Resolution:
 10 Bit

Scanning rate: >=250 μsec (adjustable)

EASY STEPS PARAMETER SCALE

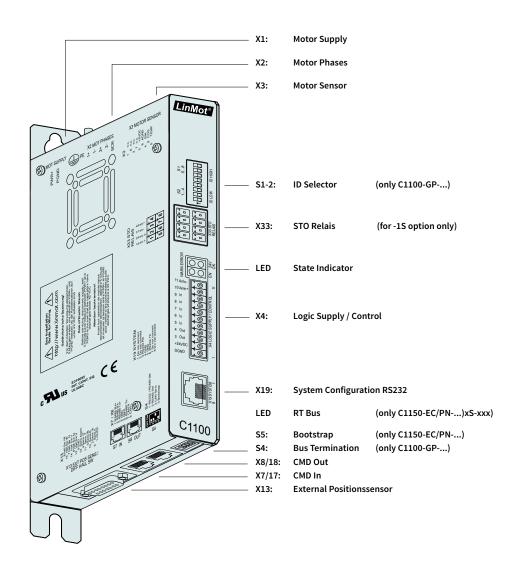
Maximum Force [0...10V => 0...100%]



Easy Steps provide the ability to parameterize internal parameters using two analog inputs. If, for example, the maximum motor current is read at an analog input, then the maximum motor force can be provided as analog for freely programmable joining processes.

Inputs:2 x AnalogVoltage range:0-10VDCResolution:10 BitScanning rate:250 µsec

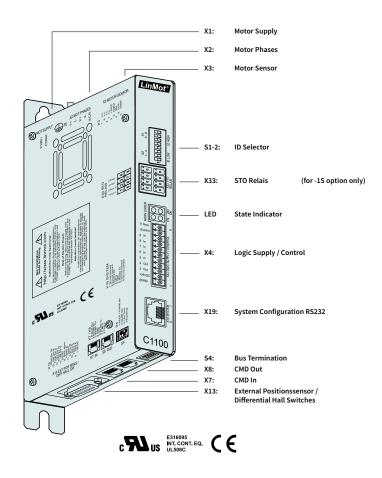
CLOSED LOOP FORCE CONTROL


Using the force control technology function, precise joining processes can be implemented reliably and reproducibly with high-precision force control. For force control, the current motor force is measured with a load cell and controlled in the drive. Joining process or quality checks with high requirements for applied force can be implemented.

 Analog input:
 0-10V or ±10V

 Resolution:
 10 Bit

 Min. Force Resolution:
 0.1N


Interfaces	C1100-GP-XC	C1150-EC-XC	C1150-DS-XC	C1150-SE-XC	C1150-PN-XC
LinRS (RS485 / RS422)	•				
CANOpen	•				
ETHERCAT LinMot Profile		•			
ETHERCAT CiA402			•		
ETHERCAT SoEe				•	
PROFINET LinMot					•

C1100-GP-XC-0S C1100-GP-XC-1S

- Absolute & Relative Positioning
- » Time based motion profiles
- » Internally stored Motion Sequences
- » Position Streaming
- » Analog Position Target
- » Analog Parameter Scaling
- » Force Control Technology Function
- » Customer-Specific Functions

CANOPEN

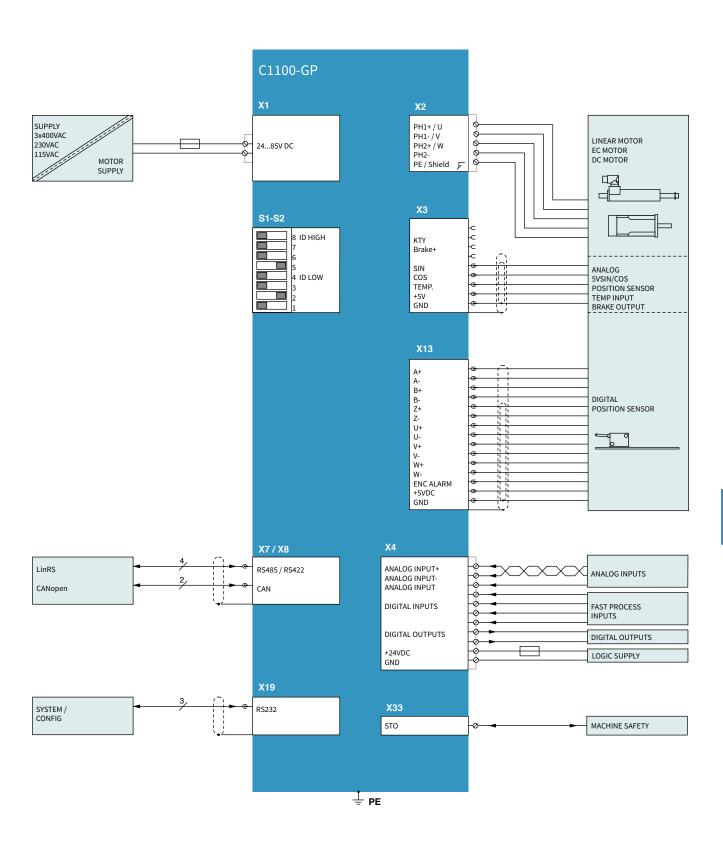
CANOPEN

The LinMot C1100-GP drives support the CiA DS301 communications protocol. The following resources are available: 4 T_PDO, 4 R_PDO, 1 T_SDO, 1 R_SDO

The following protocols are supported by the CO drives:

- » NMT Error Control (Nodeguarding Protocol or HeartBeat Protocol)
- » PDO (Transmission type 1 to 254)
- » SDO Upload and Download
- » NMT (Start, Stop, Enter PreOp, Reset Node, Reset Communication, Boot-Up Message)

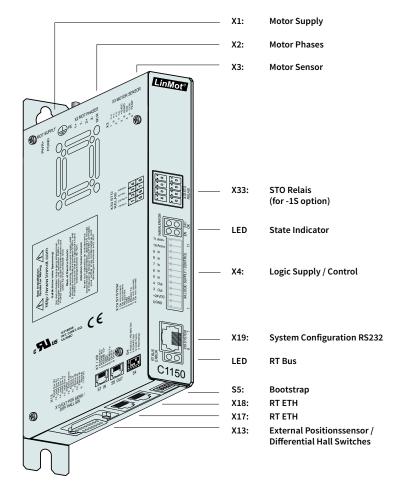
PROCESS AND SENSOR INTERFACES


The LinMot C1100-GP drives support the C1100-GP servo drives support the follow-CiA DS301 communications protocol. The ing interfaces:

- » CANOpen
- » LinRS

MINIMAL CYCLE TIMES

Min. Bus Cycle:	500 μs
IO update:	500 μs
Trigger Input:	250 µs
Position control loop:	250 µs
Current control loop:	125 µs





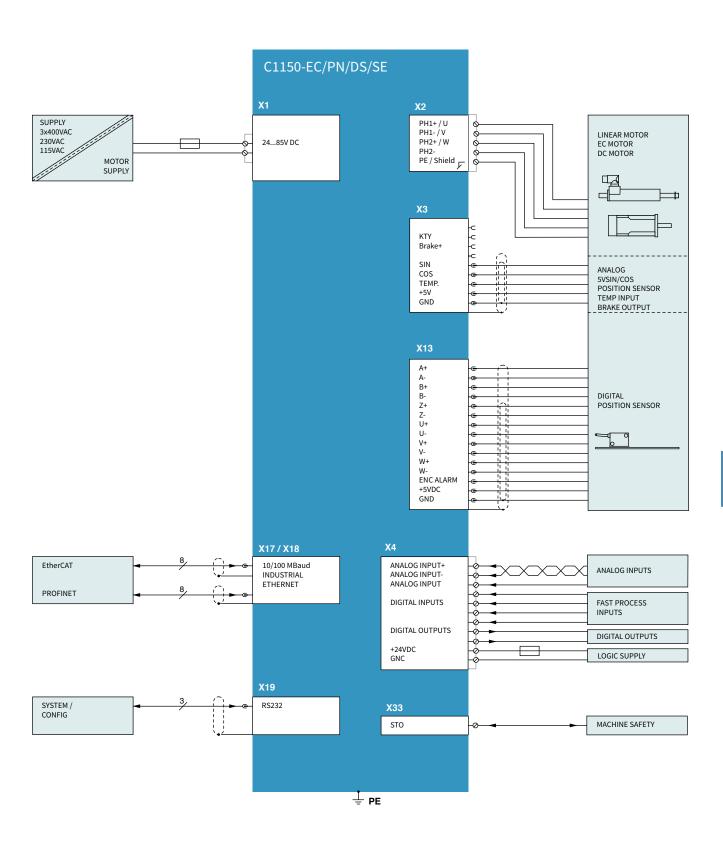
C1150-xx-XC-xS-xxx

- Absolute & Relative Positioning
- Time based motion profiles
- Internally stored Motion Sequences
- **Position Streaming**
- **Analog Position Target**
- Analog Parameter Scaling
- Force Control Technology Function
- **Customer-Specific Functions**

MINIMAL CYCLE TIMES

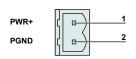
INDUSTRIAL ETHERNET

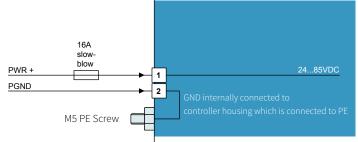
Series C1150-EC drives allow integration of LinMot linear motors in controls concepts with EtherCAT. The user can integrate Series C1100 drives regardless of the provider of the higher level control.


LinMot drives are available with common industrial Ethernet protocols. Since all Ethernet drives have the same motion command interface, and the control and status word are identical, software blocks that have been implemented once, can be transferred to other motion controllers without a problem.

TECHNICAL DATA

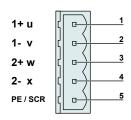
Realtime Ethernet Type: Switch/Hub: Integrated 2-Port Switch Transfer rate: 10/100MBit/sec


Bus cycle: 500 μs IO update: 500 μs Trigger Input: 250 μs Position control loop: 250 μs Current control loop: 125 µs



X1 MOTOR SUPPLY

Connector has to be ordered separetely

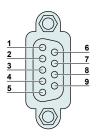


Motor Supply: 72VDC nominal, 24...85VDC Absolute max. Rating: 72VDC +20%. External Fuse: 16A slow-blow / min. 100VDC

If motor supply voltage exceeds 90VDC, the drive will go into error state.

- Use 60/75°C copper conductors only
- Conductor Cross-Section 2.5mm2 (AWG14) max Length 3 m

X2 MOTOR PHASES

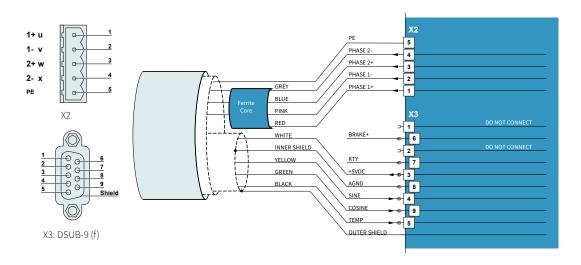


Nr	Designation	LinMot Linear Motor	Color	3-phase EC-Motor	Color
1	PH1+	Motor Phase 1+	red	Motor Phase U	red
2	PH1-	Motor Phase 1-	pink	Motor Phase V	pink
3	PH2+	Motor Phase 2+	blue	Motor Phase W	blue
4	PH2-	Motor Phase 2-	grey	RR-	grey
5	PE/SCRN	Shield		Shield	

Connector has to be ordered separetely

- Use 60/75°C copper conductors only
- Conductor cross-section: 0.5 2.5mm² (depends on Motor current) / AWG 21 -14

MOTOR SENSOR / BREMSE



DSUB-9

Nr		LinMot Motor	EC Motor
1		Do not connect	Do not connect
	6	Brake+	Brake+
2		Do not connect	Do not connect
	7	Do not connect	KTY
3		+5VDC	+5VDC
	8	AGND	AGND
4		Sensor Sine	Sensor Sine / Hall Switch U
	9	Sensor Cosine	Sensor Cosine / Hall Switch V
5		Temp In	Hall Switch W
	Case	Shield	Shield

- Use +5V (X3.3) and AGND (X3.8) only for motor internal Hall Sensor supply (max. 100 mA)
- Cable length < 30 m
- Brake+: 24V 500mA, 1.4A_{peak} Caution: Do NOT connect AGND (X3.8) to ground or earth!

Use Y-style motor cables only (for example K15-Y/C)!

A W-style cable has a different shielding, so it cannot be modified to a Y-style cable!

Phase 2-could be used as RRwith3 phase Motors the other side of regeneration resistor has to be wired to PWR

X4

LOGIC SUPPLY / IO CONNECTION

X4. 11	[]	=
X4. 10	r _o	
X4. 9		迃
X4. 8	Ç O	Contro
X4. 7	r _o	٥,
X4. 6		a
X4. 5		Supply
X4. 4		S
X4. 3		igo.
+24VDC		د
DGND		_
	ركاما	_

DSUB-9 (f) Spring cage connector (has to be ordered separetely)

Nr			
11	AnIn-	X4.11	Configurable Analog Input differential (with X4.10)
10	AnIn+	X4.10	Configurable Analog Input differential (with X4.11)
9	AnIn	X4.9	Configurable Analog Input single ended
8	In	X4.8	Configurable Input
7	In	X4.7	Configurable Input
6	In	X4.6	Configurable Input
5	In	X4.5	Configurable Input
4	Out	X4.4	Configurable Output
3	Out	X4.3	Configurable Output
2	+24VDC	Supply	Logic Supply 22-26 VDC
1	GND	Supply	Ground

Supply 24V:

24V / 5mA (Low Level: -0.5 to 5VDC, High Level: 15 to 30VDC) 24V / max. 500mA, Peak 1.4A (will shut down if exceeded) 10 bit A/D converted.

Single ended analog input to GND, 0..10V, Input Resistance: $51k\Omega$ to GND Differential analog input, +/- 10V. Common mode range: +/- 5VDC to GND. Input Resistance: $11.4k\Omega$ for each signal to GND

typically 200mA / max. 2.0A (if all outputs "on" with max. load.)

- » Use 60/75°C copper conductors only
- » Conductor cross-section max. 1.5 mm²
- » Stripping length: 10 mm
- » The 24VDC supply for the control circuit (X4.2) must be protected with an external fuse (3A slow blow)

X7 - X8 RS485 / CAN (ON GP DRIVES ONLY)

RJ-45

Nr		
1	RS485_Rx+	А
2	RS485_Rx-	В
3	RS485_Tx+	Υ
4	NC	
5	GND (1k Ohm to GND)	
6	RS485_Tx-	Z
7	CAN_H	
8	CAN_L	
Case	Shield	

- » Use twisted pair (1-2, 3-6, 4-5, 7-8) cable for wiring.
- » The built in CAN and RS485 terminations can be activated by S4.2 and S4.3.
- X7 is internally connected to X8 (1:1 connection)

S5

S1 - S2 ADRESS SELECTORS (ON GP DRIVES ONLY)

S1 (58)	Bus ID High (0 F). Bit 5 is the LSB, bit 8 the MSB.
S2 (14)	Bus ID Low (0 F). Bit 1 is the LSB, bit 4 the MSB

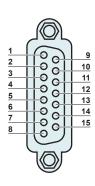
The use of these switches depends on the type of fieldbus which is used. Please see the corresponding manual for further information.

RT BUS LEDS

RT BUS State Display	
Green	OK
Red	Error

The use of these LEDs depends on the type of fieldbus which is used. Please see the corresponding manual for further information.

S4 BUS TERMINATION (ON GP DRIVES ONLY)


Switch 4	Bootstrap
Switch 3	Termination CAN on/off
Switch 2	Termination RS485 on/off
Switch 1	RS232 / RS485

Factory settings: Switch 3 "on", all other switches "off"

BOOTSTRAP (ON EC AND PN DRIVES ONLY)

S5	Bootstrap (Internal use only	У

X13 EXTERNAL POSITION SENSOR DIFFERENTIAL HALL SWITCHES

DSUB-15 (f)

Nr		ABZ with Hall Switches	SSI / BiSS
1		+5V DC	+5V DC
	9	A+	A+
2		A-	A-
	10	B+	B+
3		B-	B-
	11	Z+	Data+
4		Z-	Data-
	12	Encoder Alarm	Encoder Alarm
5		GND	GND
	13	U+	nc
6		U-	nc
	14	V+	nc
7		V-	nc
	15	W+	Clk+
8		W-	Clk-
Case		Shield	Shield

Position Encoder Inputs (RS422):

Differential Hall Switch Inputs (RS422):

Enc. Alarm In: Sensor Supply: Max. counting frequency: 10 Mcounts/s with quadrature

decoding, 100ns edge separation

Input Frequency: <1kHz

5V / 1mA 5VDC, max 100mA

SAFETY RELAYS (ONLY FOR -1S)

X33. 4/8 Ksr+ X33. 3/7 Ksr-X33. 2/6 Ksr f+ X33. 1/5 Ksr f-

Spring cage connector (has to be ordered separetely)

- 4/8 Safety Relay 1 / 2 Input possitive Ksr+ 3/7 Ksr-Safety Relay 1 / 2 Input negative Ksr f+ Safety Relay 1 / 2 feedback positive 2/6 1/5 Ksr f-Safety Relay 1 / 2 feedback negative
- Use 60/75°C copper conductors only
- Conductor cross-section max. 1.5 mm²
- Stripping length: 10 mm
- Never connect the safety relays to the logic supply of the drive!

REALTIME ETHERNET 10/100 MBIT/S (ON EC AND PN DRIVES ONLY) X17 - X18

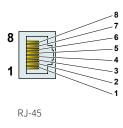
X17

X18

RJ-45

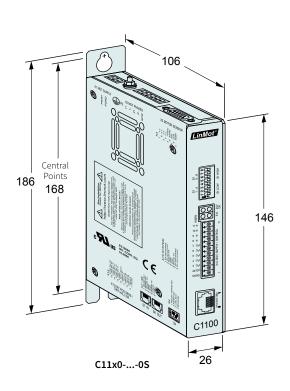
Nr		
X17	RT ETH In	Specification depends on RT-Bus.
X18	RT ETH Out	Please refer to according documentation.

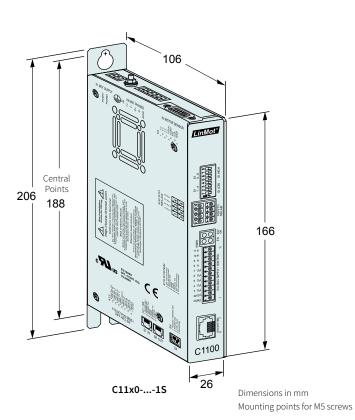
LEDS


STATE DISPLAY

Green	24V Logic Supply OK
Yellow	Motor Enabled / Error Code Low Nibble
Yellow	Warning / Error Code High Nibble
Red	Error

X19


SYSTEM



Nr	Descrption
1	(do not connect)
2	(do not connect)
3	RS232 RX
4	GND
5	GND
6	R\$232 TX
7	(do not connect)
8	(do not connect)
case	Shield

Use isolated USB-RS232 converter (Art.-No. 0150-2473) for configuration over RS232

Servo Drive Series		C11x00S		C11x01S
Width	mm (in)		26.0 (1.02)	
Height	mm (in)	146 (5.8)		166 (6.5)
Height with fixings	mm (in)	186 (7.3)		206 (8.1)
Depth	mm (in)		106 (4.2)	
Weight	kg (lb)	505 (1.21)		650 (1.43)
Mounting Screws		2 x M5		2 x M5
Mounting Distance	mm (in)	168 (6.61)		188 (7.4)
Case IP Code	IP		20	
Storage temperature	°C		-2540	
Transport temperature	°C		-2570	
Operating temperature	°C		040 at rated date 4050 with power derating	
Relative humidity			95% (non-condensing)	
Pollution	IEC/EN 60664-1		Pollution degree 2	
Shock resistance (16 ms)	-1S option			3.5 g
Vibration resistance (10-200Hz)	-S option			1 g
Max. case temperature	°C		70	
Max. power dissipation	W		30	
Mounting place			in the control cabinet	
Mounting position			vertical	
Distance between Drives	mm (in)		Without Power Derating 20 (0.8) left/right / 50 (2) top/bottom With Powert Derating: 5 (0.2) left/right / 20 (0.8) top/bottom	

Servo Drives				
Item	Description	Part Number		
C1100-GP-XC-0S-000	General Purpose Drive (72VDC/25)	0150-2380		
C1150-PN-XC-0S-000	ProfiNet Drive (72V/25A)	<u>0150-2384</u>		
C1150-EC-XC-0S-000	EtherCAT Drive (72VDC/25A)	<u>0150-2382</u>		
C1150-DS-XC-0S-000	EtherCAT CoE Drive (72VDC/25A)	<u>0150-2417</u>		
C1150-SE-XC-0S-000	EtherCAT SoE Drive (72VDC/25A)	<u>0150-2625</u>		
C1100-GP-XC-1S-000	General Purpose Drive (72VDC/25), STO	<u>0150-2381</u>		
C1150-PN-XC-1S-000	ProfiNet Drive (72V/25A), STO	<u>0150-2385</u>		
C1150-EC-XC-1S-000	EtherCAT Drive (72VDC/25A), STO	<u>0150-2383</u>		
C1150-DS-XC-1S-000	EtherCAT CoE Drive (72VDC/25A), STO	<u>0150-2418</u>		
C1150-SE-XC-1S-000	EtherCAT SoE Drive (72VDC/25A), STO	<u>0150-2626</u>		

Accessories				
Item Description		Part Number		
DC01-C1X00-0S/X1/X4	Drive Connector Set for C1X00-0S	<u>0150-3527</u>		
DC01-C1X00-1S/X1/X4/X33	Drive Connector Set for C1X00-1S	<u>0150-3528</u>		
DC01-C1X00/X1	Drive Connector for PWR 72VDC Input	<u>0150-3525</u>		
DC01-C1X00/X2	Drive Connector Motor Phases	<u>0150-3526</u>		
DC01-Signal/X4	Drive Connector 24VDC & Logic	<u>0150-3447</u>		
DC01-Safety/X33 yello	Drive Connector Safety	<u>0150-3451</u>		

SERIES C1200

- Absolute / relative positioning commands
- Limited jerk motion commands
- Time Curves
- Real Time (Streaming)
- Synchronous control (Drive profiles)
- PLC or Stand-Alone Solutions
- Digital and Analog IO's
- Safe Torque Off
- Interface for optional incremental or absolute sensor
- Supports Plug and Play
- CE/UL/CSA

Servo Drive C1200

Series C1200 servo drives are axis controllers, with 32-bit position resolution and an integrated power stage, for linear and rotary motors. The controllers are suitable for standard and high-end positioning tasks with NC Synchronisation.

CONNECTION TO MACHINE CONTROL

The Series C1200 servo drives can be actuated by machine controls from many manufacturers or brands, via digital inputs and outputs over Industrial Ethernet.

Bus-Interfaces:

- » ProfiNet / ProfiDrive
- » EtherCat, SoE, CoE
- » Ethernet IP
- » PowerLink
- » Sercos III

PROCESS AND SENSOR INTERFACES

Fast process interfaces for direct processing of sensor signals are available as freely programmable analog and digital inputs, a fast trigger input, and a capture input.

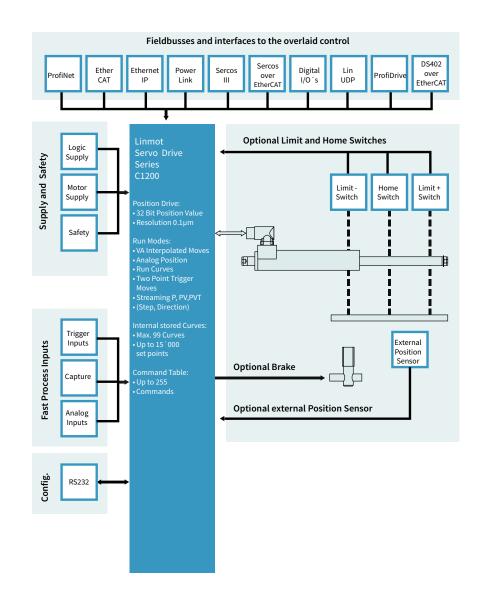
The safety IO's on Servo Drives with the -1S option with industrial ETHERNET allows safe torque off (STO) of the drives via control signals, without interrupting the power supply.

Drives with -0S option comes without safety IO's and is easier to wire in applications without safety needs.

LOGIC AND POWER SUPPLY

The servo drives have two separate inputs for the logic and motor elements.

This has the advantage that the drive and linear motor do not need to be reinitialized when the machine is restarted, since all process data, including the actual position of the linear motor, is still up to date


System Integration

Flexible hardware enables control of many 1/2/3-phase motors. Thus, low-power rotary servomotors, such as brushless DC motors, can be integrated in the same control concept.

Additionally, the drives can be equipped with optional peripherals, such as reference and end stop switches, high-precision external position sensors, or a mechanical holding brake.

Series C1200 servo drives have analog and digital inputs and outputs, serial interfaces, fieldbusses, and Ethernet. The user therefore is not dependent on the selection of the overlaid controller. An appropriate interface is available, with associated protocols, for many PLC or IPC solutions.

With flexibility and a compact form factor, LinMot Series C1200 servo drives provide a complete solution for a flexible drive concept in single and multiple axes applications, with linear motors and other actuators.

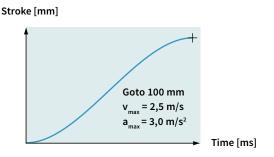
HIGH-END AND NC-MOTIONS

The ultra-fast control cycle together with the high resolution A/D converters of the C1200 series drives guarantee perfect motor control for demanding Positioning tasks.

The various drive profiles available on the series C1200 drives makes it easy to integrate these drives into systems with synchronized axes and overlaid NC-position controllers with industrial Ethernet communication.

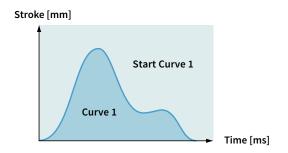
MOTOR INTERFACES

C1200 servo drives provide all necessary interfaces to operate linear or rotary motors with optional external peripherals, such as end position and reference switches, a mechanical brake, or a high-resolution external position sensor.


CONFIGURATION

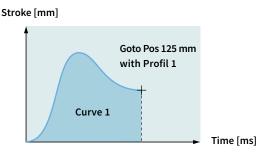
LinMot Talk, a user-friendly PC software is available for configuration. In addition to online documentation, LinMot Talk provides extensive debugging tools, such as an oscilloscope and an error inspector, for simple and rapid start-up of the Axis.

Fieldbus and Ethernet drives can also be configured directly by the overlaid control, by downloading the configuration parameters via Bus/Ethernet


INTERPOLATED MOVES

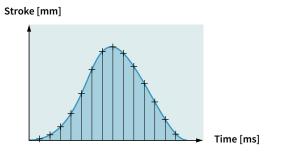
For direct position targets, using absolute or relative positioning, the desired position is reached using acceleration and velocity-limited motion profiles or jerk optimized profiles (example: Bestehorn). Positioning commands can be invoked via serial Ethernet or a trigger input.

Stroke range: $\pm 100 \text{ m}$ Position Resolution: $0.1 \mu m \text{ (32Bit)}$ Velocity Resolution: $1.0 \mu m/s \text{ (32Bit)}$ Acceleration Resol.: $10.0 \mu m/s^2 \text{ (32Bit)}$


TIME CURVES

Up to 100 different time curves can be stored on Series C1200 drives, with up to 16,000 individual waypoints. The motor can thus travel along time curves of any complexity, such as those generated by CAD programs and stored in the drive (Excel CSV format). The time curves can be invoked via the serial interface, fieldbusses, Ethernet, or the trigger input.

 $\begin{array}{lll} \textbf{Stroke range:} & \pm 100 m \\ \textbf{Position Resolution:} & 0.1 \ \mu m \ (32 \text{Bit}) \\ \textbf{Motion profiles:} & \text{Max. } 100 \ \text{Time Curves} \\ \textbf{Curve points:} & \text{Max. } 16'000 \ \text{points} \\ \end{array}$


PROFILED MOVES

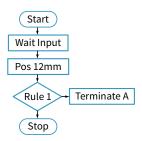
For travel to an absolute position, or shifting by a relative position, any desired motion rules can be stored besides the VA interpolator. They are stored in the drive as motion profiles (Excel CSV format). The positions can be approached, for example, with a sinusoidal motion to optimize power loss, or special reverse optimized motion profiles.

 $\begin{array}{lll} \textbf{Stroke range:} & \pm 100 m \\ \textbf{Position Resolution:} & 0.1 \, \mu m \ (32 Bit) \\ \textbf{Motion profiles:} & \text{Max. } 100 \, \text{Time Curves} \\ \textbf{Curve points:} & \text{Max. } 16'000 \, \text{points} \\ \end{array}$

SETPOINT STREAMING

Overlaid NC drives with fieldbus or Ethernet interfaces communicate with the servo drives via "Position Streaming". The position and velocity calculated in the overlaid control is transmitted to the Servo Drive cyclically. The P, PV, or PVA mode is available for this transmission.

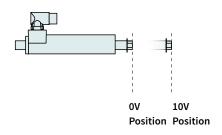
Position Resolution:32 BitVelocity Resolution:32 BitInterpolator:8 kHzCycle times:0.25 - 5 ms


EASY STEPS

Input 1	Pos 125 mm
Input 2	Pos 250 mm
Input 3	Curve 1
Input 4	Pos -30 mm

With the Easy Steps function, up to 4 positions or independent travel commands can be stored on the drive, and addressed via 4 digital inputs or fieldbus interfaces/Ethernet.

> **Digital inputs:** Interface: X4 250 µsec **Scanning rate:**

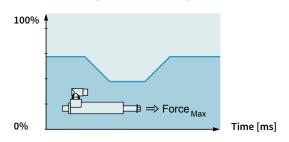

COMMAND TABLE

Entire motion sequences with up to 255 individual motion commands can be stored in the Command Table. This is primarily advantageous if complete motion sequences need to be executed very quickly, without dead time from the overlaid PLC. In the Command Table, the programmer has access to all motion commands, internal parameters, and digital inputs and outputs.

> **Commands:** max. 255 Cycle time: 125 µsec

ANALOG POSITION

For an analog position target, the linear motor travels to a position proportional to the input voltage. The position is either scanned continuously, or only after a rising edge of the trigger signal. In order to prevent uncontrolled jumps in position, the motor travels to the positions with a programmable maximum acceleration and velocity (VA interpolator).


> Inputs: Analog Input X4 0-10VDC or ±10V Voltage range: 12 Bit

Resolution:

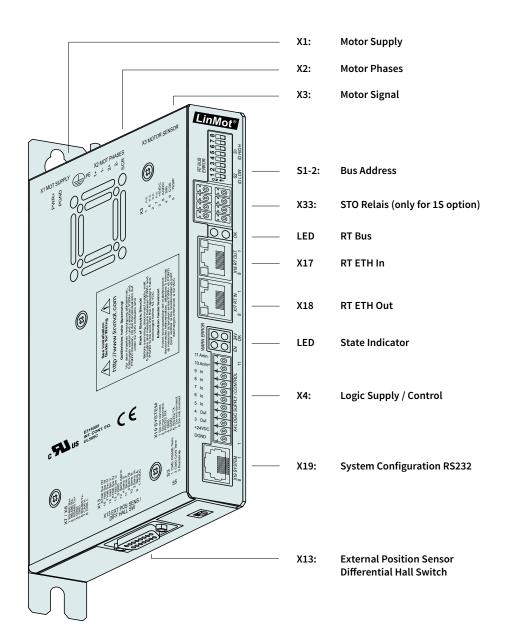
Scanning rate: >=125 µsec (adjustable)

EASY STEPS PARAMETER SCALE

Maximum Force [0...10V => 0...100%]

Easy Steps provide the ability to parameterize internal parameters using two analog inputs. If, for example, the maximum motor current is read at an analog input, then the maximum motor force can be provided as analog for freely programmable joining processes.

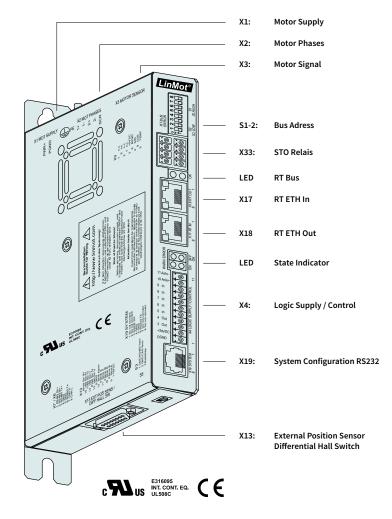
> 2 x Analog Inputs: Voltage range: 0-10VDC **Resolution:** 12 Bit **Scanning rate:** 250 usec


CLOSED LOOP FORCE CONTROL

Using the force control technology function, precise joining processes can be implemented reliably and reproducibly with high-precision force control. For force control, the current motor force is measured with a load cell and controlled in the drive. Joining process or quality checks with high requirements for applied force can be implemented.

Analog input: 0-10V or ± 10 V Resolution: 12 Bit Min. Force Resolution: 0.1N

Interfaces	C1250-PN-XC	C1250-PD-XC	C1250-EC-XC	C1250-DS-XC	C1250-SE-XC	C1250-IP-XC	C1250-PL-XC	C1250-SC-XC	C1250-LU-XC
PROFINET	•								
PROFINET ProfiDrive		•							
ETHERCAT			•						
ETHERCAT CiA402				•					
ETHERCAT SoE					•				
ETHERNET IP						•			
POWERLINK							•		
SERCOS III								•	
LinUDP									•


POWERLINK

C1250-PN-XC C1250-EC-XC C1250-IP-XC C1250-PL-XC C1250-SC-XC C1250-SE-XC C1250-PD-XC C1250-DS-XC

C1250-LU-XC

- » Absolute & Relative Positioning
- » Time based motion profiles
- » Internally stored Motion Sequences
- » Position Streaming
- » Analog Position Target
- » Analog Parameter Scaling
- » Force Control Technology Function
- » Customer-Specific Functions

INDUSTRIAL ETHERNET

Series C1200 drives allow integration of Lin-Mot linear motors in controls concepts with industrial Ethernet interfaces. The user can integrate Series C1200 drives regardless of the provider of the overlaid control.

LinMot drives are available with common industrial Ethernet protocols. Since all Ethernet drives have the same motion command interface, and the control and status word are identical, software blocks that have been implemented once can be transferred to other drives without a problem.

The series C1200 servo drives support the following industrial Ethernet protocols:

» Profinet

» EtherCAT

» Ethernet IP

» PowerLink

» Sercos III

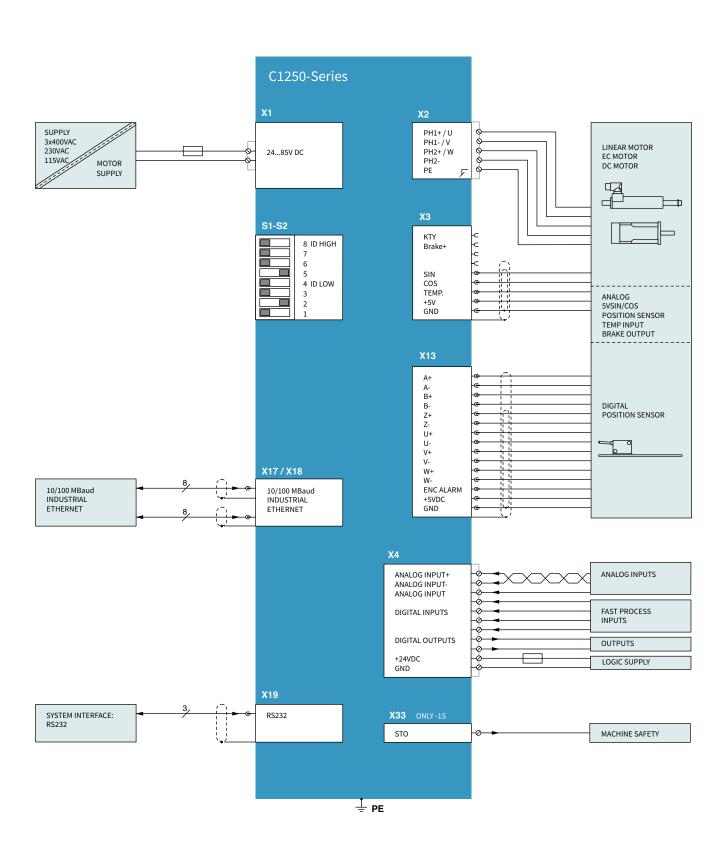
» Sercos over EtherCAT

» ProfiDrive

» CiA 402

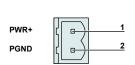
» LinUDP

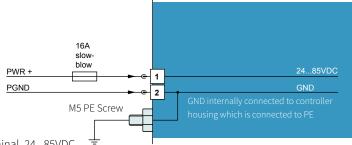
The appropriate drive is available for each protocol.


TECHNICAL DATA

Type: Realtime ETHERNET
Switch/Hub: Integrated 2-Port
Hub/Switch
Transfer rate: 10/100MBit/sec

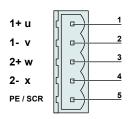
Minimal cycle times:


Bus cycle: 250 µs
IO update: 250 µs
Trigger Input: 125 µs
Position control loop: 125 µs
Current control loop: 62.5 µs



X1 + PE MOTOR SUPPLY / REGENERATION RESISTOR

Connector has to be ordered separately

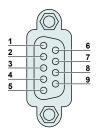

Motor Supply: 72VDC nominal, 24...85VDC

Absolute max. Rating: 72VDC +20%. External Fuse: 16A slow-blow / min. 100VDC

If motor supply voltage exceeds 90VDC, the drive will go into error state.

- » Use 60/75°C copper conductors only
- » Conductor Cross-Section 2.5mm2 (AWG14) max Length 3 m

X2 MOTOR PHASES

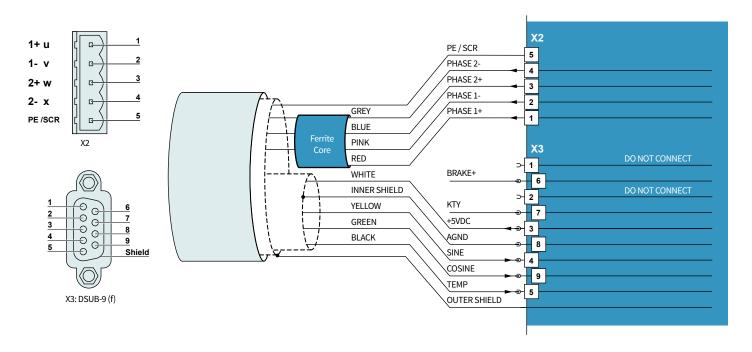


Nr	Designation	LinMot Linear Motor	Color	3-Phase EC-Motor	Color
1	PH1+	Motor Phase 1+	red	Motor Phase U	red
2	PH1-	Motor Phase 1-	pink	Motor Phase V	pink
3	PH2+	Motor Phase 2+	blue	Motor Phase W	blue
4	PH2-	Motor Phase 2-	grey	Motor Phase X	grey
5	PE/SCR	Shield		Shield	

Connector has to be ordered separetely

- » Use 60/75°C copper conductors only
- » Conductor cross-section: 0.5 2.5mm2 (depends on Motor current) / AWG 21 -14

X3 MOTOR SENSOR / BRAKE



DSUB-9

Nr		LinMot Motor	EC Motor
1		Do not connect	Do not connect
	6	Brake+	Brake+
2		Do not connect	Do not connect
	7	Do not connect	KTY
3		+5VDC	+5VDC
	8	AGND	AGND
4		Sensor Sine	Sensor Sine / Hall Switch U
	9	Sensor Cosine	Sensor Cosine / Hall Switch V
5		Temp In	Hall Switch W
	Case	Shield	Shield

- » Use +5V (X3.3) and AGND (X3.8) only for motor internal hall sensor supply (max. 100mA)
- » Cable length < 30 m</p>
- » Brake+: 24V / max. 500mA, Peak 1.4mA (will shut down if exceeded)
- Caution: Do NOT connect AGND (X3.8) to ground or earth!

Use Y-style motor cables only (for example K15-Y/C)! A W-style cable has a different shielding, so it cannot be modified to a Y-style cable!

X4 LOGIC SUPPLY / IO CONNECTION

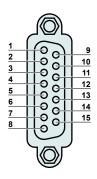
DSUB-9 (f) Spring cage connector (has to be ordered separately)

Nr			
11	AnIn-	X4.11	Configurable Analog Input differential (with X4.10)
10	AnIn+	X4.10	Configurable Analog Input differential (with X4.11)
9	AnIn	X4.9	Configurable Analog Input single ended
8	In	X4.8	Configurable Input
7	In	X4.7	Configurable Input
6	In	X4.6	Configurable Input
5	In	X4.5	Configurable Input
4	Out	X4.4	Configurable Output
3	Out	X4.3	Configurable Output
2	+24VDC	Supply	Logic Supply 22-26 VDC
1	GND	Supply	Ground

Inputs: (X4.5...X4.8) Outputs: (X4.3 & 4.4) Analog inputs: X4.9: X4.10/X4.11:

Supply 24V:

 $24 \rm V/5mA$ (Low Level: -0.5 to 5VDC, High Level: 15 to 30VDC) $24 \rm V/max.$ 500mA, Peak 1.4mA (will shut down if exceeded) 12 bit A/D converted.


Single ended analog input to GND, 0..10V, Input Resistance: $51k\Omega$ to GND Differential analog input, +/- 10V. Common mode range: +/- 5VDC to GND. Input Resistance: $11.4k\Omega$ for each signal to GND

typically 500mA / max. 2.5A (if all outputs "on" with max. load.)

- » Use 60/75°C copper conductors only
- » Conductor cross-section max. 1.5 mm²
- » Stripping length: 10 mm
- The 24VDC supply for the control circuit (X4.2) must be protected with an external fuse (3A slow blow)

X13 EXTERNAL POSITION SENSOR PIN CONFIGURATION

DSUB-15 (f)

Nr		ABZ with Hall Switches	SSI / BiSS / EnDat
1		+5V DC	+5V DC
	9	A+	A+
2		A-	A-
	10	B+	B+
3		B-	B-
	11	Z+	Data+
4		Z-	Data-
	12	Encoder Alarm	Encoder Alarm
5		GND	GND
	13	U+	nc
6		U-	nc
	14	V+	nc
7		V-	nc
	15	W+	Clk+
8		W-	Clk-
Case		Shield	Shield

Position Encoder Inputs (RS422):

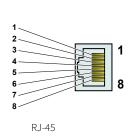
Max. counting frequency: 25 M counts/s with quadrature decoding. A minimum of 40ns edge separation must be guaranteed by the encoder under any circumstances! The maximal frequency of each signal is 6.25 MHz.

Differential Hall Switch Inputs (RS422):

Enc. Alarm In: 5V / 1mA

Sensor Supply: 5VDC, max 100mA

X17 - X18 REALTIME ETHERNET 10/100 MBIT/S



RJ-45

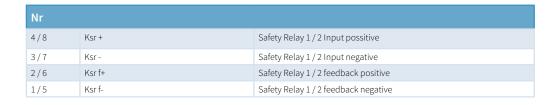
Nr		
X17	RT ETH In	Specification depends on RT-Bus Type.
X18	RT ETH Out	Please refer to interface documentation.

Input Frequency: <1kHz

X19 SYSTEM

Nr		
1	(do not connect)	
2	(do not connect)	
3	RS232 RX	
4	GND	
5	GND	
6	RS232 TX	
7	(do not connect)	
8	(do not connect)	
case	Shield	

Use isolated USB-RS232 converter (Art.-No. 0150-2473) for configuration over RS232


X33 SAFETY RELAYS (ONLY FOR -1S)

X33. 4/8 Ksr+ X33. 3/7 Ksr-X33. 2/6 Ksr f+ X33. 1/5 Ksr f-

Spring cage connector

- Use 60/75°C copper conductors only
- Conductor cross-section max. 1.5 mm²
- » Stripping length: 10 mm
- Never connect the safety relays to the logic supply of the drive!

S1 - S2 ADDRESS SELECTORS

S1 (58)	Bus ID High (0 F). Bit 5 is the LSB, bit 8 the MSB.
S2 (14)	Bus ID Low (0 F). Bit 1 is the LSB, bit 4 the MSB

Setting the ID high & low to FF resets the drive to manfacturer settings!

The use of these switches depends on the type of fieldbus which is used. Please see the corresponding manual for further information.

S5 BUS TERMINATION

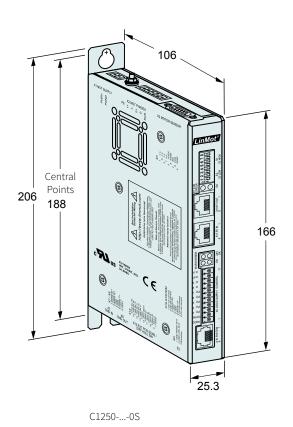
S5

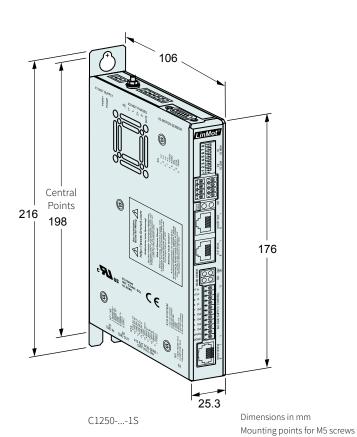
Bootstrap (Internal use only)

Default position
View: X13 Connecter is left
next to \$5 switch

.EDS STATE DISPLAY

24VOK	Green	24V Logic Supply OK
En	Yellow	Motor Enabled / Error Code Low Nibble
Warn	Yellow	Warning / Error Code High Nibble
Error	Red	Error


RT BUS LEDS



BUS OK	Green	OK
BUS Error	Red	Error

The use of these LEDs depends on the type of fieldbus which is used. Please see the corresponding manual for further information.

Servo Drive Series		C12500S		C12501S
Width	mm (in)		25.3 (1.0)	
Height	mm (in)	166 (6.5)		176 (6.9)
Height with fixings	mm (in)	206 (8.1)		216 (8.5)
Depth	mm (in)		106 (4.2)	
Weight	g (lb)	630 (1.4)		700 (1.54)
Mounting Screws		2 x M5		2 x M5
Mounting Distance between screw holes	mm (in)	168 (6.61)		188 (7.4)
Case IP Code	IP		20	
Storage temperature	°C		-2540	
Transport temperature	°C		-2570	
Operating temperature	°C		040 at rated date 4050 with power derating	
Relative humidity			95% (non-condensing)	
Pollution	IEC/EN 60664-1		Pollution degree 2	
Shock resistance (16 ms)	-1S option			3.5g
Vibration resistance (10-200Hz)	-1S option			1g
Max. case temperature	°C		70	
Max. power dissipation	W	30		
Mounting place		in the control cabinet		
Mounting position		vertical		
Distance between Drives	mm (in)	Without Power Derating: 20 (0.8) left/right / 50 (2) top/bottom With Power Derating: 5 (0.2) left/right / 20 (0.8) top/bottom		

Servo Drives					
Item	Description	Part Number			
C1250-PN-XC-0S-000	ProfiNet Drive (72V/25A)	<u>0150-1888</u>			
C1250-PD-XC-0S-000	ProfiNet ProfiDrive (72V/25A)	<u>0150-2618</u>			
C1250-EC-XC-0S-000	EtherCAT Drive (72V/25A)	<u>0150-1884</u>			
C1250-DS-XC-0S-000	EtherCAT CoE Drive (72V/25A)	<u>0150-2415</u>			
C1250-SE-XC-0S-000	EtherCAT SoE Drive (72V/25A)	<u>0150-1897</u>			
C1250-IP-XC-0S-000	Ethernet/IP Drive (72V/25A)	<u>0150-1886</u>			
C1250-PL-XC-0S-000	Powerlink Drive (72V/25A)	<u>0150-1885</u>			
C1250-SC-XC-0S-000	Sercos III Drive (72V/25A)	<u>0150-1887</u>			
C1250-LU-XC-0S-000	ETHERNET LinUDP Drive (72V/25A)	<u>0150-2491</u>			
C1250-PN-XC-1S-000	Profinet Drive (72V/25A), STO	<u>0150-2348</u>			
C1250-PD-XC-1S-000	ProfiNet ProfiDrive (72V/25A), STO	<u>0150-2619</u>			
C1250-EC-XC-1S-000	EtherCAT Drive (72V/25A), STO	<u>0150-2345</u>			
C1250-DS-XC-1S-000	EtherCAT CoE Drive (72V/25A), STO	<u>0150-2416</u>			
C1250-SE-XC-1S-000	EtherCAT SoE Drive (72V/25A), STO	<u>0150-2350</u>			
C1250-IP-XC-1S-000	Ethernet/IP Drive (72V/25A), STO	<u>0150-2346</u>			
C1250-PL-XC-1S-000	Powerlink Drive (72V/25A), STO	<u>0150-2347</u>			
C1250-SC-XC-1S-000	Sercos III Drive (72V/25A), STO	<u>0150-2349</u>			
C1250-LU-XC-1S-000	ETHERNET LinUDP Drive (72V/25A), STO	<u>0150-2492</u>			

Accessories					
Item	Description	Part Number			
DC01-CX000-0S/X1/X4	Connector set C12500S (X1, X4)	<u>0150-3527</u>			
DC01-CX000-1S/X1/X4/X33	Connector set C12501S (X1, X4, X33)	<u>0150-3528</u>			
DC01-C1X00/X1	Drive Connector for PWR 72DC Input	<u>0150-3525</u>			
DC01-CX000-X2	Motor connector (X2)	<u>0150-3526</u>			
DC01-Signal/X4	Drive Connector 24VDC & Logic	<u>0150-3447</u>			
DC01-Safety/X33	Drive Connector Safety	<u>0150-3451</u>			

SERIES E1200

- Time Curves
- Real Time (Streaming)
- Synchronous control (Drive profiles)
- Master Encoder Synchronization (In/Out)
- PLC or Stand-Alone Solutions
- Industrial Ethernet Configuration / Remote Access Ethernet
- Digital and Analog IO's
- Interface for optional incremental and absolute sensor
- Position Encoder Simulation (RS 422)
- Master / Slave Solutions
- ± 10 VDC Force Control
- Supports Plug and Play
- **✓** CE

Servo Drive E1200

Series E1200 Servo Drives are modular axis drives, with 32-bit position resolution and an integrated power stage, for linear and rotary motors.

The drives are suitable for simplest, standard, and high-end positioning tasks, across the entire force range of the LinMot product range.

CONNECTION TO MACHINE DRIVE

The Series E1200 Servo Drives can be actuated by machine controls from many manufacturers or brands, via digital inputs and outputs, RS232 or RS485 serial interface, CanBus CANopen and DeviceNet interfaces, Profibus DP, or industrial ETHERNET.

PROCESS AND SAFETY INTERFACES

Fast process interfaces for direct processing of sensor signals are available as freely programmable analog and digital inputs, a fast trigger input, and a capture input.

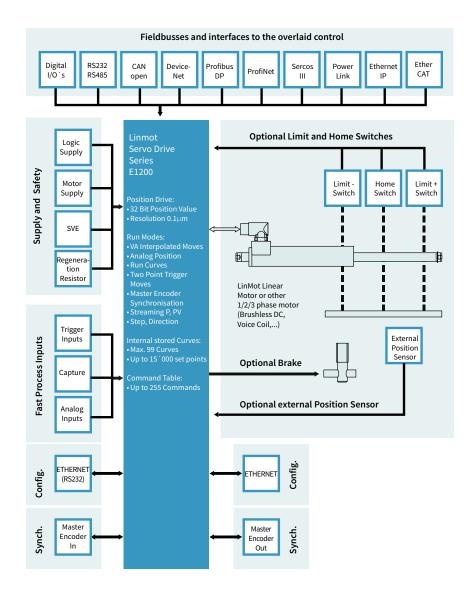
The safe pulse inhibitor on Servo Drive with fieldbus interfaces or industrial ETH-ERNET allows safe stop of the drives via control signals, per EN 954-1, without interrupting the power supply.

LOGIC AND POWER SUPPLY

The Servo Drives have two separate power supply inputs for the logic and power elements.

In an E-stop and safe stop of the drive, only the power element supply is cut off from the drive. The logic supply and the drive continue to run.

This has the advantage that the drive and linear motor do not need to be reinitialized when the machine is restarted, since all process data, including the current position of the linear motor, are still up to date.


System Integration

Flexible hardware enables control of many 1/2/3- phase motors. Thus, low-power rotary servomotors, such as brushless DC motors, can be integrated in the same controls concept.

Additionally, the drives can be equipped with optional peripherals, such as reference and end stop switches, high-precision external position sensors, or a mechanical holding brake.

Series E1200 Servo Drives have analog and digital inputs and outputs, serial interfaces, fieldbusses, and ETHERNET connections. The user is therefore not dependent on the selection of the overlaid drive. An appropriate interface is available, with associated protocols, for any PLC or IPC solution.

With flexibility and a compact form factor, LinMot Series E1200 Servo Drives provide a complete solution for a flexible drive concept in single and multiple axes applications, with linear motors and other actuators

MASTER ENCODER

For synchronization to a mechanical master shaft, or a rotating main drive, the Axis (linear motors and rotary motors) can be coupled to an electronic main shaft via the Master Encoder Interface.

The encoder signal from the main shaft can be passed through by the Master Encoder Interface, so that any number of linear motors can be synchronized to the main shaft.

MOTOR INTERFACES

E1200 Servo Drives provide all necessary interfaces to operate linear or rotary motors with optional external peripherals, such as end position and reference switches, a mechanical brake, or a high-resolution external position sensor.

In special applications, two drives can be synchronized with each other using the synchronization interface in master booster mode.

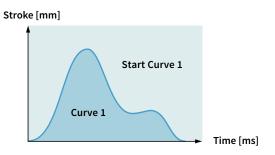
CONFIGURATION

Parameterization and configuration of the Servo Drive is done via the Ethernet interface on the front side for simultaneous configuration of several drives.

LinMot Talk user-friendly PC software is available for configuration. In addition to online documentation, LinMot Talk provides extensive debugging tools, such as an oscilloscope and an error inspector, for simple and rapid start-up of the Axis.

Fieldbus and ETHERNET drives can also be configured directly by the overlaid control.

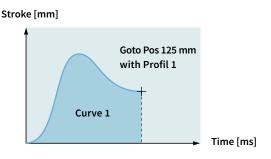
INTERPOLATED MOVES


Goto 100 mm v_{max} = 2,5 m/s a_{max} = 3,0 m/s²

Time [ms]

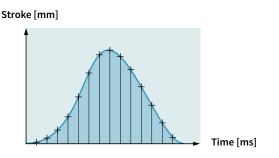
For direct position targets, using absolute or relative positioning, the desired position is reached using acceleration and velocity-limited motion profiles or jerk optimized profiles (jerk limited and Bestehorn). Positioning commands can be invoked via the serial interfaces, CANopen, DeviceNet, Profibus, Ethernet or a trigger input.

Stroke range: $\pm 100 \text{ m}$ Position Resolution: $0.1 \mu m \text{ (32Bit)}$ Velocity Resolution: $1.0 \mu m/s \text{ (32Bit)}$ Acceleration Resol.: $10.0 \mu m/s^2 \text{ (32Bit)}$


TIME CURVES

Up to 100 different time curves can be stored Series E1200 drives, with up to 16,000 individual waypoints. The motor can thus travel along time curves of any complexity, such as those generated by CAD programs and stored in the drive (Excel CSV format). The time curves can be invoked via the serial interface, fieldbusses, ETHERNET, or the trigger input.

 $\begin{array}{lll} \textbf{Stroke range:} & \pm 100 m \\ \textbf{Position Resolution:} & 0.1 \ \mu m \ (32 Bit) \\ \textbf{Motion profiles:} & \text{Max. } 100 \ \text{Time Curves} \\ \textbf{Curve points:} & \text{Max. } 16 \ 000 \ points \\ \end{array}$


PROFILED MOVES

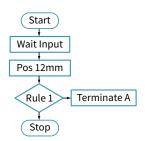
For travel to an absolute position, or shifting by a relative position, any desired motion rules can be stored besides the VA interpolator. They are stored in the drive as motion profiles (Excel CSV format). The positions can be approached, for example, with a sinusoidal motion to optimize power loss, or special reverse optimized motion profiles.

 $\begin{array}{lll} \textbf{Stroke range:} & \pm 100 m \\ \textbf{Position Resolution:} & 0.1 \ \mu m \ (32 \text{Bit}) \\ \textbf{Motion profiles:} & \text{Max. } 100 \ \text{Time Curves} \\ \textbf{Curve points:} & \text{Max. } 16'000 \ \text{points} \\ \end{array}$

SETPOINT STREAMING

Overlaid NC drives with fieldbus or ETHERNET interfaces communicate with the Servo Drives via "Position Streaming". The position and velocity calculated in the overlaid control is transmitted to the Servo Drive cyclically. The P, PV, or PVT mode is available for this transmission.

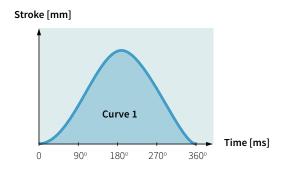
Position Resolution:32 BitVelocity Resolution:32 BitInterpolator:10 kHzCycle times:0.4 - 5 ms


EASY STEPS

Input 1	Pos 125 mm
Input 2	Pos 250 mm
Input 3	Curve 1
Input 4	Pos -30 mm
Input 5	Pos +12,5 mm
Input 6	Curve 2
Input 7	Pos 2 mm
Input 8	Pos -12,5 mm

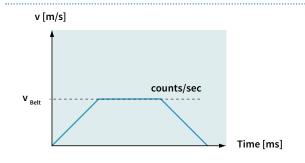
With the Easy Steps function, up to 8 positions or independent travel commands can be stored on the drive, and addressed via 8 digital inputs or fieldbus interfaces/ETHERNET.

Digital inputs:max. 8Interface:X4Scanning rate:200 μsec


COMMAND TABLE

Entire motion sequences with up to 255 individual motion commands can be stored in the Command Table. This is primarily advantageous if complete motion sequences need to be executed very quickly, without dead time from the overlaid drive. In the Command Table, the programmer has access to all motion commands, internal parameters, and digital inputs and outputs.

Commands: max. 255 **Cycle time:** 100 µsec


MASTER ENCODER SYNCHRONIZATION (MT)

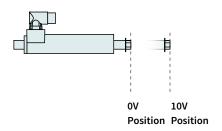
For synchronization to an external main or master shaft, the linear motor travels along the motion profiles stored in the drive, at the machine speed (machine angle 0...360°). Using this function, mechanical cam discs can be replaced with highly dynamic linear motors. The motion profiles can be freely defined, and the correct motion profile can be invoked during product changeover with no changeover time.

Motion profiles:Max. 100 curve profilesCurve points:Max. 16'000 pointsEncoder Counter:32 BitEncoder Input:A/B/Z (RS422)Max. counting frequencyMax. 4.5 MHz

BELT SYNCHRONIZATION

Synchronization to a belt speed can be done using the Master Encoder Interface or Step/Direction/ Zero interface. Applications such as the "flying saw", synchronous loading or unloading, synchronous filling or labeling of bottles or containers on a conveyor belt, and many other applications can be implemented in this way.

Encoder Counter: 32 B

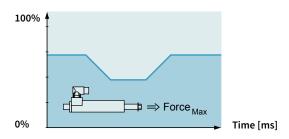

Encoder Input: A/B/Z (RS422), max. 5 MHz

STEP/DIR/ZERO

Max. counting frequency Max. 4.5 MHz

ANALOG POSITION

For an analog position target, the linear motor travels to a position proportional to the input voltage. The position is either scanned continuously, or only after a rising edge of the trigger signal. In order to prevent uncontrolled jumps in position, the motor travels to the positions with a programmable maximum acceleration and velocity (VA interpolator).

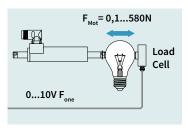

Inputs:Analog Input X4 or X20Voltage range:0-10VDC or ±10V

Resolution: 12 Bit

Scanning rate: >=100 µsec (adjustable)

EASY STEPS PARAMETER SCALE

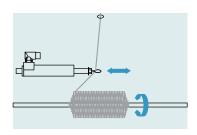
Maximum Force [0...10V => 0...100%]



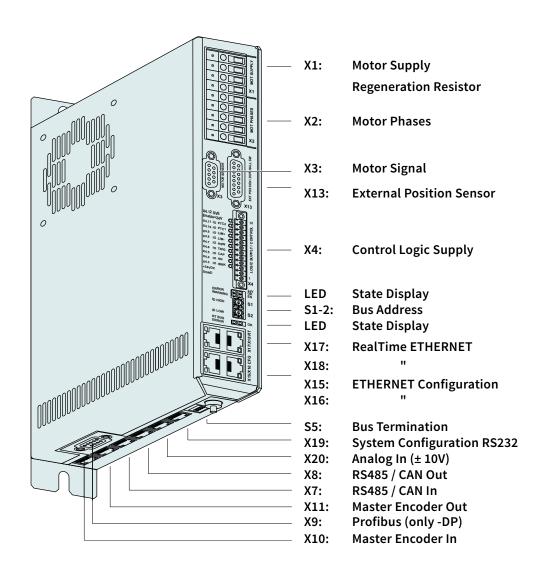
Easy Steps provide the ability to parameterize internal parameters using two analog inputs. If, for example, the maximum motor current is read at an analog input, then the maximum motor force can be provided as analog for freely programmable joining processes.

Inputs: 2 x Analog (X4.4, X4.7)

Voltage range:0-10VDCResolution:12 BitScanning rate:200 μsec


CLOSED LOOP FORCE CONTROL

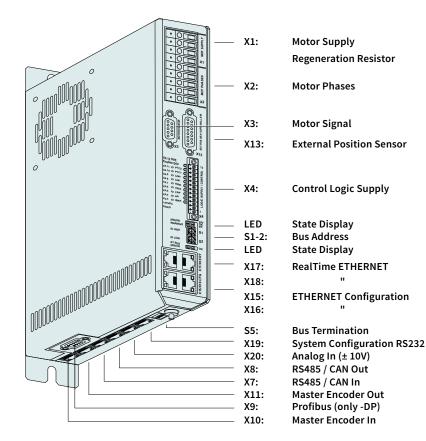
Using the force control technology function, precise joining processes can be implemented reliably and reproducibly with high-precision force control. For force control, the current motor force is measured with a load cell and controlled in the drive. Joining process or quality checks with high requirements for applied force can be implemented.


Analog Input: 0-10V or ±10V Resolution: 12 Bit
Min. Force Resolution: 0.1N

WINDING APPLICATION

For winding textile yarns, glass fiber optics, or wires, a complete functional block is available that controls the entire sequence of a complete winding process.

Interfaces	E1250-PL-UC	E1250-PN-UC	E1250-SC-UC	E1250-IP-UC	E1250-LU-UC	E1250-EC-UC	E1250-SE-UC	E1250-DS-UC	E1230-DP-UC	E1200-GP-UC
CANopen										•
LinRS										•
POWERLINK	•									
PROFINET		•								
sercos			•							
sercos over EtherCAT							•			
ETHERNET IP				•						
LinUDP					•					
EtherCAT						•				
ETHERCAT CiA402								•		
PROFIBUS-DP									•	



E1250-PL-UC E1250-PN-UC E1250-PD-UC E1250-SC-UC E1250-IP-UC E1250-LU-UC E1250-EC-UC E1250-SE-UC E1250-DS-UC

- Absolute & Relative Positioning
- Travel Along Time Curves
- » Positioning using Motion Profiles
- » Internally stored Motion Commands
- » Internally stored Motion Sequences
- » Master Encoder Synchronization
- Synchronization to Belt Speed
- » Position Streaming
- » Analog Position Target
- » Analog Parameter Scaling
- » Winding Function Block
- » Force Control Technology Function
- » Customer-Specific Functions

INDUSTRIAL ETHERNET

Series E1200 drives allow integration of Lin-Mot linear motors in controls concepts with lo industrial ETHERNET interfaces. The user can integrate Series E1200 drives regardless of the provider of the overlaid control.

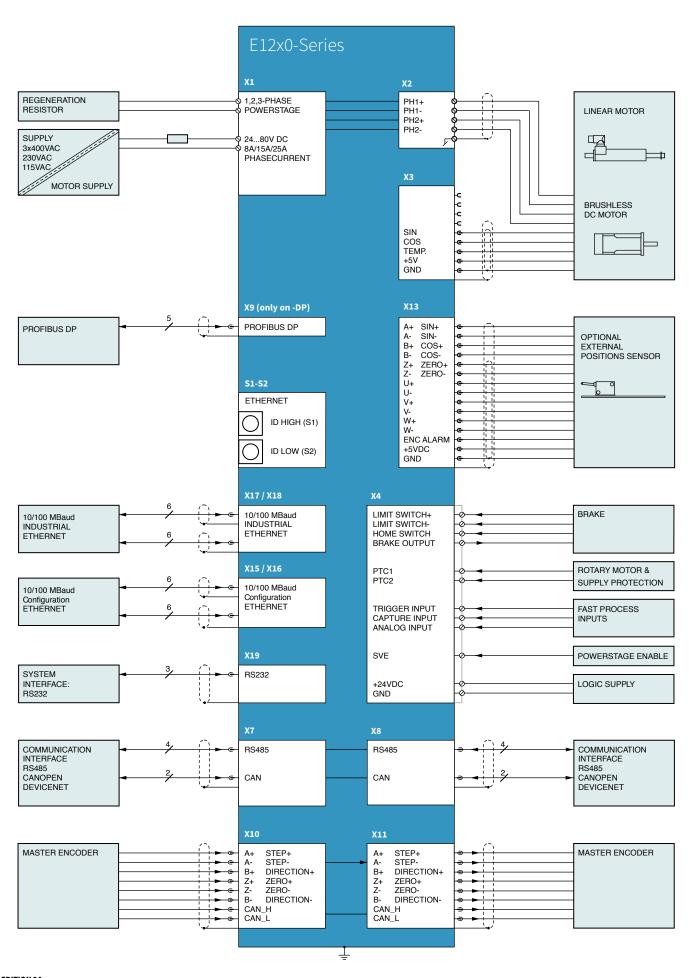
LinMot drives are available with common industrial ETHERNET protocols. Since all » ETHERNET drives have the same motion command interface, and the control and status word are identical, software blocks that have been implemented once can be transferred to other drives without a problem.

TECHNICAL DATA

Series E1200 Servo Drives support the following industrial ETHERNET protocols:

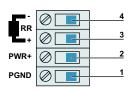
- » Profinet
- » ETHERNET IP
- » PowerLink
- » EtherCat
- » Sercos III

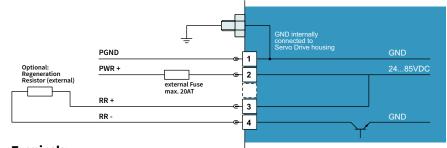
The appropriate drive is available for each protocol.


TECHNICAL DATA

Type: Switch/Hub:

Transfer rate:


Realtime ETHERNET Integrated 2-Port Hub/Switch 10/100MBit/sec



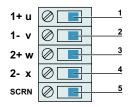
X1 MOTOR SUPPLY / REGENERATION RESISTOR

Screw Terminals:

External Regeneration Resistor (RR01-10/60, Art. Nr. 0150-3088)

External Fuse: max. 20AT

Supply nominal 72VDC (24...85VDC)

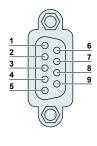

(See chapter Power Supply Requirements for compatible power supplies.)

Absolute max. Rating 72VDC +20%.

If motor supply voltage is exceeds 90VDC, the drive will go into error state.

- » Tightening torque: 0.5 0.6 Nm (4.4 5.3 lbin)
- » Screw thread: M2.5
- » Use 60/75°C copper conductors only
- » Conductor cross-section: use only 2.5 mm² / AWG 14
- » Stripping length: 13-15 mm
- » Max. length: 4 m

X2 MOTOR PHASES



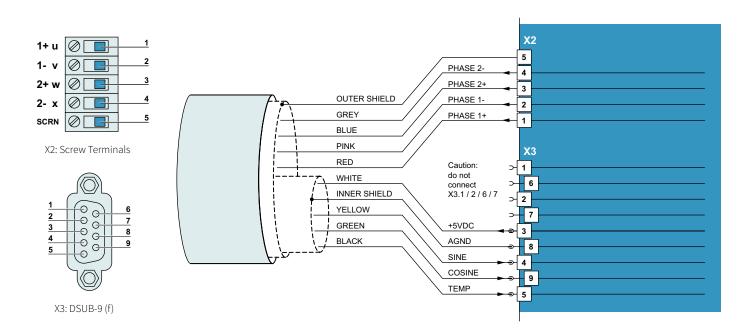
Nr	Designation	LinMot Linear Motor	Color	3-Phase-Motor
1	PH1+/U	Motor Phase 1+	red	Motor Phase U
2	PH1- /V	Motor Phase 1-	pink	Motor Phase V
3	PH2+/W	Motor Phase 2+	blue	Motor Phase W
4	PH2- /X	Motor Phase 2-	grey	Motor Phase X
5	SCRN	Shield		

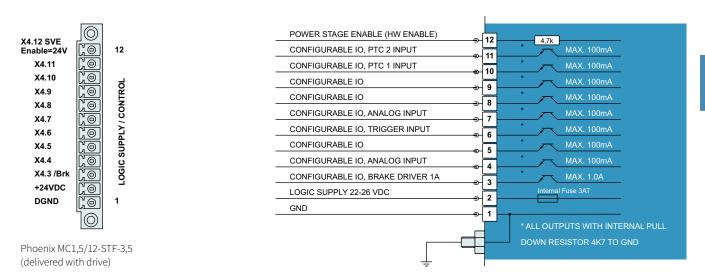
Screw Terminals:

- » Tightening torque: 0.5 0.6 Nm (4.4 5.3 lbin)
- » Screw thread: M2.5
- » Use 60/75°C copper conductors only
- » Conductor cross-section: 0.5 2.5 mm² (depends on Motor current) / AWG 21 -14
- » Stripping length 13-15 mm

X3 MOTOR ENCODER

DSUB-9 (f)


	1			
Nr	LinMot Linear Motor	3-Phase-Motor		
1				
2				
3	+5VDC	+5VDC (Hall Supply)		
4	Sensor Sine	Hall 1		
5	Temperature In	Hall 3		
6				
7				
8	AGND	AGND (Hall Supply)		
9	Sensor Cosine	Hall 2		
Case	Shield			


Use +5VDC (X3.3) and AGND (X3.8) only for motor internal hall sensor supply (max. 100mA). **Caution :**

Do NOT connect AGND (X3.8) to ground or earth!

X4: 12PIN LOGIC CONTROL / SUPPLY

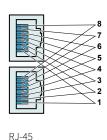
Inputs (X4.3 .. X4.12): 24V / 5mA (Low Level: -0.5 to 5VDC, High Level: 15 to 30VDC)

Outputs (X4.4 .. X4.11): 24V / max.100mA, Peak 370mA (will shut down if exceeded)

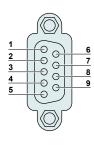
Brake Output (X4.3): 24V / max.1.0A

Input X4.12: SVE (PowerStage Enable) must be high for enabling the power stage). If it goes low for more than 0.5ms the PWM generation of the power stage is disabled by hardware.

Supply 24V / typ. 1.1A / max. 2.1A (if all outputs "on" with max. load and brake.)


- » Tightening torque: min 0.22Nm
- » Screw thread: M2
- » Use 60/75°C copper conductors only
- » Conductor cross-section: max. 1.5mm2
- » Internal Fuse (F2):3AT (slow blow, Schurter OMT125, 3404.0118.xx, UL File Number: E41599)

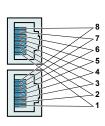
CAUTION: For continued protection against risk of fire, replace only with same type and rating of fuse.


X7 - X8 RS485/CAN

Nr		
1	RS485_Rx+	A
2	RS485_Rx-	В
3	RS485_Tx+	Υ
4	GND	
5	GND	
6	RS485_Tx-	Z
7	CAN_H	
8	CAN_L	
Case	Shield	

- » Use twisted pair (1-2, 3-6, 4-5, 7-8) cable for wiring.
- » The built in CAN and RS485 terminations can be activated by S5.2 and S5.3.
- » X7 is internally connected to X8 (1:1 connection)

X9 PROFIBUS DP (ONLY AVAILABLE ON E1230-DP-UC)



DSUB-9 (f)

Nr		
1	-	
2	-	
3	RxD/TxD-P	
4	CNTR-P	
5	GND	(isolated)
6	+5V	(isolated)
7	-	
8	RxD/TxD-N	
9	-	
Case	Shield	

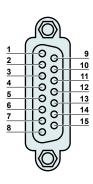
Max. Baud rate: 12 Mbaud

X10-X11 MASTER ENCODER IN (X10) / MASTER ENCODER OUT (X11)

R.I-45

Nr	Incremental	Step/Direction	EIA/TIA 568A colors
1	A+	Step+	Green/White
2	A-	Step-	Green
3	B+	Direction+	Orange/White
4	Z+	Zero+	Blue
5	Z-	Zero-	Blue/White
6	B-	Direction-	Orange
7	CAN_H	CAN_H	Brown/White
8	CAN_L	CAN_L	Brown
Case	Shield	Shield	

Use twisted pair (1-2, 3-6, 4-5, 7-8) cable for wiring.


Master Encoder Inputs: Diff. RS422, max. counting frequency 25 Mcounts/s, quadrature evaluation, 40ns edge separation

Master Encoder Outputs: Amplified RS422 differential signals from Master Encoder IN (X10) The CAN bus can be terminated with S5.4.

All devices, which are connected to X10/X11 must be referenced to the same ground.

X13 EXTERNAL POSITION SENSOR DIFFERENTIAL HALL SWITCHES / SSI

DSUB-15 (f)

Nr		ABZ with Hall Switches	Sin / Cos 1 Vpp	SSI (only postion recovery)
1		+5V DC	+5V DC	+5VDC
	9	A+	Sin+	
2		A-	Sin-	
	10	B+	Cos+	
3		B-	Cos-	
	11	Z+		Data+
4		Z-		Data-
	12	Encoder Alarm	Encoder Alarm	
5		GND	GND	GND
	13	U+		
6		U-		
	14	V+		
7		V-		
	15	W+		Clock+
8		W-		Clock-
Case		Shield	Shield	Shield

Position Encoder Inputs (RS422): Max. counting frequency: 25 Mcounts/s with quadrature

decoding, 40ns edge separation

Encoder Simulation Outputs (RS422): Max Output Frequency: 2.5MHz, 5 M counts/s with quad-

rature decoding, 200ns edge separation

Differential Hall Switch Inputs (RS422): Input Frequency: <1kHz

Enc. Alarm In: 5V/1mA

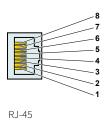
Sensor Supply: 5VDC max 100mA

X15-X16 ETHERNET CONFIGURATION 10/100MBIT/S

RJ-45

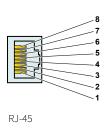
	X15	Internal 2-Port 10BASE-T and 100BASE-TX Ethernet Switch with Auto MDIX. LEDs on the lower side of the device
X16 indicate "Link/Activity" per port, the upper ones		indicate "Link/Activity" per port, the upper ones are not used.

X17-X18 REALTIME ETHERNET 10/100 MBIT/S


RJ-45

X17 RT ETH In X18 RT ETH Out

Specification depends on RT-Bus Type. Please refer to according documentation.


X19 RS232 CONFIGURATION

Nr	Description
1	Do not connect
2	Do not connect
3	RS232 RX
4	GND
5	GND
6	RS232 TX
7	Do not connect
8	Do not connect
case	Shield

Use isolated USB-RS232 converter (Art.-No. 0150-2473) for configuration over RS232.

X20 ANALOG IN (+-10V DIFFERENTIAL ANALOG INPUT)

Nr	Description
1	Do not connect
2	Do not connect
3	Analog In-
4	GND
5	GND
6	Analog In+
7	Do not connect
8	Do not connect
case	Shield

S5 BUS TERMINATION / ANIN2 PULL DOWN

S5

Switch	E1200		
S5	Switch 1: AnIn2 Pulldown (4k7 Pulldown on X4.4). Set to ON, if X4.4 is used as digital Output.		
	Switch 2: Termination Resistor for RS485 on CMD (120R between pin 1 and 2 on X7/X8) on/off		
	Switch 3: CAN Termination on CMD (120R between pin 7 and 8 on X7/X8) on/off		
	Switch 4: CAN Termination on ME (120R between pin 7 and 8 on X10/X11) on/off		
	Factory settings: all switches "off"		

LEDS STATE DISPLAY

240VOK	Green	24V Logic Supply OK
EN	Yellow	Motor Enabled / Error Code Low Nibble
Warn	Yellow	Warning / Error Code High Nibble
Error	Red	Error

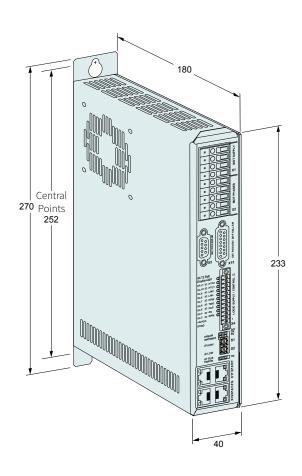
RT BUS LEDS

BUS OK	Green	ОК
BUS Error	Red	Error

The use of these LEDs depends on the type of fieldbus which is used. Please see the corresponding manual for further information.

S1-2 ADDRESS SELECTORS / BUS TERMINATION

E12x0 V1


S1

Switch	
S1	Bus ID High (0F). Bit 5 is LSB, bit 8 MSB
S2	Bus ID Low(0F). Bit 1 is LSB, bit 4 MSB

The use of these switches depends on the type of fieldbus which is used. Please see the corresponding manual for further information.

Dimensions in mm

Servo Drive Series		E1200
Width	mm (in)	40 (1.6)
Height	mm (in)	270 (10.6)
Height without fixings	mm (in)	233 (9.2)
Depth	mm (in)	180 (7.1)
Weight	kg (lb)	1.5 (3.3)
Case IP Code	IP	20
Mounting screws	mm (in)	2 x M5
Mounting distance	mm (in)	252 (9.92)
Storage temperature	°C	-2540
Transport temperature	°C	-2570
Operating temperature	°C	040 at rated date 4050 with power derating
Relative humidity		95% (non-condensing)
Max. case temperature	°C	65
Max. power dissipation	W	30
Distance between Drives	mm (in)	20 (0.8) left/right 50 (2) top/bottom

Servo Drives				
Item	Description	Part Number		
E1250-PL-UC	POWERLINK Servo Drive 72VDC/32A	<u>0150-1760</u>		
E1250-PN-UC	PROFINET Servo Drive 72VDC/32A	<u>0150-1762</u>		
E1250-PD-UC	ProfiDrive Servo Drive 72VDC/32A	<u>0150-2620</u>		
E1250-EC-UC	EtherCAT Servo Drive 72VDC/32A	<u>0150-1763</u>		
E1250-SE-UC	sercos over EtherCAT Servo Drive 72VDC/32A	<u>0150-1898</u>		
E1250-DS-UC	EtherCAT CoE Servo Drive 72VDC/32A	<u>0150-2410</u>		
E1250-SC-UC	sercos Servo Drive 72VDC/32A	<u>0150-1764</u>		
E1250-IP-UC	ETHERNET IP Servo Drive 72VDC/32A	<u>0150-1761</u>		
E1250-LU-UC	LinUDP Servo Drive 72VDC/32A	<u>0150-2493</u>		
E1230-DP-UC	PROFIBUS-DP Servo Drive 72VDC/32A	<u>0150-1766</u>		
E1200-GP-UC	GENERAL PURPOSE Servo Drive 72VDC/32A	<u>0150-1771</u>		

Accessories				
Item	Description	Part Number		
Connector for X4	Connector MC 1,5/12-STF-3,5, delivered with drive	<u>0150-3300</u>		

SERIES C1400

- Input voltage 230VAC
- 15A rms peak phase current
- Integrated Line Filter
- For LinMot P10 Linearmotors & AC servomotors
- Integrated Cooling Fan
- 100 programmable motion profiles
- 255 storable motion commands
- Interface for incremental or absolute sensors

LinMot®

Servo Drive Series C1400

Series C1400 Servo Drives are modular axis drives, with 32-bit position resolution and an integrated power stage 1x240VAC, for linear motors and rotary motors.

The drives are suitable for simplest, standard, and high-end positioning tasks.

CONNECTION TO MACHINE DRIVE

The Series C1400 Servo Drives can be actuated by machine controls from many manufacturers or brands, via digital inputs and outputs, or industrial ETHERNET.

PROCESS AND SAFETY INTERFACES

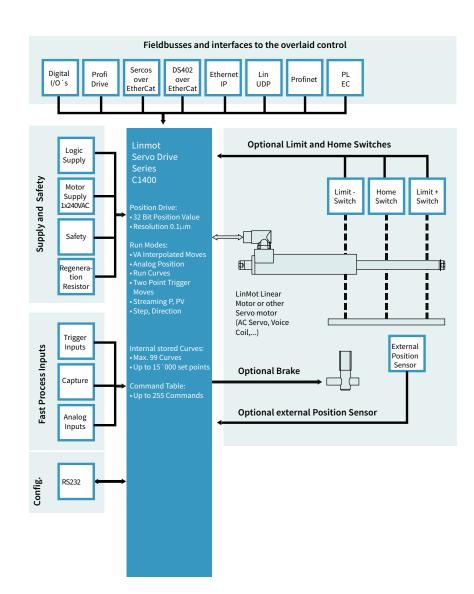
Fast process interfaces for direct processing of sensor signals are available as freely programmable analog and digital inputs, a fast trigger input, and a capture input.

The safety IO's on Servo Drives with the -1S option with industrial ETHERNET allows safe torque off (STO) of the drives via control signals, without interrupting the power supply.

LOGIC AND POWER SUPPLY

In an E-stop and safe stop of the drive, only the motor power supply is cut off from the drive. The logic supply and the drive continue to run.

This has the advantage that the drive and linear motor do not need to be reinitialized when the machine is restarted, since all process data, including the position of the linear motor are still up to date (as long as the logic supply is not turned off).


System Integration

Flexible hardware enables control of any 1/2/3- phase motors. Thus, low-power rotary servomotors, such as brushless DC motors, can be integrated in the same controls concept.

Additionally, the drives can be equipped with optional peripherals, such as reference and end stop switches, high-precision external position sensors, or a mechanical holding brake.

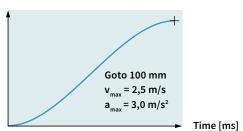
Series C1400 Servo Drives have analog and digital inputs and outputs and ETH-ERNET connections. The user is therefore not dependent on the selection of the overlaid drive. An appropriate interface is available, with associated protocols, for many PLC or IPC solutions.

With flexibility and a compact form factor, LinMot Series C1400 Servo Drives provide a complete solution for a flexible drive concept in single and multiple axes applications, with linear motors and other actuators.

MOTOR INTERFACES

C1400 Servo Drives provide all necessary interfaces to operate linear or rotary motors with optional external peripherals, such as end position and reference switches, a mechanical brake, or a high-resolution external position sensor.

CONFIGURATION


LinMot Talk user-friendly PC software is available for configuration. In addition to online documentation, LinMot Talk provides extensive debugging tools, such as an oscilloscope and an error inspector, for simple and rapid start-up of the Axis.

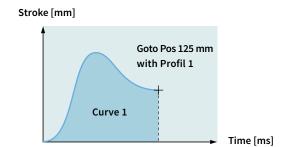
Fieldbus and ETHERNET drives can also be configured directly by the overlaid control.

INTERPOLATED MOVES

Stroke [mm]

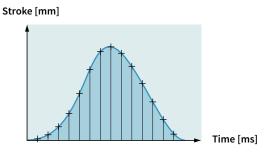
For direct position targets, using absolute or relative positioning, the desired position is reached using acceleration and velocity-limited motion profiles or jerk optimized profiles (jerk limited and Bestehorn). Positioning commands can be invoked via the serial interfaces, CANopen, DeviceNet, Profibus, Ethernet or a trigger input.

 $\begin{array}{ll} \textbf{Stroke range:} & \pm 100 \text{ m} \\ \textbf{Position Resolution:} & 0.1 \, \mu\text{m} \, (32 \text{Bit}) \\ \textbf{Velocity Resolution:} & 1.0 \, \mu\text{m/s} \, (32 \text{Bit}) \\ \textbf{Acceleration Resol.:} & 10.0 \, \mu\text{m/s}^2 \, (32 \text{Bit}) \\ \end{array}$


TIME CURVES

Up to 100 different time curves can be stored Series C1200 drives, with up to 16,000 individual waypoints. The motor can thus travel along time curves of any complexity, such as those generated by CAD programs and stored in the drive (Excel CSV format). The time curves can be invoked via the serial interface, fieldbusses, Ethernet, or the trigger input.

 $\begin{array}{lll} \textbf{Stroke range:} & \pm 100 m \\ \textbf{Position Resolution:} & 0.1 \ \mu m \ (32 Bit) \\ \textbf{Motion profiles:} & \text{Max. } 100 \ \text{Time Curves} \\ \textbf{Curve points:} & \text{Max. } 16'000 \ \text{points} \\ \end{array}$


PROFILED MOVES

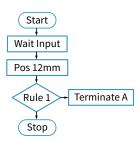
For travel to an absolute position, or shifting by a relative position, any desired motion rules can be stored besides the VA interpolator. They are stored in the drive as motion profiles (Excel CSV format). The positions can be approached, for example, with a sinusoidal motion to optimize power loss, or special reverse optimized motion profiles.

 $\begin{array}{lll} \textbf{Stroke range:} & \pm 100 m \\ \textbf{Position Resolution:} & 0.1 \ \mu m \ (32 \text{Bit}) \\ \textbf{Motion profiles:} & \text{Max. } 100 \ \text{Time Curves} \\ \textbf{Curve points:} & \text{Max. } 16'000 \ \text{points} \\ \end{array}$

SETPOINT STREAMING

Overlaid NC drives with fieldbus or Ethernet interfaces communicate with the servo drives via "Position Streaming". The position and velocity calculated in the overlaid control is transmitted to the Servo Drive cyclically. The P, PV, or PVT mode is available for this transmission.

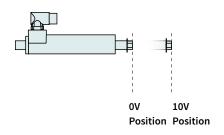
Position Resolution:32 BitVelocity Resolution:32 BitInterpolator:8 kHzCycle times:0.25 - 5 ms


EASY STEPS

Input 1	Pos 125 mm
Input 2	Pos 250 mm
Input 3	Curve 1
Input 4	Pos -30 mm

With the Easy Steps function, up to 4 positions or independent travel commands can be stored on the drive, and addressed via 4 digital inputs or fieldbus interfaces/Ethernet.

> **Digital inputs:** max.4 Interface: X4 **Scanning rate:** 250 µsec

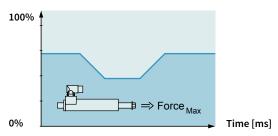

COMMAND TABLE

Entire motion sequences with up to 255 individual motion commands can be stored in the Command Table. This is primarily advantageous if complete motion sequences need to be executed very quickly, without dead time from the overlaid drive. In the Command Table, the programmer has access to all motion commands, internal parameters, and digital inputs and outputs.

> **Commands:** max. 254 Cycle time: 125 μsec

ANALOG POSITION

For an analog position target, the linear motor travels to a position proportional to the input voltage. The position is either scanned continuously, or only after a rising edge of the trigger signal. In order to prevent uncontrolled jumps in position, the motor travels to the positions with a programmable maximum acceleration and velocity (VA interpolator).

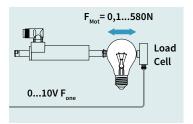

> Inputs: Analog Input X4 0-10VDC or ±10V Voltage range: 12 Bit

Resolution:

Scanning rate: >=125 µsec (adjustable)

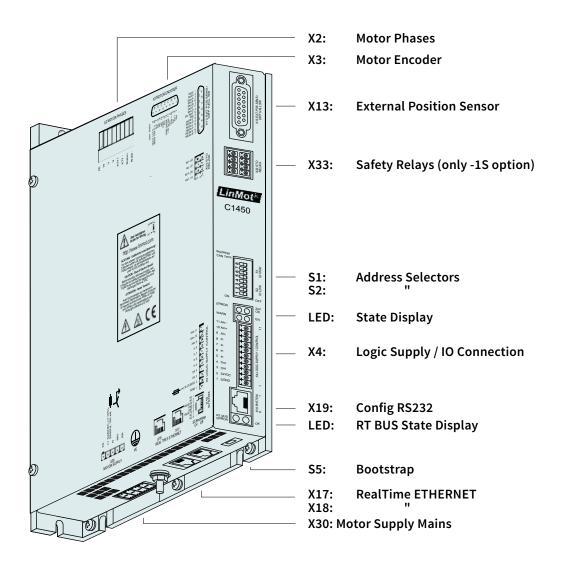
EASY STEPS PARAMETER SCALE

Maximum Force [0...10V => 0...100%]



Easy Steps provide the ability to parameterize internal parameters using two analog inputs. If, for example, the maximum motor current is read at an analog input, then the maximum motor force can be provided as analog for freely programmable joining processes.

> 2 x Analog Inputs: Voltage range: 0-10VDC **Resolution:** 12 Bit **Scanning rate:** 250 usec


CLOSED LOOP FORCE CONTROL

Using the force control technology function, precise joining processes can be implemented reliably and reproducibly with high-precision force control. For force control, the current motor force is measured with a load cell and controlled in the drive. Joining process or quality checks with high requirements for applied force can be implemented.

Analog input: $0-10V \text{ or } \pm 10V$ **Resolution:** 12 Bit **Min. Force Resolution:** 0.1N

Interfaces	C1450-PN-VS-1S	C1450-PD-VS-1S	C1450-SC-VS-1S	C1450-IP-VS-1S	C1450-LU-VS-1S	C1450-EC-VS-1S	C1450-DS-VS-1S	C1450-SE-VS-1S	C1450-PL-QN-1S
PROFINET	•								
PROFINET Profidrive		•							
SERCOS III			•						
ETHERNET IP				•					
LinUDP					•				
ETHERCAT						•			
ETHERCAT CiA402							•		
ETHERCAT SoE								•	
POWERLINK									•

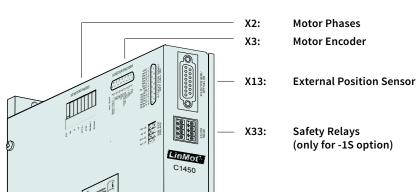
Ether**CAT**

C1450-PD-VS-1S

C1450-SC-VS-1S

C1450-IP-VS-1S

C1450-LU-VS-1S


C1450-EC-VS-1S

C1450-DS-VS-1S

C1450-SE-VS-1S

C1450-PL-QN-1S

- » Absolute & Relative Positioning
- » Time based motion profiles
- » Internally stored Motion Sequences
- » Position Streaming
- » Analog Position Target
- » Analog Parameter Scaling
- » Winding Function Block
- Force Control Technology Function
- » Customer-Specific Functions

Address Selectors

LED: State Display

Logic Supply / IO Connection

X19: Config RS232

LED: RT BUS State Display

S5: Bootstrap

X17: RealTime ETHERNET

X18:

S1:

S2:

X4:

X30: Motor Supply Mains

INDUSTRIAL ETHERNET

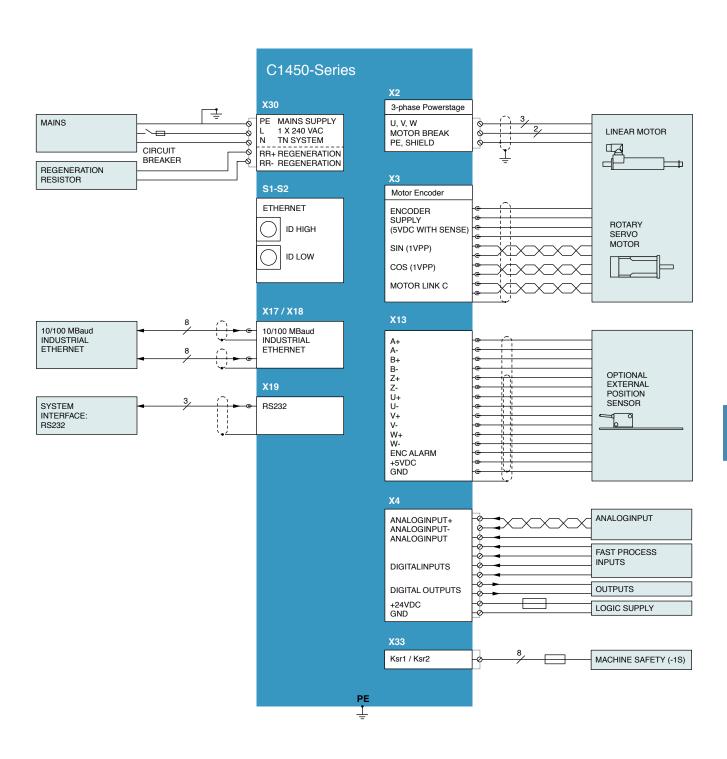
Series C1400 drives allow integration of Lin-Mot linear motors in controls concepts with industrial Ethernet interfaces. The user can integrate Series C1400 drives regardless of the provider of the overlaid control.

LinMot drives are available with common industrial Ethernet protocols. Since all Ethernet drives have the same motion command interface, and the control and status word are identical, software blocks that have been implemented once can be transferred to other drives without a problem.

Series C1400 servo drives support the following industrial Ethernet protocols:

- » Profinet
- » EtherCAT
- » Ethernet IP
- » PowerLink
- » Sercos III
- » Sercos over EtherCAT

The appropriate drive is available for each protocol.


TECHNICAL DATA

Type: Realtime ETHERNET
Switch/Hub: Integrated 2-Port
Hub/Switch
Transfer rate: 10/100MBit/sec

Minimal cycle times:

Bus cycle: 250 µs
IO update: 250 µs
Trigger Input: 125 µs
Position control loop: 125 µs
Current control loop: 125 µs

X30 MOTOR SUPPLY MAINS / REGENERATION RESISTOR

Drive-Side Motor-Side RRRR+ N D D RRRR+ N D D RRRR+ N D D D RRRR+ N D D D D RRRR+ N D D D D D D PE

	Line filter is integrated into the drive.
Screw connector	Screw Terminals:

RR-

RR+

Ν

L

PΕ

» Tightening torque: 0.5 - 0.6 Nm

Screws: M3

Use 60/75°C copper conductors only

» Conductor cross-section: 2.5 mm² (AWG 12)

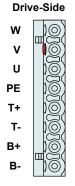
» Stripping length 7 mm

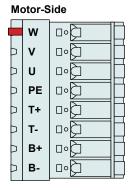
Neutral (TN system with grounded Neutral)

Line 1 (1x240VAC (+-10%) 50/60Hz external fuse: max.10A)

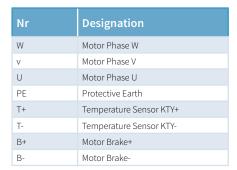
Designation

Protective Earth


Regeneration Resistor


Regeneration Resistor

LinMot Article Number: 0150-3607 (DC01-C1400/X30)


Operating of the drive is only allowed with the above article! No other type of connector shall be used!

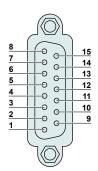
X2 MOTOR PHASES

Spring cage connector

Screw Terminals:

- Spring-cage connector
- » Use 60/75°C copper conductors only
- » Conductor cross-section: 0.2–2.5 mm² (depends on Motor current)/AWG 24-12
- » Stripping length 10 mm

The Shield of the motor cable has to be mounted with a surface as large as possible (low ohm, low impedance). Use an EMC shield clamp for fixing.


Attention: An isolated thermistor is necessary! Especially LinMot D01 and D02 Motors can not be connected!

LinMot Article Number: 0150-3605

Operating of the drive is only allowed with the above article! No other type of connector shall be used!

MOTOR ENCODER (MOTOR LINK C) / NOT AVAILABLE ON -CO DRIVES!

DSUB-15 (m)

Nr		Description	
8		Motor Link C-	
	15	Motor Link C+	
7		do not connect	
	14	do not connect	
6		do not connect	
	13	do not connect	
5		GND	
	12	do not connect	
4		GND Sense	
	11	+5V Sense	
3		Cos-	
	10	Cos+	
2		Sin-	
	9	Sin+	
1		+5V-	
Case		Shield	

Motor Link C is a high speed serial communication protocol to the motor encoder

LOGIC SUPPLY / IO CONNECTION

X4. 11 X4. 10 X4. 9 X4. 8 X4. 7 X4. 6 X4. 5 X4. 4 X4. 3 +24VDC DGND

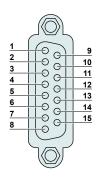
Spring cage connector

LinMot Article Number: 0150-3447 (DC01-Signal/X4)

Operating of the drive is only allowed with the above article! No other type of connector shall be used!

Nr	Description		
11	Anln-	X4.11	Configurable Analog Input deifferentiell (with X4.10)
10	Anln+	X4.10	Configurable Analog Input deifferentiell (with X4.11)
9	Anln	X4.9	Configurable Analog Input single ended
8	ln	X4.8	Configurable Input
7	ln	X4.7	Configurable Input
6	ln	X4.6	Configurable Input
5	ln	X4.5	Configurable Input
4	Out	X4.4	Configurable Output
3	Out	X4.3	Configurable Output
2	+24VDC	Supply	Logic Supply 22-26 VDC
1	GND	Supply	Ground

Inputs (X4.5 .. X4.8): 24V / 5mA (Low Level: -0.5 to 5VDC, High Level: 15 to 30VDC) 24V / max.100mA, Peak 370mA (will shut down if exceeded) Outputs (X4.3 .. X4.4):


12 bit A/D converted **Analog Inputs:**

X4.9: Single ended analog input to GND, 0..10V, Input Resistance 51k Ω hm to GND X4.10/X4.11: Differential analog input, +/-10V, Common mode range +/-5VDC to GND

Input resistance 11.4kOhm for each signal to GND.

- Use 60/75°C copper conductors only
- Conductor cross-section max. 1.5 mm²
- Stripping length: 10 mm
- The 24VDC supply for the control circuit (X4.2) must be protected with an external fuse (3A slow blow)

X13 **EXTERNAL POSITION SENSOR DIFFERENTIAL HALL SWITCHES**

DSUB-15 (f)

Nr		SSI / BiSS / EnDat		
1		+5V DC		
	9		A+	
2		A-		
	10		B+	
3		B-		
	11		Z+	
4		Z-		
	12		Encoder Alarm	
5		GND		
	13		U+	
6		U-		
	14		V+	
7		V-		
	15		W+	
8		W-		
Case		Shield		

Position Encoder Inputs (RS422):

Max Input Frequency: 25 M counts/s with quadrature

decoding, 40ns edge separation

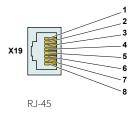
Encoder Simulation Outputs (RS422): Max Output Frequency: 4 M counts/s with quadrature

decoding, 250ns edge separation

Input Frequency: <1kHz 5V / 1mA

Differential Hall Switch Inputs (RS422): Enc. Alarm In: **Sensor Supply:**

5VDC max. 100mA / 9VDC 100mA (SW selectable)


X17 - X18 REALTIME ETHERNET 10/100 MBIT/S (NOT AVAILABLE ON -CO DRIVES)

Nr		
X17	RT ETH In	Specification depends on RT-Bus.
X18	RT ETH Out -	Please refer to interface documentation.

RJ-45

X19 SYSTEM

Nr	Description
1	Do not connect
2	Do not connect
3	RS232 Rx
4	GND
5	GND
6	RS232 Tx
7	Do not connect
8	Do not connect

Use isolated USB-RS232 converter (Art.-No. 0150-2473) for configuration over RS232.

LEDS STATE DISPLAY

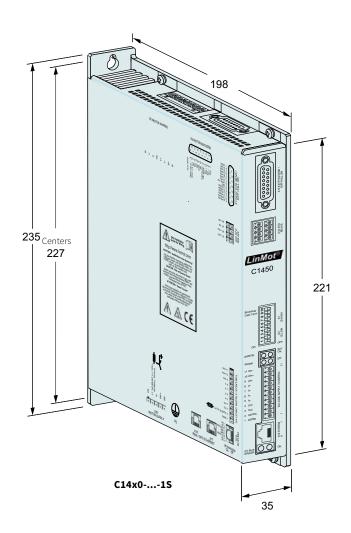
240VOK	Green	24V Logic Supply OK	
EN	Yellow	Motor Enabled / Error Code Low Nibble	
Warn	Yellow	Warning / Error Code High Nibble	
Error	Red	Error	

RT BUS LEDS

BUS OK	Green	OK
BUS Error	Red	Error

The use of these LEDs depends on the type of fieldbus which is used. Please see the corresponding manual for further information.

S1 -S2 ADDRESS SELECTORS


Switch	
S1 (58)	Bus ID High (0 F). Bit 5 is the LSB, bit 8 the MSB.
S2 (14)	Bus ID Low (0 F). Bit 1 is the LSB, bit 4 the MSB.

The use of these switches depends on the type of fieldbus which is used. Please see the corresponding manual for further information.

S5 BOOTSTRAP

The switch is used for initial programming. Make sure the switch is in position "off". Otherwise the drive will not start up.

Dimensions in mm

Servo Drive Series		C14x01S
Width	mm (in)	43.5 (1.71)
Height	mm (in)	235 (9.25)
Depth	mm (in)	193 (7.60)
Weight	kg (lb)	
Mounting		Backside 2 x M4 Bottom Side 4 x M4
Case IP Code	IP	20
Storage temperature	°C	-2540
Transport temperature	°C	-2570
Operating temperature	°C	040
Relative humidity		95% (non-condensing)
Pollution	IEC/EN 60664-1	Pollution degree 2
Shock resistance (16 ms)	-1S option	2 g
Vibration resistance (10-200 Hz)	-1S option	1 g
Max. Case Temperature	°C	90
Max. Power Dissipation	W	100
Mounting place		In the control cabinet
Mounting position		vertical
Distance between drives	mm (in)	≥ 200 (8) top /bottom Drives with fans can be mounted vertically side by side

Servo Drives					
Item	Description	Part Number			
C1450-SE-VS-1S-000	EtherCAT SoE Drive (1x240V/20A), STO	<u>0150-2660</u>			
C1450-SC-VS-1S-000	Sercos III Drive (1x240V/20A), STO	<u>0150-2659</u>			
C1450-PN-VS-1S-000	ProfiNet Drive (1x240V/20A), STO	<u>0150-2658</u>			
C1450-PL-VS-1S-000	POWERLINK Drive (1x240V/20A), STO	<u>0150-2656</u>			
C1450-PD-VS-1S-000	PROFIdrive Drive (1x240V/20A), STO	<u>0150-2664</u>			
C1450-IP-VS-1S-000	Ethernet/IP Drive (1x240V/20A), STO	<u>0150-2666</u>			
C1450-EC-VS-1S-000	EtherCAT Drive (1x240V/20A), STO	<u>0150-2657</u>			
C1450-DS-VS-1S-000	EtherCAT CoE Drive (1x240V/20A), STO	<u>0150-2665</u>			
C1400-LU-VS-1S-000	LinUDP Drive (1x240V/20A), STO	0150-2667			

SERIES E1400

- Time Curves
- Real Time (Streaming)
- Synchronous control (Drive profiles)
- Master Encoder Synchronization (In/Out)
- PLC or Stand-Alone Solutions
- Industrial Ethernet Configuration / Remote Access Ethernet
- Safe Torque Off
- Safe Limited Speed Ready
- Interface for optional incremental and absolute sensor
- Position Encoder Simulation (RS 422)
- Master / Slave Solutions
- ± 10 VDC Force Control
- Supports Plug and Play

Servo Drive Series E1400

Series E1400 Servo Drives are modular axis drives, with 32-bit position resolution and an integrated power stage 3x400VAC, for linear motors and rotary motors.

The drives are suitable for simplest, standard and high-end positioning tasks across the entire force range of the LinMot product range.

CONNECTION TO MACHINE DRIVE

The Series E1400 Servo Drives can be actuated by machine controls from many manufacturers or brands, via digital inputs and outputs, RS232 or RS485 serial interface, CanBus CANopen and DeviceNet interfaces, Profibus DP, or industrial ETHERNET.

PROCESS AND SAFETY INTERFACES

Fast process interfaces for direct processing of sensor signals are available as freely programmable analog and digital inputs, a fast trigger input, and a capture input.

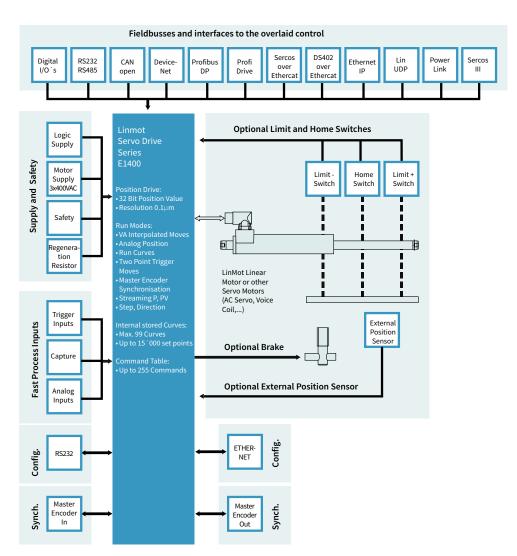
The safety interface on Servo Drive with fieldbus interfaces or industrial ETHER-NET allows safe stop of the drives via control signals, per EN 954-1, without interrupting the power supply.

LOGIC AND POWER SUPPLY

The Servo Drives have two separate power supply inputs for the logic and power elements.

In an E-stop and safe stop of the drive, only the power element supply is cut off from the drive. The logic supply and the drive continue to run.

This has the advantage that the drive and linear motor do not need to be reinitialized when the machine is restarted, since all process data, including the current position of the linear motor, are still up to date.


System Integration

Flexible hardware enables control of any 1/2/3- phase motors. Thus, low-power rotary servomotors, such as brushless DC motors, can be integrated in the same control concept.

Additionally, the drives can be equipped with optional peripherals, such as reference and end stop switches, high-precision external position sensors, or a mechanical holding brake.

Series E1400 Servo Drives have analog and digital inputs and outputs, serial interfaces, field-busses, and ETHERNET connections. The user is therefore not dependent on the selection of the overlaid drive. An appropriate interface is available, with associated protocols, for any PLC or IPC solution.

With flexibility and a compact form factor, LinMot Series E1400 Servo Drives provide a complete solution for a flexible drive concept in single and multiple axes applications, with linear motors and other actuators.

MASTER ENCODER

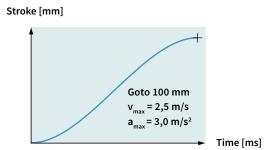
For synchronization to a mechanical master shaft, or a rotating main drive, the Axis (linear motors and rotary motors) can be coupled to an electronic main shaft via the Master Encoder Interface.

The encoder signal from the main shaft can be passed through by the Master Encoder Interface, so that any number of linear motors can be synchronized to the main shaft.

MOTOR INTERFACES

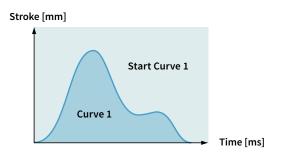
E1400 Servo Drives provide all necessary interfaces to operate linear or rotary motors with optional external peripherals, such as end position and reference switches, a mechanical brake, or a high-resolution external position sensor.

CONFIGURATION


Parameterization and configuration of the Servo Drive is done via the Ethernet interface on the front side for simultaneous configuration of several drives.

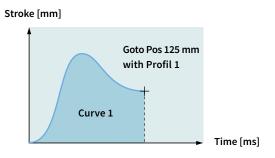
LinMot Talk user-friendly PC software is available for configuration. In addition to online documentation, LinMot Talk provides extensive debugging tools, such as an oscilloscope and an error inspector, for simple and rapid start-up of the Axis.

Fieldbus and ETHERNET drives can also be configured directly by the overlaid control.


INTERPOLATED MOVES

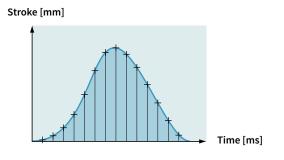
For direct position targets, using absolute or relative positioning, the desired position is reached using acceleration and velocity-limited motion profiles or jerk optimized profiles (jerk limited and Bestehorn). Positioning commands can be invoked via the serial interfaces, CANopen, DeviceNet, Profibus, Ethernet or a trigger input.

 $\begin{array}{ll} \textbf{Stroke range:} & \pm 100 \text{ m} \\ \textbf{Position Resolution:} & 0.1 \, \mu \text{m} \, (32 \text{Bit}) \\ \textbf{Velocity Resolution:} & 1.0 \, \mu \text{m/s} \, (32 \text{Bit}) \\ \textbf{Acceleration Resol.:} & 10.0 \, \mu \text{m/s}^2 \, (32 \text{Bit}) \\ \end{array}$


TIME CURVES

Up to 100 different time curves can be stored on Series E1400 drives, with up to 16`000 individual waypoints. The motor can thus travel along time curves of any complexity, such as those generated by CAD programs and stored in the drive (Excel CSV format). The time curves can be invoked via the serial interface, fieldbusses, ETHERNET, or the trigger input.

 $\begin{array}{lll} \textbf{Stroke range:} & \pm 100 m \\ \textbf{Position Resolution:} & 0.1 \ \mu m \ (32 \text{Bit}) \\ \textbf{Motion profiles:} & \text{Max. } 100 \ \text{Time Curves} \\ \textbf{Curve points:} & \text{Max. } 16'000 \ \text{points} \\ \end{array}$


PROFILED MOVES

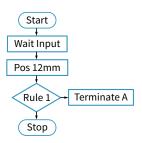
For travel to an absolute position, or shifting by a relative position, any desired motion rules can be stored besides the VA interpolator. They are stored in the drive as motion profiles (Excel CSV format). The positions can be approached, for example, with a sinusoidal motion to optimize power loss, or special reverse optimized motion profiles.

 $\begin{array}{lll} \textbf{Stroke range:} & \pm 100 m \\ \textbf{Position Resolution:} & 0.1 \ \mu m \ (32 \text{Bit}) \\ \textbf{Motion profiles:} & \text{Max. } 100 \ \text{Time Curves} \\ \textbf{Curve points:} & \text{Max. } 16'000 \ \text{points} \\ \end{array}$

SETPOINT STREAMING

Overlaid NC drives with fieldbus or ETHERNET interfaces communicate with the Servo Drives via "Position Streaming". The position and velocity calculated in the overlaid control is transmitted to the Servo Drive cyclically. The P, PV, or PVT mode is available for this transmission.

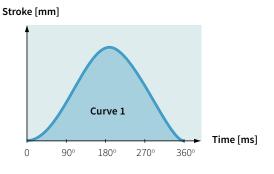
Position Resolution:32 BitVelocity Resolution:32 BitInterpolator:8 kHzCycle times:0.25 - 5 ms


EASY STEPS

Input 1	Pos 125 mm
Input 2	Pos 250 mm
Input 3	Curve 1
Input 4	Pos -30 mm
Input 5	Pos +12,5 mm
Input 6	Curve 2
Input 7	Pos 2 mm
Input 8	Pos -12,5 mm

With the Easy Steps function, up to 8 positions or independent travel commands can be stored on the drive, and addressed via 8 digital inputs or fieldbus interfaces/ETHERNET.

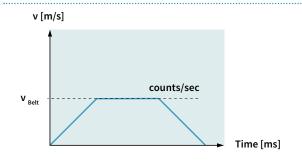
Digital inputs:max. 8Interface:X4Scanning rate:200 µsec


COMMAND TABLE

Entire motion sequences with up to 255 individual motion commands can be stored in the Command Table. This is primarily advantageous if complete motion sequences need to be executed very quickly, without dead time from the overlaid drive. In the Command Table, the programmer has access to all motion commands, internal parameters, and digital inputs and outputs.

Commands: max. 255 **Cycle time:** 100 µsec

MASTER ENCODER SYNCHRONIZATION (MT)


For synchronization to an external main or master shaft, the linear motor travels along the motion profiles stored in the drive, at the machine speed (machine angle 0...360°). Using this function, mechanical cam discs can be replaced with highly dynamic linear motors. The motion profiles can be freely defined, and the correct motion profile can be invoked during product changeover with no changeover time.

Motion profiles: Max. 100 curve profiles

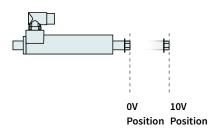
Curve points: Max. 16'000 points

Encoder counter: 32 Bit **Encoder input:** A/B/Z (RS422) **Max. counting frequency** Max. 4.5 MHz

BELT SYNCHRONIZATION

Synchronization to a belt speed can be done using the Master Encoder Interface or Step/Direction/ Zero interface. Applications such as the "flying saw", synchronous loading or unloading, synchronous filling or labeling of bottles or containers on a conveyor belt, and many other applications can be implemented in this way.

Encoder Counter: 32 Bit

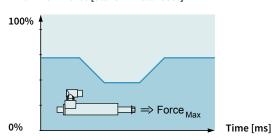

Encoder Input: A/B/Z (RS422), max. 5 MHz

STEP/DIR/ZERO

Max. counting frequency Max. 4.5 MHz

ANALOG POSITION

For an analog position target, the linear motor travels to a position proportional to the input voltage. The position is either scanned continuously, or only after a rising edge of the trigger signal. In order to prevent uncontrolled jumps in position, the motor travels to the positions with a programmable maximum acceleration and velocity (VA interpolator).

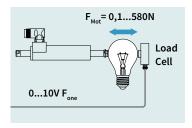

Inputs:Analog Input X4 or X20Voltage range:0-10VDC or ±10V

Resolution: 12 Bit

Scanning rate: >=100 μsec (adjustable)

EASY STEPS PARAMETER SCALE

Maximum Force [0...10V => 0...100%]

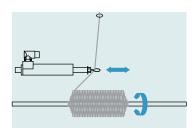


Easy Steps provide the ability to parameterize internal parameters using two analog inputs. If, for example, the maximum motor current is read at an analog input, then the maximum motor force can be provided as analog for freely programmable joining processes.

Inputs: 2 x Analog (X4.4, X4.7)

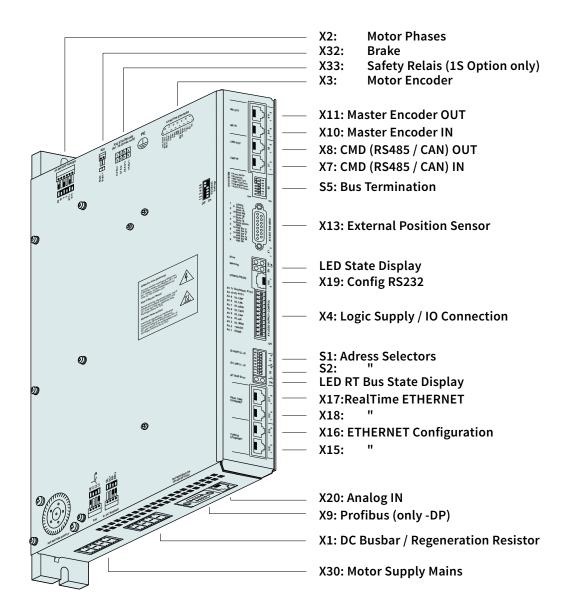
Voltage range:0-10VDCResolution:12 BitScanning rate:200 μsec

CLOSED LOOP FORCE CONTROL


Using the force control technology function, precise joining processes can be implemented reliably and reproducibly with high-precision force control. For force control, the current motor force is measured with a load cell and controlled in the drive. Joining process or quality checks with high requirements for applied force can be implemented.

 Analog Input:
 0-10V or ±10V

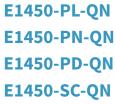
 Resolution:
 12 Bit


 Min. force resolution:
 0.1N

WINDING APPLICATION

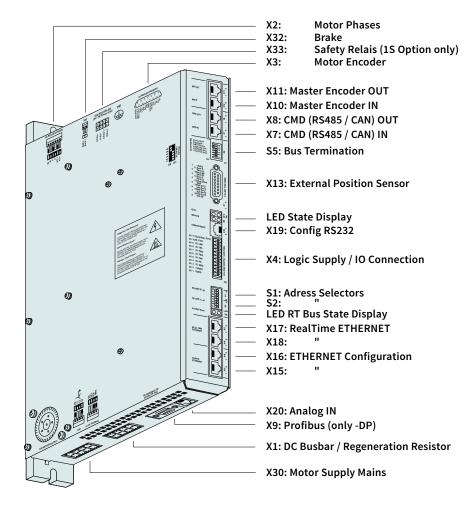
For winding textile yarns, glass fiber optics, or wires, a complete functional block is available that controls the entire sequence of a complete winding process.

Interfaces	E1450-PL-QN	E1430-PN-QN	E1450-PD-QN	E1450-SC-QN	E1450-IP-QN	E1450-LU-QN	E1450-EC-QN	E1450-DS-QN	E1450-SE-QN	E1430-DP-QN	E1400-GP-QN
CANopen											•
LinRS											•
POWERLINK	•										
PROFINET		•									
PROFINET Profidrive			•								
SERCOS III				•							
ETHERNET IP					•						
LinUDP						•					
ETHERCAT							•				
ETHERCAT CiA402								•			
ETHERCAT SoE									•		
PROFIBUS DP										•	



E1450-IP-QN

E1450-LU-QN E1450-EC-QN


E1450-DS-QN

E1450-SE-QN

E1430-DP-QN

E1400-GP-QN

- Absolute & Relative Positioning
- » Travel Along Time Curves
- » Positioning using Motion Profiles
- Internally stored Motion Commands
- » Internally stored Motion Sequences
- » Master Encoder Synchronization
- » Synchronization to Belt Speed
- » Position Streaming
- » Analog Position Target
- » Analog Parameter Scaling
- » Winding Function Block
- » Force Control Technology Function
- » Customer-Specific Functions

INDUSTRIAL ETHERNET

Series E1400 drives allow integration of Lin-Mot linear motors in control concepts with industrial ETHERNET interfaces. The user can integrate Series E1400 drives regardless of the provider of the overlaid control.

LinMot drives are available with common industrial ETHERNET protocols. Since all ETHERNET drives have the same motion command interface and the control and status word are identical, software blocks that have been implemented once can be transferred to other drives without any problem.

Series E1400 Servo Drives support the following industrial ETHERNET protocols:

- » Profinet
- » ETHERNET IP
- » PowerLink
- » EtherCat
- » Sercos III
- » Profibus

The appropriate drive is available for each protocol.

TECHNICAL DATA

Type: Realtime ETHERNET
Switch/Hub: Integrated 2-Port
Hub/Switch
Transfer rate: 10/100MBit/sec

Minimal cycle times:

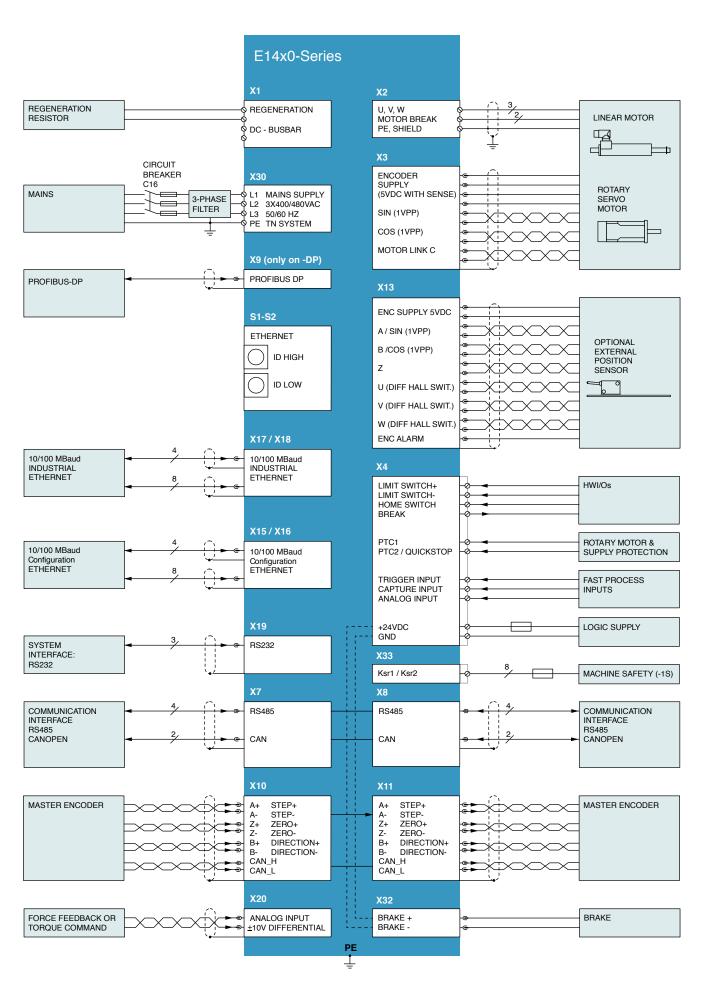
Inimal cycle times:

Bus cycle:

10 update:

Trigger Input:

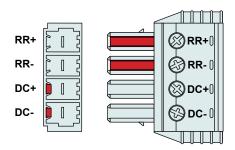
Position control loop:


Current control loop:

125 μs

125 μs

125 μs



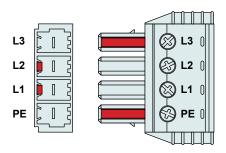
X1

DC BUSBAR / REGENERATION RESISTOR

Nr	Designation
RR+	Positive connection for Regeneration Resistor
RR-	Negative connection for Regeneration Resistor
DC+	DC busbar +
DC-	DC busbar -

For coupling the DC busbar of different drives, contact support@linmot.com for additional information.

Λ

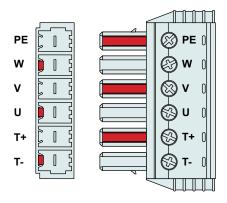

It's not allowed to power the drives through DC+ and DC-!

Screw Terminals:

- » Tightening torque: 0.7 0.8 Nm (6.2 7.0 lbin)
- » Use a cross-head screw driver (PH1)
- » Use 60/75°C copper conductors only
- » Conductor cross-section: 0.25–4 mm² (depends on Motor current)/AWG 24-12
- » Stripping length 10 mm

X30

MOTOR SUPPLY MAINS


Nr	Designation	
L1 - L3	3 x 400/480VAC 50/60 Hz	
PE	Protective Earth	

Screw Terminals:

- » Tightening torque: 0.7 0.8 Nm (6.2 7.0 lbin)
- » Use a cross-head screw driver (PH1)
- » Use 60/75°C copper conductors only
- » Conductor cross-section: 2.5–4 mm² (depends on Motor current) / AWG 24-12
- » Stripping length 10 mm

X2

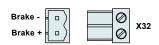
MOTOR PHASES

Nr	Designation
PE	Protective Earth
W	Motor Phase W
V	Motor Phase V
U	Motor Phase U
T+	Temperature Sensor KTY+ (on DC- voltage level!)
T-	Temperature Sensor KTY- (on DC- voltage level!)

The Shield of the motor cable has to be mounted with a surface as large as possible (low ohm, low impedance). Use an EMC shield clamp for fixing.

Attention:

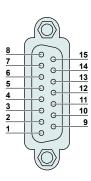
An isolated thermistor is necessary! Especially LinMot D01 and D02 Motors can not be connected!



Screw Terminals:

- » Tightening torque: 0.7 0.8 Nm (6.2 7.0 lbin)
- Use a cross-head screw driver (PH1)
- » Use 60/75°C copper conductors only
- Conductor cross-section: 0.25-4 mm² (depends on Motor current)/AWG 24 -12
- » Stripping length 10 mm

X32 MOTOR BRAKE



Brake -Brake +

iake

The brake is powered internally by 24VDC from X4! It's suitable for driving inductive loads up to 1.5A (preliminary). The V1 Drives had a separate connector for the brake supply (X31).

X3 MOTOR ENCODER (MOTOR LINK C)

DSUB-15 (m)

Nr		Description	
8		Motor Link C-	
	15	Motor Link C+	
7		do not connect	
	14	do not connect	
6		do not connect	
	13	do not connect	
5		GND	
	12	do not connect	
4		GND Sense	
	11	+5V Sense	
3		Cos-	
	10	Cos+	
2		Sin-	
	9	Sin+	
1		+5V	
Case		Shield	

Motor Link C is a high speed serial communication protocol to the motor encoder

X4 LOGIC SUPPLY / IO CONNECTION

Spring cage connector

Nr	Description		
11	Input	Quickstop	Quickstop, PTC2 Input
10	I/O	X4.10	Configurable IO, PTC 1 Input
9	I/O	X4.9	Configurable IO
8	I/O	X4.8	Configurable IO
7	I/O	X4.7	Configurable IO, Analog Input for EasySteps Application
6	I/O	X4.6	Configurable IO, Trigger Input
5	I/O	X4.5	Configurable IO
4	I/O	X4.4	Configurable IO, Analog Input (configurable as high imp. Input)
3	I/O	X4.3	Configurable IO
2	+24VDC	Supply	Logic Supply 22-26 VDC
1	GND	Supply	Ground

Inputs (X4.3.. X4.11): shortcut 24V / 5mA (Low Level: -0.5 to 5VDC, High Level: 15 to 30VDC)

Outputs (X4.3.. X4.10): 24V / max.100mA, Peak 370mA (will shut down if exceeded)

Supply 24V / type. 1A / max. 2.5A (if all outputs "on" with max. load.)

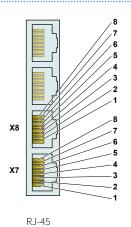
- » Use 60/75°C copper conductors only
- » Conductor cross-section max. 1.5 mm²
- » Stripping length: 10 mm

X33 SAFETY RELAYS (ONLY WITH THE -1S OPTION)

X33. 4/8 Ksr+ X33. 3/7 Ksr-X33. 2/6 Ksr f+ X33. 1/5 Ksr f-

X33 STO RELAYS

Spring cage connector


Nr	Description	
4/8	Ksr+	Safety Relay 1 / 2 Input positive
3/7	Ksr -	Safety Relay 1 / 2 Input negative
2/6	Ksr f+	Safety Relay 1 / 2 feedback positive
1/5	Ksr f-	Safety Relay 1 / 2 feedback negative

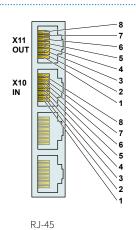
- Use 60/75°C copper conductors only
- Conductor cross-section max.
 1.5mm² (AWG 16)
- Stripping length: 10 mm
- Never connect the safety relays to the logic supply of the drive!

CMD (RS485/CAN)

Nr	Description	
1	RS485_Rx+	A
2	RS485_Rx-	В
3	RS485_Tx+	Υ
4	GND	
5	GND	
6	RS485_Tx-	Z
7	CAN_H	
8	CAN_L	
Case	Shield	

Use twisted pair (1-2, 3-6, 4-5, 7-8) cable for wiring. The built in RS485 and CAN terminations can be activated by S5.2 and S5.3. X7 is internally connected to X8 (1:1 connection)

PROFIBUS DP (ONLY AVAILABLE ON E1430-DP-QN)



DSUB-9 (f)

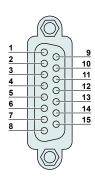
Nr	-	Description	
1		Not connected	
	6	+5V	(isolated)
2		Not connected	
	7	Not connected	
3		RxD/TxD-P	
	8	RxD/TxD-N	
4		CNTR-P	
	9	Not connected	
5		GND	(isolated)
Case		Shield	

Max. Baud rate: 12 Mbaud

X10-X11 MASTER ENCODER IN (X10) / MASTER ENCODER OUT (X11)

Nr	Incremental	Step/Direction	EIA/TIA 568A colors
1	A+	Step+	Green/White
2	A-	Step-	Green
3	B+	Direction+	Orange/White
4	Z+	Zero+	Blue
5	Z-	Zero-	Blue/White
6	B-	Direction-	Orange
7	CAN_H	CAN_H	Brown/White
8	CAN_L	CAN_L	Brown
Case	Shield	Shield	

Use twisted pair (1-2, 3-6, 4-5, 7-8) cable for wiring.


Differential RS422, max. 25 M counts/s, 40ns edge separation Amplified RS422 differential signals from Master Encoder IN (X10) Master Encoder Inputs: Master Encoder Outputs:

The CAN bus can be terminated with S5.4.

All devices, which are connected to X10/X11 must be referenced to the same ground.

X13 EXTERNAL POSITION SENSOR DIFFERENTIAL HALL SWITCHES

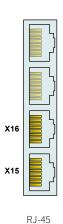
DSUB-15 (f)

Nr		Description		SSI / BiSS / EnDat	
1		+5V DC		+5V DC	
	9		A+		A+
2		A-		A-	
	10		B+		B+
3		B-		B-	
	11		Z+		Data+
4		Z-		Data-	
	12		Encoder Alarm		Encoder Alarm
5		GND		GND	
	13		U+		nc
6		U-		nc	
	14		V+		nc
7		V-		nc	
	15		W+		Clk+
8		W-		Clk-	
Case		Shield		Shield	

Position Encoder Inputs (RS422): Max Input Frequency: 25 M counts/s with quadrature

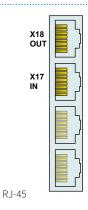
decoding, 40ns edge separation

Encoder Simulation Outputs (RS422): Max Output Frequency: 4 M counts/s with quadrature


decoding, 250ns edge separation

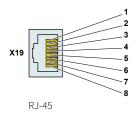
Differential Hall Switch Inputs (RS422): Input Frequency: <1kHz

Enc. Alarm In: 5V / 1mA

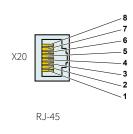

Sensor Supply: 5VDC max. 100mA / 9VDC 100mA (SW selectable)

X15-X16 ETHERNET CONFIGURATION 10/100 MBIT/S

Nr	Description
X16	Internal 2-Port 10BASE-T and 100BASE-TX Ethernet Switch with Auto MDIX.
X15	Internal 2 For Louis De Francisco Internet Switch With Auto MDA.


X17 - X18 REALTIME ETHERNET 10/100 MBIT/S

Nr	Description	
X18	RT ETH Out	Specification depends on RT-Bus Type.
X17	RT ETH In	Please refer to according documentation.


X19 SYSTEM

Nr	Description
1	Do not connect
2	Do not connect
3	RS232 Rx
4	GND
5	GND
6	RS232 Tx
7	Do not connect
8	Do not connect
case	Shield

Use isolated USB-RS232 converter (Art.-No. 0150-2473) for configuration over RS232.

X20 ANALOG IN (+-10V DIFFERENTIAL ANALOG INPUT)

Nr	Description
1	Do not connect
2	Do not connect
3	Analog In-
4	GND
5	GND
6	Analog In+
7	Do not connect
8	Do not connect
case	Shield

S5 BUS TERMINATION / ANIN2 PULL DOWN

Switch	E1400
	Switch 6: Override Configuration Ethernet to DHCP
S5	Switch 5: Bootstrap: Must be off for normal operation
	Switch 4: CAN termination on ME (120R between pin 7 and 8 on X10/X11) on/off
	Switch 3: CAN termination on CMD (120R between pin 7 and 8 on X7/X8) on/off
	Switch 2: Termination resistor for RS485 on CMD (120R between pin 1 and 2 on X7/X8) on/off
	Switch 1: AnIn2 pull down (4k7 Pull down on X4.4). Set to ON, if X4.4 is used as digital output.

Factory setting: all switches "on" except S5.5 (Bootstrap) and S5.6 (Override to DHCP)

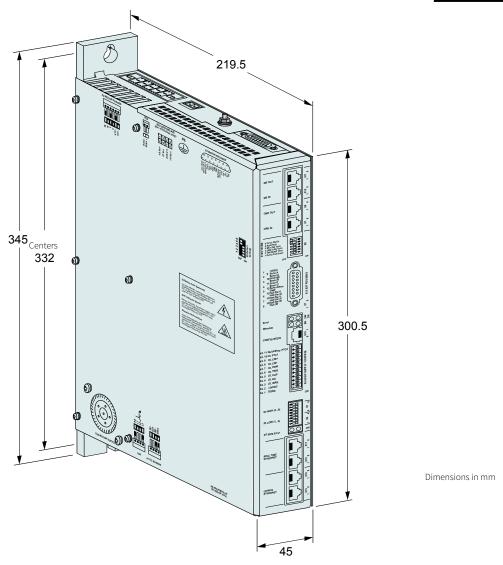
LEDS STATE DISPLAY

24VOK	Green	24V Logic Supply OK
EN	Yellow	Motor Enabled / Error Code Low Nibble
Warn	Yellow	Warning / Error Code High Nibble
Error	Red	Error

LEDS RT BUS LED

BUSOK	Green	ОК
BUS Error	Red	Error

The use of these LEDs depends on the type of fieldbus which is used. Please see the corresponding manual for further information.


S1 - S2 ADRESS SELECTORS

Switch	
S1 (58)	Bus ID High (0F) Bit 5 is the LSB, bit 8 the MSB
S2 (14)	Bus ID Low (0F) Bit 1 is the LSB, bit 4 the MSB

The use of these switches depends on the type of fieldbus which is used. Please see the corresponding manual for further information.

E1400		
Width	mm (in)	45 (1.8)
Height	mm (in)	300 (11.8)
Height with fixings	mm (in)	345 (13.6)
Depth	mm (in)	219.5 (8.7)
Weight	kg (lb)	3.7 (8.2)
Mounting	mm (in)	2 x M5, Distance 332 (13.07)
Case IP Code	IP	20
Storage temperature	°C	-2540
Transport temperature	°C	-2570
Operating temperature	°C	040 at rated data 4050 with power derating
Relative humidity		95% (non-condensing)
Pollution	IEC/EN 60664-1	Pollution degree 2
Shock resistance (16 ms)	-1S option	3.5g
Vibration resistance (10-200Hz)	-1S option	1g
Max. case temperature	°C	90
Max. power dissipation	W	100
Mounting place		In the control cabinet
Mounting position		vertical
Distance between Drives (fan cooling is integrated on V2 Drives)	mm (in)	≥ 15 (0.6) left and right ≥ 200 (8) top / bottom

Servo Drives		
Item	Description	Part Number
E1400-GP-QN-0S	GENERAL PURPOSE Drive (3x400/480VAC/ 28A / 50/60Hz)	<u>0150-1779</u>
E1430-DP-QN-0S	PROFIBUS-DP Drive (3x400/480VAC/ 28A / 50/60Hz)	<u>0150-1786</u>
E1450-DS-QN-0S	ETHERCAT CoE (3x400/480VAC/ 28A / 50/60Hz)	<u>0150-2411</u>
E1450-EC-QN-0S	ETHERCAT Drive (3x400/480VAC/ 28A / 50/60Hz)	<u>0150-1784</u>
E1450-IP-QN-0S	ETHERNET IP Drive (3x400/480VAC/ 28A / 50/60Hz)	<u>0150-1782</u>
E1450-LU-QN-0S	LinUDP Drive (3x400/480VAC/ 28A / 50/60Hz)	<u>0150-2494</u>
E1450-PD-QN-0S	PROFIdrive Drive (3x400/480VAC/ 28A / 50/60Hz)	<u>0150-2621</u>
E1450-PL-QN-0S	POWERLINK Drive (3x400/480VAC/ 28A / 50/60Hz)	<u>0150-1791</u>
E1450-PN-QN-0S	PROFINET Drive (3x400/480VAC/ 28A / 50/60Hz)	0150-1783
E1450-SC-QN-0S	SERCOS III Drive (3x400/480VAC/ 28A / 50/60Hz)	<u>0150-1785</u>
E1450-SE-QN-0S	SERCOS over ETHERCAT Drive (3x400/480VAC/ 28A / 50/60Hz)	<u>0150-1899</u>
E1400-GP-QN-1S	GENERAL PURPOSE Drive (3x400/480VAC/ 28A / 50/60Hz / STO)	<u>0150-2351</u>
E1430-DP-QN-1S	PROFIBUS-DP Drive (3x400/480VAC/ 28A / 50/60Hz / STO)	<u>0150-2352</u>
E1450-DS-QN-1S	ETHERCAT CoE (3x400/480VAC/ 28A / 50/60Hz / STO)	0150-2412
E1450-EC-QN-1S	ETHERCAT Drive (3x400/480VAC/ 28A / 50/60Hz / STO)	<u>0150-2353</u>
E1450-IP-QN-1S	ETHERNET IP Drive (3x400/480VAC/ 28A / 50/60Hz / STO)	<u>0150-2354</u>
E1450-LU-QN-1S	LinUDP Drive (3x400/480VAC/ 28A / 50/60Hz / STO)	<u>0150-2495</u>
E1450-PD-QN-1S	PROFIdrive Drive (3x400/480VAC/ 28A / 50/60Hz / STO)	<u>0150-2622</u>
E1450-PL-QN-1S	POWERLINK Drive (3x400/480VAC/ 28A / 50/60Hz / STO)	<u>0150-2355</u>
E1450-PN-QN-1S	PROFINET Drive (3x400/480VAC/ 28A / 50/60Hz / STO)	<u>0150-2356</u>
E1450-SC-QN-1S	SERCOS III Drive (3x400/480VAC/ 28A / 50/60Hz / STO)	<u>0150-2357</u>
E1450-SE-QN-1S	SERCOS over ETHERCAT Drive (3x400/480VAC/ 28A / 50/60Hz / STO)	<u>0150-2358</u>

Accessories		
Item	Description	Part Number
DC01-E1400/X4/X30	Drive Connector Set for E1400-0S	<u>0150-3452</u>
DC01-E1400/X4/X30/X33	Drive Connector Set for E1400-1S	<u>0150-3453</u>
DC01-E1400/X1	Drive Connector Regeneration / Busbar	<u>0150-3445</u>
DC01-E1400/X30	Drive Connector 3x400VAC Supply	<u>0150-3449</u>
DC01-E1400/X32	Drive Connector Brake	<u>0150-3450</u>

Servo Drive B1100

Series B1100-PP 288

Series B1100-VF 290

Series B1100-GP 292

Servo Drives B1100

Series B1100 Servo Drives are compact axis drives, with 32-bit position resolution and an integrated power element, for linear motors and rotary drives

The drives are suitable for simplest and standard positioning tasks, across the entire force range of the LinMot product range.

Connection to Machine Drive

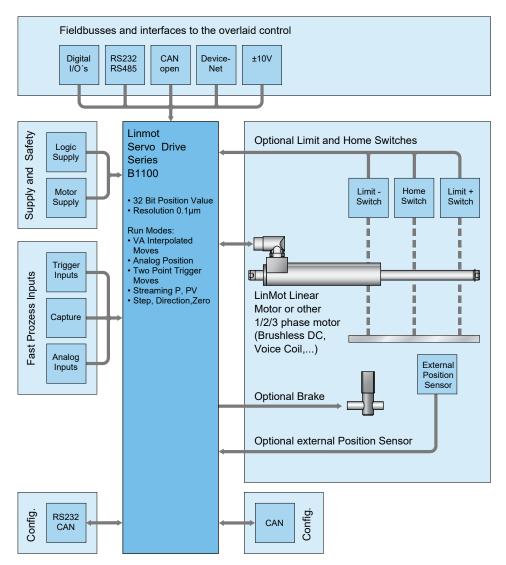
The Series B1100 Servo Drives can be actuated by machine controls from any manufacturer or brand, via digital inputs and outputs; by RS232 or RS485 serial interface; or by CanBus CANopen and DeviceNet interfaces.

Fro complex motion sequences that run in an overarching positioning drive, the motor can be controlled by means of analog speed or force targets. The position signal from the measurement system integrated in the linear motor can be accessed at the encoder output to control position.

Process and sensor interfaces

Fast process interfaces for direct processing of sensor signals are available as freely programmable analog and digital inputs and fast trigger inputs.

For high-accuracy applications, a freely configurable encoder interface is available. It analyzes the commutation signals from brushless, rotary servomotors as well.


Logic and power supply

The Servo Drives have two separate power supplies for the logic and power elements.

In an E-stop and safe stop of the drive, only the power element supply is cut off from the drive. The logic supply and the drive continue to run.

This has the advantage that the drive and linear motor do not need to be reinitialized when the machine is restarted, since all process data, including the current position of the linear motor, are still up to date.

System Integration

Flexible hardware enables control of any 1/2/3-phase motors. Thus, low-power rotary servomotors, such as brushless DC motors, can be integrated in the same controls concept.

Additionally, the drives can be equipped with optional peripherals, such as reference and end stop switches, high-precision external position sensors, or a mechanical holding brake.

Series B1100 Servo Drives have analog inputs and digital inputs and outputs, serial interfaces, and fieldbus connections. The user is therefore not dependent on the selection of the overarching drive.

With flexibility and a compact form factor, LinMot Series B1100 Servo Drives provide a complete solution for a flexible drive concept in single and multiple axis applications, with linear motors and other actuators.

Position Streaming

With a cyclical target value, or "position streaming," the overarching NC or CNC drive communicates with the Servo Drive through CanOpen or DeviceNet.

The position and velocity calculated in the overarching drive is transmitted to the Servo Drive cyclically. The P, PV, or PVT mode is available for this transmission.

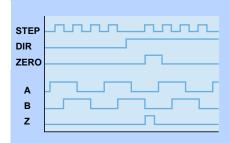
Using the cyclical target value, complex motions and interpolating multi-axis applications can be implemented.

Motor Interfaces

The series B1100 Servo Drives allow control of 1, 2, or 3 phase linear motors and brushless rotary servomotors.

B1100 Servo Drives provide all necessary interfaces to operate linear or rotary motors with optional external peripherals, such as end position and reference switches, a mechanical brake, or a high-resolution external position sensor.

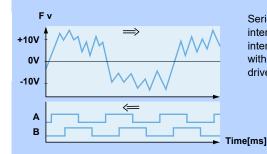
Configuration


Parameterization and configuration of the Servo Drive is done via the RS232 interface on the front side, or CANBus for simultaneous configuration of several drives..

LinMot Talk user-friendly PC software is available for configuration. In addition to online documentation, LinMot Talk provides extensive debugging tools, such as an oscilloscope and an error inspector, for simple and rapid start-up of the axes.

Fieldbus and Ethernet drives can also be configured directly by the overarching drive.

Position Indexing

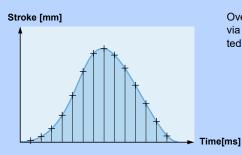


In position indexing, the linear motor is controlled like a stepper motor, using Step/Dir/Zero, or A/B signals. The step distance is freely programmable from 1.5x10-6 µm to 3.275mm/step. The input signal can be used directly as the target position, or it can be filtered by the VA interpolator.

Operating Modes: Step/Dir/Zero, A/B Inputs: differential RS422 (X13/14) Step distance: 1.5x10 fm....3.275mm, 32 Bit

Max Input Frequency: 2 MHz

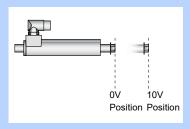
+/- 10V Analog Force / Velocity Control


Series B1100 drives allow analog force (torque) or velocity targets to be set, via the +/- 10V interface, by an overlaid position drive. The current actual position is output via the encoder interface, with adjustable resolution, as positioning feedback. In high-precision applications with high-resolution external position sensors, the sensor signals can be passed through in the drive

Analog Input: -10...+10V, differential

Resolution: Max. 12 Bit Scanning rate: Max. 10 kHz

Encoder Simulation: 1,2,5,10,20µm Resolution


Setpoint Streaming

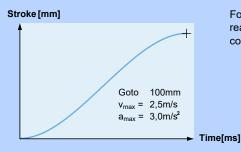
Overlaid NC drives with CANopen or DeviceNet interfaces communicate with the Servo Drives via "Position Streaming". The position and velocity calculated in the overlaid control is transmitted to the Servo Drive cyclically. The P, PV, or PVT mode is available for this transmission.

Position Resolution: 32 Bit Velocity Resolution 32 Bit Interpolator: 5 kHz cycle times: 2-5ms

Analog Position

For an analog position target, the linear motor travels to a position proportional to the input voltage. The position is either scanned continuously, or only after a rising edge of the trigger signal. In order to prevent uncontrolled jumps in position, the motor travels to the positions with a programmable maximum acceleration and velocity (VA interpolator).

Inputs: Analog Inputs (X14.20, X14.8/X14.21)


Voltagvte range: 0 - 10VDC (X14.20)

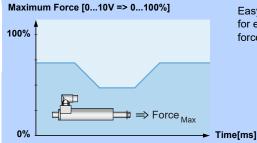
-10 - +10VDC (X14.18/X14.21)

Resolution: 10 Bit Scanning rate: 400µsec

Interpolated Moves

For direct position targets, using absolute or relative positioning, the desired position is reached using an acceleration and velocity-limited motion profile (VA interpolator). Positioning commands can be invoked via the serial interfaces, CANopen, DeviceNet, or a trigger input.

Stroke range: ±100m
Position Resolution: 0.1µm (32Bit)
Velocity Resolution: 1.0µm/s (32Bit)
Velocity Resolution: 10.0µm/s² (32Bit)


Easy Steps

Input 1	Pos 125mm
Input 2	Pos 250mm
Input 3	Pos 50mm
Input 4	Pos -30mm

With the Easy Steps function, up to 6 positions or independent travel commands can be stored on the drive, and addressed via 6 serial interfaces, CANopen or DeviceNet.

Digital inputs: max. 6
Interface: X14
Scanning rate: 400µsec

Easy Steps Parameter Scale

Easy Steps provide the ability to parameterize internal parameters using two analog inputs. If, for example, the maximum motor current is read at an analog input, then the maximum motor force can be provided as analog for freely programmable joining processes.

Inputs: Analog Inputs (X14.20, X14.8/X14.21)

Voltagvte range: 0 - 10VDC (X14.20)

-10 - +10VDC (X14.18/X14.21)

Resolution: 10 Bit Scanning rate: 400µsec

B1100-PP B1100-PP-HC B1100-PP-HC-XC

Position Indexing

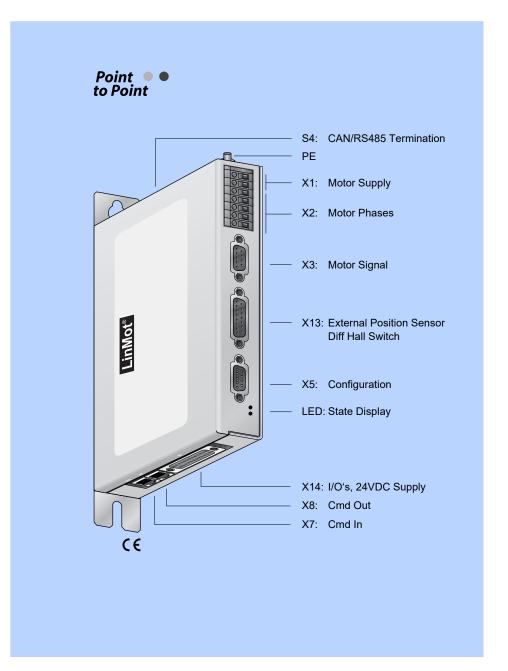
±10V Force or Velocity Control

Setpoint Streaming (CAN)

Analog Position Target

✓ MPC Commands

Easy Step


Easy Steps Parameter Scale

Serial Infaces RS232/RS485

CANopen

DeviceNet

Encoder Simulation

Replacing Pneumatics

Due to their simple controls via digital inputs and outputs, B1100-PP drive make excellent substitutes for pneumatic cylinders.

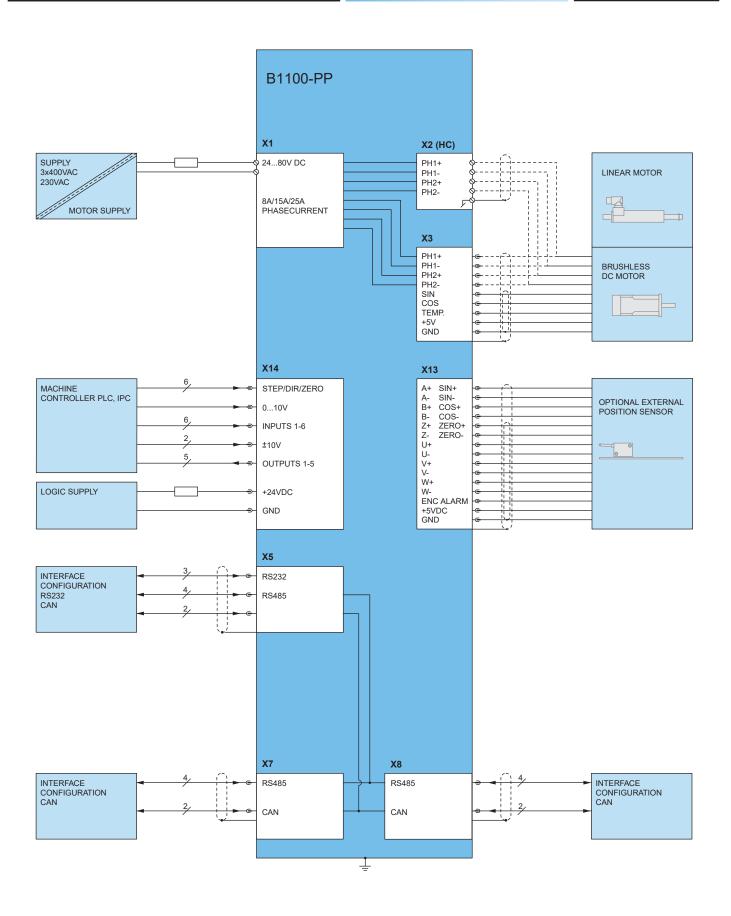
Using digital inputs, the linear motor can move to up to six freely programmable positions. As soon as the linear motor has reached the position, the corresponding In-Postion output is actuated.

The linear motor can thus be controlled like a pneumatic cylinder with end position switches.

Easy Steps positioning commands

Using the Easy Steps function, up to six absolute or relative move commands can be stored in the drive, and invoked via six digital inputs.

Easy Steps also provide the ability to parameterize internal parameters using two analog inputs. If, for example, the maximum motor current is read at an analog input, then the maximum motor force can be provided as analog for freely programmable joining processes.


Analog Position Target

Any position can be set, using an analog 0...10V signal.

During configuration, for each position value, one input signal of 0V and 10V is programmed. Any intermediate position can then be set via the analog input signal during operation.

The dynamics can be constrained by limits on speed and acceleration.

Item	Description	Part Number
B1100-PP	Point to Point Drive (72V/8A)	0150-1735
B1100-PP-HC	Point to Point Drive (72V/15A)	0150-1736
B1100-PP-XC	Point to Point Drive (72V/25A)	0150-1740

B1100-VF B1100-VF-HC B1100-VF-XC

✓ Position Indexing

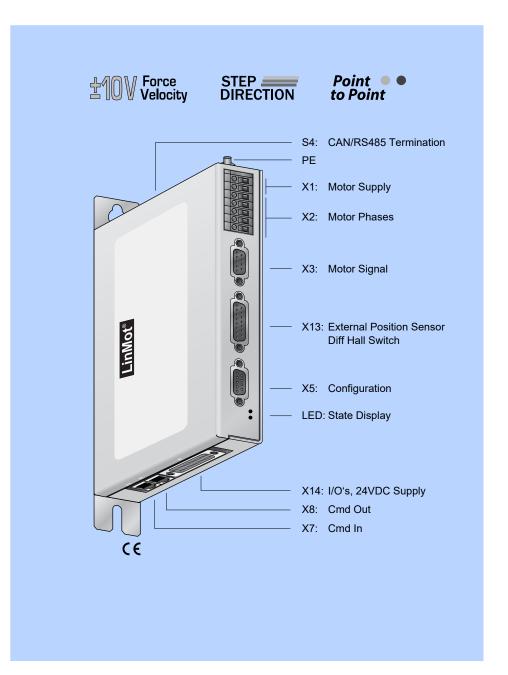
±10V Force or Velocity Control

Setpoint Streaming (CAN)

Analog Position Target

✓ MPC Commands

Easy Step


Easy Steps Parameter Scale

Serial Infaces RS232/RS485

CANopen

DeviceNet

Encoder Simulation

±10V 10V Force or Velocity Control,

The B1100-VF servo amplifier allows Lin-Mot linear motors to be integrated in systems an overlaid axis drive with analog velocity (RPM) or force target (torque).

In velocity mode, the analog input voltage is used as a velocity target for the connected linear motor. The velocity control loop is closed via a PI drive in the amplifier.

In force mode, the amplifier works like a torque amplifier for rotary motors. The analog control signal is converted to a current that the VF amplifier applies to the connected motor.

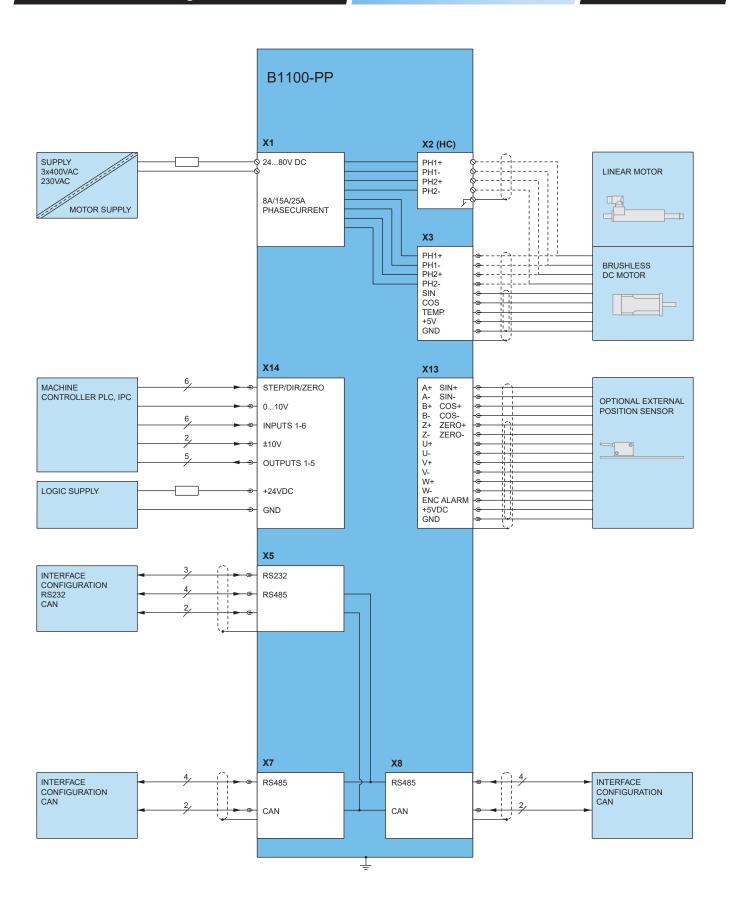
Step and Direction Interface

Motor force is proportional to the current motor current (see motor data sheets for force constant cf).

For step-direction targets, the target position is provided by the overlaid drive via STEP, DIRECTION, and ZERO signals.

The maximum motor current (force) can be limited via a digital input.

Encoder Simulation


No additional external sensors are needed for position measurement. The current actual position of the linear motor is captured by the integrated position measurement, and is available to the overlaid position drive as an encoder signal.

The resolution of the differential A/B encoder signals (RS422) is adjustable in the following ranges:

1µm, 2µm, 5µm, 10µm, 20µm, 50µm

If an external position sensor is used, it can be read by the B1100 amplifier.

Item	Description	Part Number
B1100-VF	Force Velocity Drive (72V/4A)	0150-1685
B1100-VF-HC	Force Velocity Drive (72V/15A)	0150-1686
B1100-VF-XC	Force Velocity Drive (72V/25A)	0150-1739

B1100-GP B1100-GP-HC B1100-GP-XC

Position Indexing

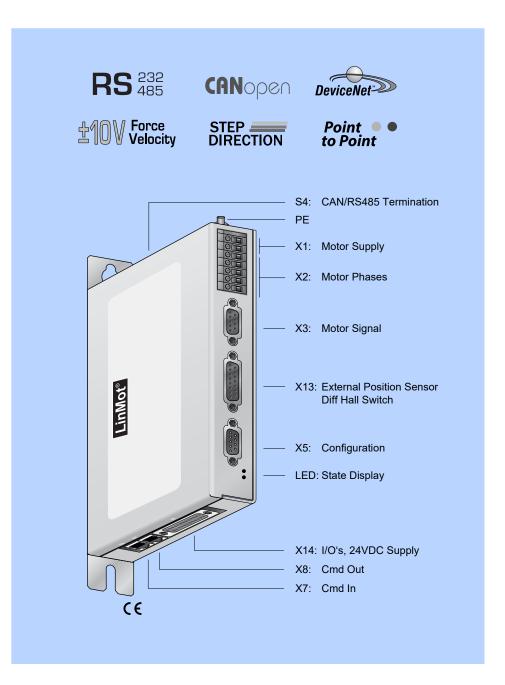
±10V Force or Velocity Control

Setpoint Streaming (CAN)

Analog Position Target

√ MPC Commands

Easy Step


Easy Steps Parameter Scale

Serial Infaces RS232/RS485

✓ CANopen

DeviceNet

Encoder Simulation

RS232 / RS485

The LinMot B1100-GP series Servo Drives support the LinRS serial communications protocol. LinRS is a proprietary protocol for actuating LinMot Servo Drives via the RS 232, RS 422, and RS 485 interfaces.

If the drive is actuated by the overarching drive via the serial interface, then this is configured from the PC via CanBus. The USBSCAN converter (item no. 0150-3134), supported by LinMot Talk, is used for this.

Adjustable baud rates: 9.6 - 115.2kBaud

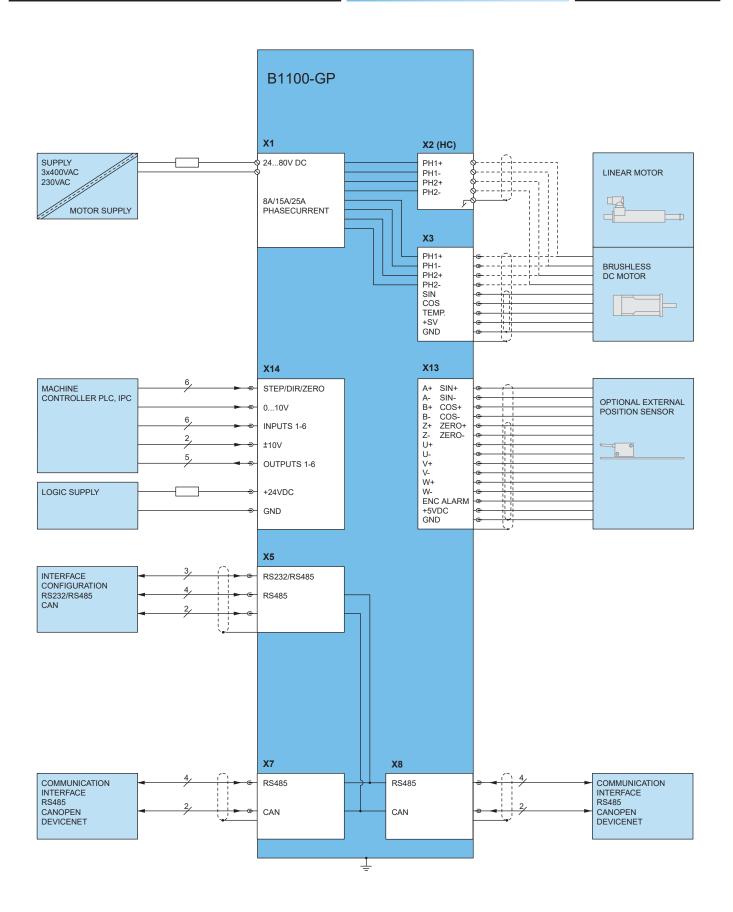
CANopen

The LinMot B1100-GP drives support the CiA DS301 communications protocol.

The following resources are available: 3 T_PDO, 3 R_PDO, 1 T_SDO, 1 R_SDO

The following protocols are supported by the CO drives:

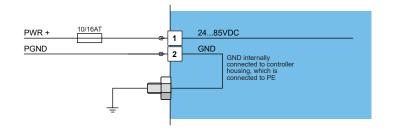
- NMT Error Control (Nodeguarding Protocol or HeartBeat Protocol)
- PDO (Transmission type 254 and 1)
- SDO Upload and Download
- NMT (Start, Stop, Enter PreOp, Reset Node, Reset Communication) Boot-Up Message


DeviceNet

With the DeviceNet protocol, even complicated motion sequences can be realized with the highest possible flexibility.

The drive can be actuated and monitored via the DeviceNet connection.

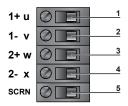
B1100-GP are UCMM Group 3-capable slaves, and support polled IO runtime data transfer.


Item	Description	Part Number
B1100-GP	Point to Point Drive (72V/8A)	0150-1737
B1100-GP-HC	Point to Point Drive (72V/15A)	0150-1738
B1100-GP-XC	Point to Point Drive (72V/25A)	0150-1741

X1 Motor Supply

Screw Terminals 2.5 mm² (AWG14)

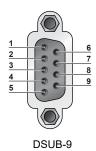
Motor Supply:


Motor Supply Voltage 24...85VDC. Absolute max. Rating 72VDC + 20%

External fusing: 10AT for LC (8Apeak Servos), 16AT for HC and XC (15/25Apeak) Servos

If motor supply voltage is exceeding 90VDC, the drive will go into error state

X2 Motor Phases

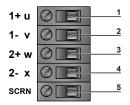

Screw Terminals 1.5-2.5mm² (AWG16-14)

Nr.	Designation	LinMot Linear Motor	Color	3-Phase-Motor
1	PH1+ /U	Motor Phase 1+	red	Motor Phase U
2	PH1- /V	Motor Phase 1-	pink	Motor Phase V
3	PH2+ /W	Motor Phase 2+	blue	Motor Phase W
4	PH2-	Motor Phase 2-	grey	
5	SCRN	Shield		

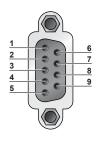
The motor phases on X2 and X3 are internally connected.

If the RMS current is higher than 5A RMS, the phases must be connected to X2 and not to X3.

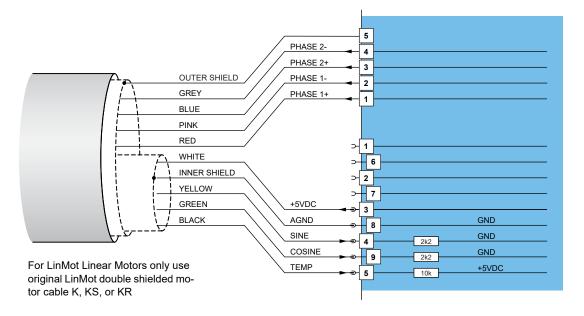
X3 Motor


Nr	LinMot Linear Motor	3-Phase-Motor
1	Motor Phase 1+	Motor Phase U
2	Motor Phase 2+	Motor Phase W
3	+5VDC	
4	Sine	Hall U
5	Temperature	Hall W
6	Motor Phase 1-	Motor Phase V
7	Motor Phase 2-	
8	AGND	
9	Cosine	Hall V
Case	Shield	

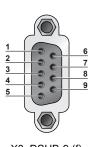
- Use X3 for motor phase wiring if phase current does not exceed 2Arms or 4Apeak
- X3.3 (+5VDC) may be used only to supply motor hall-effect sensors (max. 100mA).
- X3.8 (AGND) may be used only to supply motor hall-effect sensors, and must not be connected to GND externally



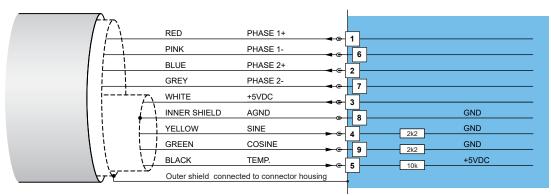
Motor


Motor wiring

X2: Screw Terminals



X3: DSUB-9 (f)



Motor

Motor wiring for phase current below 2Arms and below 4Apeak

X3: DSUB-9 (f)

For LinMot Linear Motors only use original LinMot double shielded motor cable K, KS, or KR

S4

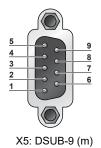
Bus Termination

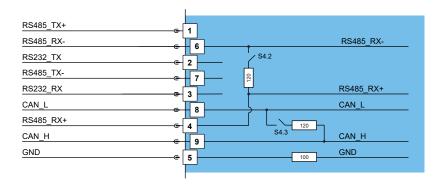
S4

Switch

Switch 1: RS232 (switch "off" / RS485 "on")

Switch 2: Termination RS485 on/off Switch 3: Termination CAN on/off


Switch 4: Bootstrap


Select serial RS23 or RS485

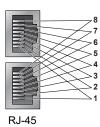
Factory settings: all switches "off"

X5 COM COM Schnittstelle

RS232: Configuration on all Drives: use 1:1 connection cable to PC

LED State Display

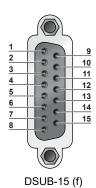
G	,	^	^	n	
u		u	u	ш	


24VDC Logic Supply OK

Red:

State: Error Blinking: Fatal Error

X7-X8 RS485/CAN



	Nr		
1		RS485_Rx+	Α
2		RS485_Rx-	В
3		RS485_Tx+	Υ
4		GND	
5		GND	
6		RS485_Tx-	Z
7		CAN_H	
8		CAN_L	
Cas	se	Shield	

- X7 internally connected to X8 (1:1 connection)
- Use twisted pair (1-2, 3-6, 4-5, 7-8) cable for wiring.
- The built in CAN and RS485 terminations can be activated by S3.2 and S3.3.

X13 External Position Sensor Commutation

Nr	Description	
1	+5V DC	
9	A+	Encoder
2	A-	Encoder
10	B+	Encoder
3	B-	Encoder
11	Z+	Encoder
4	Z-	Encoder
12	Encoder Alarm	
5	GND	
13	U+	Commutation
6	U-	Commutation
14	V+	Commutation
7	V-	Commutation
15	W+	Commutation
8	W-	Commutation
case	Shield	

Max. Input Frequency: 2MHz (incremental RS422), 240ns edge separation

Sensor Supply Current: max. 100mA

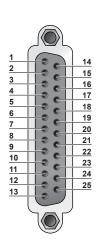
Position Encoder Inputs: RS422, Max Input Frequency: 2MHz, 4 M counts/s with quadrature

decoding, 240ns edge separation

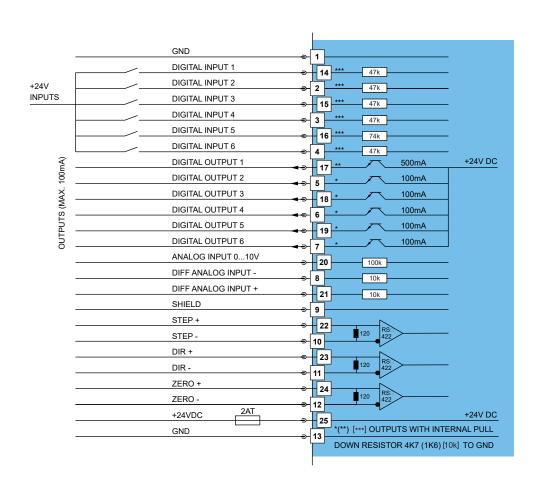
Encoder Simulated Outputs:RS422, Max Output Frequency: 2.5MHz, 5 M counts/s with quadrature

decoding, 200ns edge separation

Differential Hall Switch Inputs: RS422, Max Input Frequency: <1kHz


Enc. Alarm In: 5V / 1mA

Sensor Supply: 5VDC, max 100mA



X14

Digital I/O

X14: DSUB-25 (f)

Logic Supply: Switch Mode Power Supply:24VDC (22...26VDC)

External Fuse: 2AT

All Digital Inputs: Direct interfacing to digital 24VDC PLC outputs.

Input Current: 1mA

Logic Levels: Low Level: guaranteed: -5 to 5VDC, typically < 8VDC

High Level: guaranteed: 20...30VDC, typically > 16VDC

Sample Rate: 400us

All Digital Outputs: Short circuit and overload protected high side switches

Voltage: 24VDC Sample Rate: 400us

Max. Current: 100mA / 500mA (X14.17)
Peak Current: 370mA / 1100mA (X14.17)

Outputs may directly drive inductive loads.

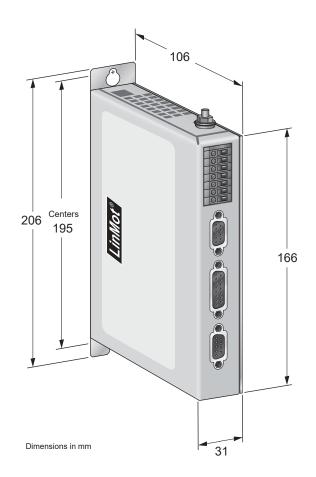
Analog Input on X14.20: Range: 0V..+10V 10Bit ADC

Sample Rate: 400us

Differential Analog Input Range: -10V..+10V 10Bit ADC

on X14.8 X14.21 X14.9 Sample Rate: 400us

Shield:


Differential Step Dir Zero: Indexer Inputs: RS422

Max. Input Frequency: 2MHz

4 M counts/s with quadrature decoding, 240ns edge separation

Cable length: <30m

Servo Drive Series B1100		
Width	mm (in)	31 (1.3)
Hight	mm (in)	166 (6.6)
Hight without fixings	mm (in)	206 (8.1)
Depth	mm (in)	106 (4.2)
Weight	g (lb)	700 (1.6)
IP Protection class	IP	20
Storage temperature	°C	-2540
Transport temperature	°C	-2570
Operating temperture	°C	040 at rated date
		4050 with power derating
Max. case temperature	°C	70
Max. power dissipation	W	30
Min. distance between drives	mm (in)	20 (0.8) left/right 50 (2) top/bottom

Item	Description	Part Number
B1100-PP	Point to Point Drive (72V/8A)	0150-1735
B1100-PP-HC	Point to Point Drive (72V/15A)	0150-1736
B1100-PP-XC	Point to Point Drive (72V/25A)	0150-1740
B1100-VF	Force Velocity Drive (72V/8A)	0150-1685
B1100-VF-HC	Force Velocity Drive (72V/15A)	0150-1686
B1100-VF-XC	Force Velocity Drive (72V/25A)	0150-1739
B1100-GP	Point to Point Drive (72V/8A)	0150-1737
B1100-GP-HC	Point to Point Drive (72V/15A)	0150-1738
B1100-GP-XC	Point to Point Drive (72V/25A)	0150-1741

Switched-Mode Power Supplies

115VAC / 230VAC

Item	Description	Part Number
S01-72/500	Switched-Mode Power Supply 72V/500W	0150-1874
S01-72/1000	Switched-Mode Power Supply 72V/1000W	0150-1872

Transformer Supply T01

3x230/280/400/480VAC

Item	Description	Part Number	
T01-72/4201500-Multi	Transformer Supply 3x230/280/400/480VAC, 50/60Hz, 4201500W	see page 534	

Control Box B01-E1100

Item	Description	Part Number
B01-E1100	Control Box for E1100 (incl. cable and connectors)	0150-1970
B01-B1100	Control Box for B1100 (incl. cable and connectors)	0150-2110

Connector Cable and USB-Converter

Item	Description	Part Number
RS232 PC config. cabel 2m	for E100/E1001/E1100/B1100	0150-3307
USB-Serial Converter	USB to 9-pin Serial Converter	0150-3110
USB-CAN Converter	USB to CAN Converter for E1100/B1100	0150-3134
RJ45-08/0.3	RJ45 patch cable 0.3m for E1100/B1100	0150-1852
RJ45-08/0.6	RJ45 crossover patch cable 0.6m	0150-1853

Option: External High Resolution Encoder

Item	Description	Part Number
MS01-1/D	Linear Encoder 1um, A/B (for 1mm magnetic band)	0150-1840
MB01-1000	Magnetic Band 1mm pitch, per cm	0150-1963