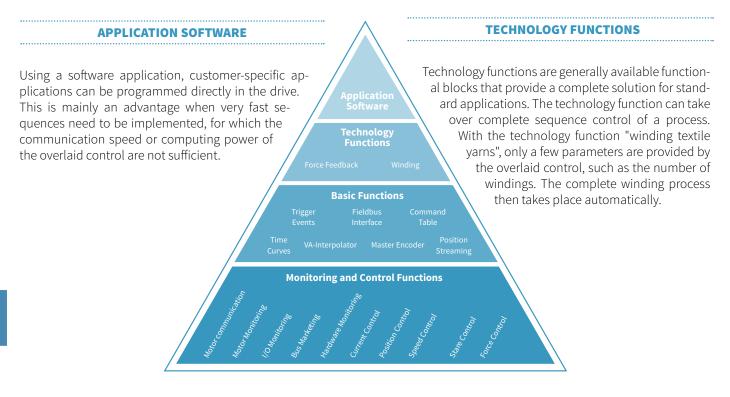


SERVO DRIVES


The wide range of drive products allows rapid implementation of simple applications with two end positions, up to complex, high-precision multi-axis applications with synchronization to a main electronic shaft.

The servo drives cover a wide range in terms of performance. Controlling small actuators with low power as well as high-power servomotors with direct feed from the three-phase network can be realized.

LinMot Servo Drives

LinMot Servo Drives are highly integrated inverters with one or more power elements, for controlling the motors, and an intelligent control element with integrated position regulation. The control element performs all drive-related control and monitoring functions. It allows direct position set points, or travel along internally stored motion profiles from the overlaid control, using simple analog or digital signals. Additionally, using the technology functions or a customer-specific software application, complete sequences or functions can be implemented for customerspecific applications.

BASIC FUNCTIONS

The basic functions include communication with the overlaid control, generation of target values for speed and acceleration-limited point-to-point motions, travel along motion profiles, synchronization of drives to an electronic main or master shaft, and synchronization in multi-axis applications.

MONITORING AND CONTROL

The basic functions of the Servo Drive, such as position and current control; control and monitoring of the power element; and monitoring the motor temperature, power, and position are handled by the control, monitoring, and regulation element, which also controls the entire finite state machine of the drive.

SPS LIBRARIES AND PROGRAMMING EXAMPLES

LinMot Drives have all common fieldbus interfaces available for connection to a master controller. In order to realize simple control concept integration, extensive function blocks and programming examples are provided for the customer. These function blocks allow for direct and quick LinMot drive integration. The function blocks run standard functions as well as commands such as drive parameterization and configuration directly from the controller. The complete drive

configuration of the corresponding axis is thus stored on the controller. Maintenance or replacement can be easily realized via automatic drives detection and configuration over the communication bus. Thus manual and time-consuming configuration of the drives in case of failure is eliminated.

Characteristics

POINT-TO-POINT MOTIONS

Because of their high dynamic capabilities, long life, and ability to travel to several positions, LinMot linear motors are often used as a replacement for pneumatic cylinders.

Various end positions can be stored in the drive and are invoked via digital signals, just as with a pneumatic cylinder. Once the end position is reached, this is reported to the overlaid control via the In-position signal on a digital output. Speed and acceleration can be configured freely for each motion.

NC MOTION

Travel along paths from an overlaid NC drive can be implemented via the +/-10V interface, or in streaming mode (PVT, PV).

The predetermined points are calculated rapidly, so that even irregular and complex curves are realized dynamically.

HIGH-END APPLICATIONS

Complex applications with synchronization to a main or master shaft can be implemented without trouble using the integrated master encoder interface. All incoming signals from the main shaft are processed by the LinMot Drive and depend on the movement type of the linear motor.

Together with a high-resolution, external position sensor, even high-precision positioning tasks in µm range can be handled.

MULTI-AXIS OPERATION

In multi-axes or linked operation, the master encoder interface can control both individually and synchronous to a main or master shaft.

For complex designs, several axes can be synchronized in master-booster or mastergantry mode. This allows simple implementation of portal designs with two synchronized axes, which are controlled by the overlaid control as a single axis.

LINEAR AND ROTARY DRIVES

Using LinMot Servo Drives, rotary servomotors can be used as well as linear motors, or any 1/2/3-phase actuators.

Primarily in assembly automation and feeding applications, small, light brushless DC motors (EC motors) are often needed to rotate a gripper about the Z-axis. The flexibility of the Servo Drive allows such rotary motors to be integrated into the existing controls concept in the same simple manner as linear motors.

STANDARDIZED DEVICE PROFILES

To simplify the integration of different axes, the C Series Servo Drives are equipped with PROFIdrive, Sercos III, SoE (SercosOver-Ethercat) and CoE (CiA402). By using device profiles, the integration of "foreign" Drives in the motion control is simplified. Further positive aspects are the automatic data exchange in real time and the increase of determinism in the system.

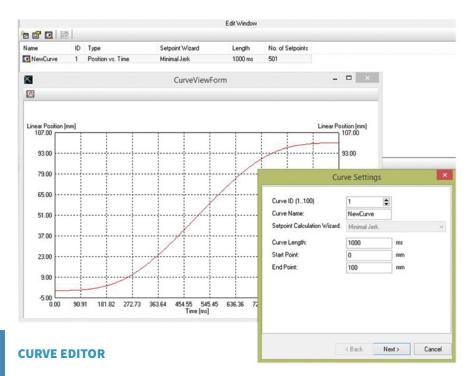
PLUG AND PLAY

LinMot motors with the plug and play functionality are automatically recognized by the A1100 / C1200 / C1100 / E1200 / E1400 servo drives and are immediately ready for use.

The servo drive reads these values when it boots up, and sets the parameters accordingly. This automatic device detection eliminates the selection of the required model parameters from an extensive library. Without having the configuration software to boot, first commands can be sent directly by the PLC control.

INTEGRATED SAFETY FUNCTION

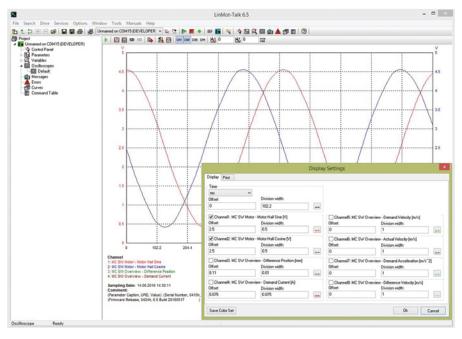
In order to prevent unintended startup, the model C1200 / C1100 / E1200 / E1400 drives have an STO function to safely shut off the output stage. The drive cannot produce any more force when shut off using the "Safe Torque Off" function. A functional safety is currently under preparation and can already be solved today with external components.


CERTIFICATION

The current LinMot Drives are marked with CE and approved as components according to the UL regulation for variable-frequency controllers. Thus they meet the requirements for the US and Canadian market.

Configuration with LinMot Talk

LinMot Talk configuration software is a Windows- based interface that supports the user during start-up and configuration of the LinMot Servo Drives. The software has a powerful, modular, graphical interface that covers all the tasks surrounding the LinMot Servo Drive. Using LinMot Talk PC interface, the engineer can configure LinMot servo drives. The motors are also monitored during operation and the current motion sequences are analysed (monitoring). The integrated control panel gives the user direct access to the control and status words, as well as all commands that are invoked by the upper-level controller.



PARAMETERIZATION

Using the "Parameter Inspector," the drives are parameterized in a simple manner. The user has a wide range of adjustments available for operating modes, error management, warning messages, and regulating parameters. Entire parameter sets can be stored, loaded, and printed out.

CURVE EDITOR

The "Curve Editor" allows creation of travel curves. In addition, existing curves can be loaded, stored, edited, combined, and printed out. Further, complex motion sequences can be generated as desired in MS Excel, and loaded into the drive.

OSCILLOSCOPE

OPTIMIZATION

The integrated oscilloscope helps the user during start-up and optimization of the Parameterization Optimization Monitoring drive system. Internal variables, such as the target and actual position, can be shown in real time on the screen, and then printed out. The displayed data can be stored in CSV format for further processing in MS Excel, or stored for documentation purposes.

MONITORING

Using the "Error Inspector," the user can read out stored errors, as well as the currently active warnings and error messages in the LinMot Servo Drive. A list of the last error messages are stored in non-volatile memory on the Servo Drive, together with the operating hours counter.

LinMot®

Overview Servo Drives

A1100

Space-saving servo drive for instrument engineering

C1100

Compact drive for an ideal use in point-to-point applications.

C1200

Servo Drive for demanding tasks with axis, NC synchronization and an industrial ETHERNET interface.

E1200

High-End Servo Drive with configuration via ETHERNET.

C1400

Servo Drive with direct power supply for simple motions as well as complex axis synchronization. Designed to control the P10 motor family.

E1400

Servo Drive for P10 motors with direct main supply and 3x400 VAC technology. Equipped with an ETHERNET Config. interface.

Technical Specifications

	A1100	C1100	C1200	
Motor Supply				
	2472VDC	2472VDC	2472VDC	
Motor Current				
	8A _{pk}	25A _{pk}	25A _{pk}	
Control of				
LinMot Motors P0x/ PR01	•	•	•	
LinMot Motors P10				
Rotary Motors		•	•	
EC02 Motors		•		
AC Servo Motors				
3rd Party Motors				
Functionality				
	Point-to-Point	Point-to-Point	Point-to-Point	
	Command Table	Closed Loop Force Control	Limited jerk motion commands	
	Motion Profiles	Command Table	NC Motion	
		Motion Profiles	Closed Loop Force Control	
			Command Table	
			Motion Profiles	
Ethernet & Fieldbuses				
	CANOpen	PROFINET	PROFINET	
		EtherCAT (LinMot Profile)	PROFINET Profidrive	
		EtherCAT (CiA402)	EtherNet/IP Sercos III	
		EtherCAT (SoE) CANOpen	Powerlink	
		САНОРЕН	LinUDP	
			EtherCAT	
			EtherCAT (CiA402)	
			EtherCAT (SoE)	
			20.00.20.11 (0002)	
Interfaces				
Analog Inputs 010V / +-10V	1/0	1/1	1/1	
Number of digital Inputs / Outputs	6/2	4/2	4/2	
Brake Output	(-)	24V/0.5A	24V/0.5A	
External Encoder				
		A/B/Z (RS422)	A/B/Z (RS422)	
		SSI	SSI	
		BISS	BISS	
			EnDat	
Timings				
Min. Bus Cycle Time	250 μs	250 μs	125 µs	
PWM Frequency	16 kHz	16 kHz	16 kHz	
Trigger Commands	≥ 250 µs	≥ 250 µs	≥ 125 µs	
Position Drive	250 μs	250 μs	125 µs	
Configuration RS 232				
	•	•	•	
ETHERNET			•	
ETHERNET – Maintenance				

E1200	C1400	E1400
2472VDC	1x200240VAC	3x400480VAC
32A _{pk}	15A _{pk}	28A _{pk}
•		
	•	
	•	
•		<u> </u>
•		
	•	•
•		
Point-to-Point	Point-to-Point	Point-to-Point
NC Motion	Limited jerk motion commands	Limited jerk motion commands
Master Encoder / CAM	NC Motion	NC Motion
Belt Synchronization	Master Encoder / CAM	Master Encoder / CAM
Master Booster (up to 4 slaves)	Belt Synchronization	Belt Synchronization
Master Gantry (up to 4 slaves)	Closed Loop Force Control	Master Booster (up to 4 slaves)
Winding Application	Command Table	Master Gantry (up to 4 slaves)
Closed Loop Force Control	Motion Profiles	Winding Application
Command Table		Closed Loop Force Control
Motion Profiles		Command Table
		Motion Profiles
PROFINET	PROFINET	PROFINET
PROFINET Profidrive	PROFINET Profidrive	PROFINET Profidrive
EtherNet/IP	EtherNet/IP	EtherNet/IP
Sercos III	Sercos III	Sercos III
Powerlink	Powerlink	Powerlink
LinUDP	LinUDP	LinUDP
Profibus DP	CANOpen	Profibus DP
CANOpen	EtherCAT	CANOpen
EtherCAT	EtherCAT (CiA402)	EtherCAT
EtherCAT (CiA402)	EtherCAT (SoE)	EtherCAT (CiA402)
EtherCAT (SoE)		EtherCAT (SoE)
LinRS		LinRS
2/1	1/1	2/1
8	4/2	8
24V/1.0A	24V/1.5A	24V/1.5A
A/B/Z (RS422)	A/B/Z (RS422)	A/B/Z (RS422)
Sin/Cos (1Vpp)	SSI	SSI
SSI (only position recovery)	BISS	BISS
	EnDat	EnDat
200 μs	250 μs	250 μs
20 kHz	8 kHz	8 kHz
≥ 100 µs	≥ 125 µs	≥ 125 µs
100 μs	125 μs	125 µs
100 μ3	123 μ3	125 μ5
_		
	•	•
	•	•

SERIES C1100

- Absolute / relative positioning commands
- Limited jerk motion commands
- Time Curves
- PLC or Stand-Alone Solutions
- Digital and Analog IO's
- Safe Torque Off
- Interface for optional incremental or absolute sensor
- Supports Plug and Play
- CE/UL/CSA

Servo Drive C1100

Series C1100 servo drives are axis controllers, with 32-bit position resolution and an integrated power stage, for linear motors and rotary drives.

The controllers are suitable for simplest and standard positioning tasks with point to point motions.

CONNECTION TO MACHINE CONTROL

The C1100 servo drives can be actuated by machine controls from many manufacturers or brands, via digital inputs and outputs, over CAN Bus or Industrial Ethernet

Bus-Interfaces:

- » Profinet
- » EtherCat, SoE, CoE
- » CANopen

Serial Interfaces RS422 / RS485:

LinRS

PROCESS AND SENSOR INTERFACES

Fast process interfaces for direct processing of sensor signals are available as freely programmable analog and digital inputs, a fast trigger input, and a capture input.

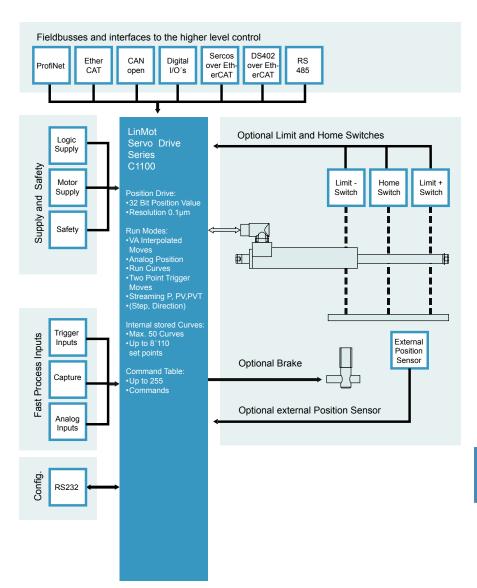
The safety IO's on Servo Drives with the -1S option with CAN or industrial ETH-ERNET allows safe torque off (STO) of the drives via control signals, without interrupting the power supply.

Drives with -0S option come without safety IO's and are easier to wire in applications without safety needs.

LOGIC AND POWER SUPPLY

The servo drives have two separate inputs for the logic supply and motor elements.

This has the advantage that the drive and linear motor do not need to be reinitialized when the machine is restarted, since all process data, including the actual position of the linear motor, is still up to date.


System Integration

Flexible hardware enables control of many 1/2/3-phase motors. Thus, low-power rotary servomotors, such as brushless DC motors, can be integrated in the same control concept.

Additionally, the drives can be equipped with optional peripherals, such as reference and end stop switches, high-precision external position sensors, or a mechanical holding brake.

Series C1100 servo drives have analog inputs and digital inputs and outputs, serial interfaces, CAN bus, and Ethernet. The user therefore is not dependent on the selection of the higher level controller. An appropriate interface is available, with associated protocols, for many PLC or IPC solution.

With flexibility and a compact form factor, LinMot Series C1100 servo drives provide a complete solution for a flexible drive concept in single and multiple axes applications, with linear motors and other actuators.

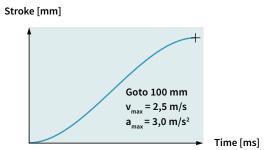
IDEAL FOR POINT TO POINT MOTIONS

Serial interfaces, CAN and industrial Ethernet guarantees flexible and fast communication.

The cost-optimized design of the C1100 series make it the ideal drive for point-to-point motions and replacement of pneumatic cylinders. The control is also characterized by higher speeds, longer service life and high flexibility.

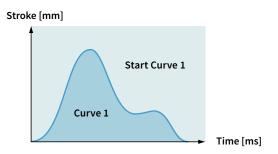
MOTOR INTERFACES

C1100 servo drives provide all necessary interfaces to operate linear or rotary motors with optional external peripherals, such as end position and reference switches, a mechanical brake, or a high-resolution external position sensor.


CONFIGURATION

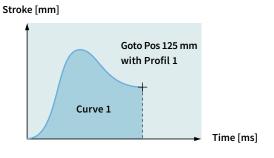
LinMot Talk, a user-friendly PC software is available for configuration. In addition to online documentation, LinMot Talk provides extensive debugging tools, such as an oscilloscope and an error inspector, for simple and rapid start-up of the Axis.

Fieldbus and Ethernet drives can also be configured directly by the higher level control, by downloading the configuration parameters via Bus/Ethernet


CONNECTION TO MACHINE DRIVE

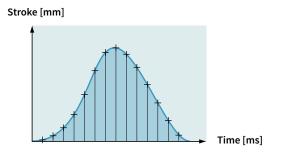
For direct position targets, using absolute or relative positioning, the desired position is reached using acceleration and velocity-limited motion profiles, sine motion profiles or jerk optimized profiles (jerk limited Bestehorn). Positioning commands can be invoked via the serial interfaces, CANopen, Ethernet or a trigger input.

 $\begin{array}{ll} \textbf{Stroke range:} & \pm 100 \text{ m} \\ \textbf{Position Resolution:} & 0.1 \, \mu\text{m} \, (32 \text{Bit}) \\ \textbf{Velocity Resolution:} & 1.0 \, \mu\text{m/s} \, (32 \text{Bit}) \\ \textbf{Acceleration Resol.:} & 10.0 \, \mu\text{m/s}^2 \, (32 \text{Bit}) \\ \end{array}$


TIME CURVES

Up to 50 different time curves can be stored Series C1100 drives, with up to 8'110 individual waypoints. The motor can thus travel along time curves of any complexity, such as those generated by CAD programs and stored in the drive (Excel CSV format). The time curves can be invoked via the serial interface, fieldbusses, Ethernet, or the trigger input.

Stroke range:±100mPosition Resolution:0.1 μm (32Bit)Motion profiles:Max. 50 Time CurvesCurve points:Max. 8'110 points


PROFILED MOVES

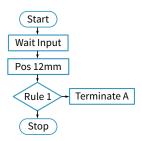
For travel to an absolute position, or shifting by a relative position, any desired motion rules can be stored besides the VA interpolator. They are stored in the drive as motion profiles (Excel CSV format). The positions can be approached, for example, with a sinusoidal motion to optimize power loss, or special reverse optimized motion profiles.

Stroke range: ±100m
Position Resolution: 0.1 µm (32Bit)
Motion profiles: Max. 50 Time Curves
Curve points: Max. 8'110 points

SETPOINT STREAMING

Higher level NC motion controllers with fieldbus or Ethernet interfaces communicate with the servo drives via "Position Streaming". The position and velocity calculated in the higher level control is transmitted to the Servo Drive cyclically. The P, PV, or PVT mode is available for this transmission.

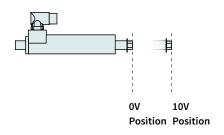
Position Resolution:32 BitVelocity Resolution:32 BitInterpolator:4 kHzCycle times:0.5 - 5 ms


EASY STEPS

Input 1	Pos 125 mm
Input 2	Pos 250 mm
Input 3	Curve 1
Input 4	Pos -30 mm

With the Easy Steps function, up to 4 positions or independent travel commands can be stored on the drive, and addressed via 4 digital inputs or fieldbus interfaces/Ethernet.

Digital inputs:4Interface:X4Scanning rate:250 μsec


COMMAND TABLE

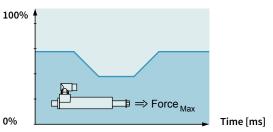
Entire motion sequences with up to 255 individual motion commands can be stored in the Command Table. This is primarily advantageous if complete motion sequences need to be executed very quickly, without dead time from the higher level drive. In the Command Table, the programmer has access to all motion commands, internal parameters, and digital inputs and outputs.

Commands: max. 254
Cycle time: 250 µsec

ANALOG POSITION

For an analog position target, the linear motor travels to a position proportional to the input voltage. The position is either scanned continuously, or only after a rising edge of the trigger signal. In order to prevent uncontrolled jumps in position, the motor travels to the positions with a programmable maximum acceleration and velocity (VA interpolator).

 Inputs:
 Analog Input X4

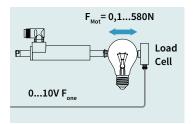

 Voltage range:
 0-10VDC or ±10V

 Resolution:
 10 Bit

Scanning rate: >=250 μsec (adjustable)

EASY STEPS PARAMETER SCALE

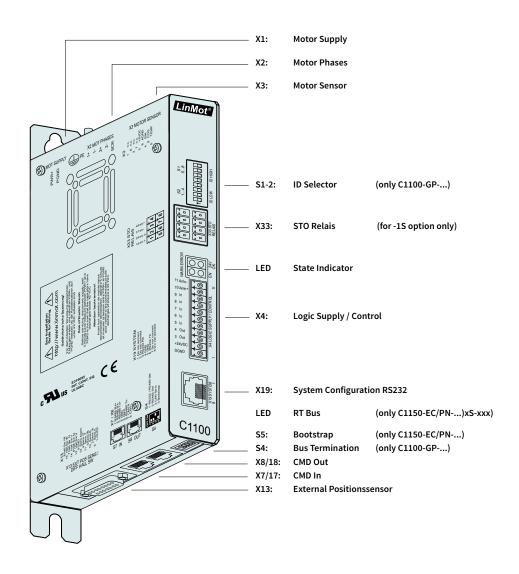
Maximum Force [0...10V => 0...100%]



Easy Steps provide the ability to parameterize internal parameters using two analog inputs. If, for example, the maximum motor current is read at an analog input, then the maximum motor force can be provided as analog for freely programmable joining processes.

Inputs:2 x AnalogVoltage range:0-10VDCResolution:10 BitScanning rate:250 µsec

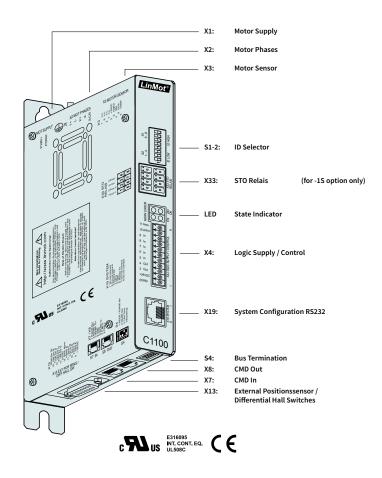
CLOSED LOOP FORCE CONTROL


Using the force control technology function, precise joining processes can be implemented reliably and reproducibly with high-precision force control. For force control, the current motor force is measured with a load cell and controlled in the drive. Joining process or quality checks with high requirements for applied force can be implemented.

 Analog input:
 0-10V or ±10V

 Resolution:
 10 Bit

 Min. Force Resolution:
 0.1N


Interfaces	C1100-GP-XC	C1150-EC-XC	C1150-DS-XC	C1150-SE-XC	C1150-PN-XC
LinRS (RS485 / RS422)	•				
CANOpen	•				
ETHERCAT LinMot Profile		•			
ETHERCAT CiA402			•		
ETHERCAT SoEe				•	
PROFINET LinMot					•

C1100-GP-XC-0S C1100-GP-XC-1S

- Absolute & Relative Positioning
- » Time based motion profiles
- » Internally stored Motion Sequences
- » Position Streaming
- » Analog Position Target
- » Analog Parameter Scaling
- » Force Control Technology Function
- » Customer-Specific Functions

CANOPEN

CANOPEN

The LinMot C1100-GP drives support the CiA DS301 communications protocol. The following resources are available: 4 T_PDO, 4 R_PDO, 1 T_SDO, 1 R_SDO

The following protocols are supported by the CO drives:

- » NMT Error Control (Nodeguarding Protocol or HeartBeat Protocol)
- » PDO (Transmission type 1 to 254)
- » SDO Upload and Download
- » NMT (Start, Stop, Enter PreOp, Reset Node, Reset Communication, Boot-Up Message)

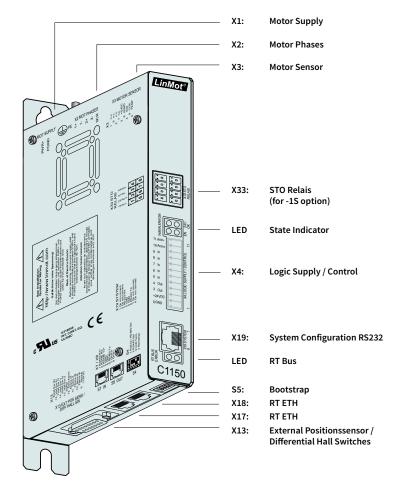
PROCESS AND SENSOR INTERFACES

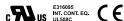
The LinMot C1100-GP drives support the C1100-GP servo drives support the follow-CiA DS301 communications protocol. The ing interfaces:

- » CANOpen
- » LinRS

MINIMAL CYCLE TIMES

Min. Bus Cycle:	500 μs
IO update:	500 μs
Trigger Input:	250 µs
Position control loop:	250 µs
Current control loop:	125 µs





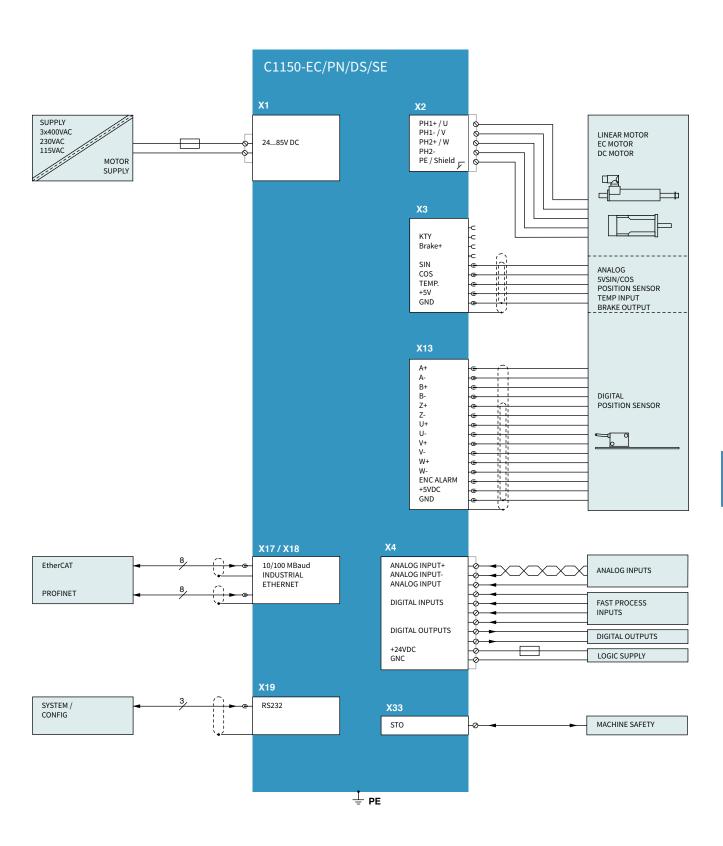
C1150-xx-XC-xS-xxx

- Absolute & Relative Positioning
- Time based motion profiles
- Internally stored Motion Sequences
- **Position Streaming**
- **Analog Position Target**
- Analog Parameter Scaling
- Force Control Technology Function
- **Customer-Specific Functions**

MINIMAL CYCLE TIMES

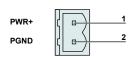
INDUSTRIAL ETHERNET

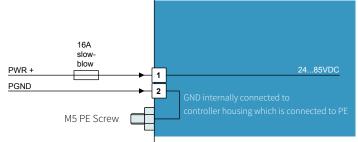
Series C1150-EC drives allow integration of LinMot linear motors in controls concepts with EtherCAT. The user can integrate Series C1100 drives regardless of the provider of the higher level control.


LinMot drives are available with common industrial Ethernet protocols. Since all Ethernet drives have the same motion command interface, and the control and status word are identical, software blocks that have been implemented once, can be transferred to other motion controllers without a problem.

TECHNICAL DATA

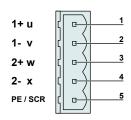
Realtime Ethernet Type: Switch/Hub: Integrated 2-Port Switch Transfer rate: 10/100MBit/sec


Bus cycle: 500 μs IO update: 500 μs Trigger Input: 250 μs Position control loop: 250 μs Current control loop: 125 µs



X1 MOTOR SUPPLY

Connector has to be ordered separetely

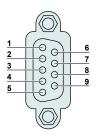


Motor Supply: 72VDC nominal, 24...85VDC Absolute max. Rating: 72VDC +20%. External Fuse: 16A slow-blow / min. 100VDC

If motor supply voltage exceeds 90VDC, the drive will go into error state.

- Use 60/75°C copper conductors only
- Conductor Cross-Section 2.5mm2 (AWG14) max Length 3 m

X2 MOTOR PHASES

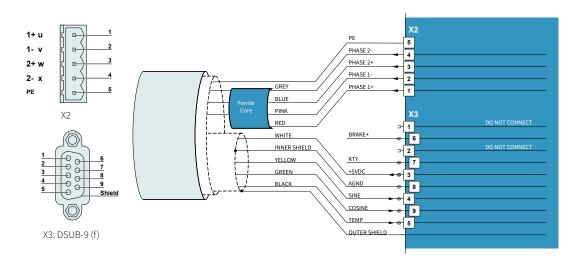


Nr	Designation	LinMot Linear Motor	Color	3-phase EC-Motor	Color
1	PH1+	Motor Phase 1+	red	Motor Phase U	red
2	PH1-	Motor Phase 1-	pink	Motor Phase V	pink
3	PH2+	Motor Phase 2+	blue	Motor Phase W	blue
4	PH2-	Motor Phase 2-	grey	RR-	grey
5	PE/SCRN	Shield		Shield	

Connector has to be ordered separetely

- Use 60/75°C copper conductors only
- Conductor cross-section: 0.5 2.5mm² (depends on Motor current) / AWG 21 -14

MOTOR SENSOR / BREMSE



DSUB-9

Nr		LinMot Motor	EC Motor
1		Do not connect	Do not connect
	6	Brake+	Brake+
2		Do not connect	Do not connect
	7	Do not connect	KTY
3		+5VDC	+5VDC
	8	AGND	AGND
4		Sensor Sine	Sensor Sine / Hall Switch U
	9	Sensor Cosine	Sensor Cosine / Hall Switch V
5		Temp In	Hall Switch W
	Case	Shield	Shield

- Use +5V (X3.3) and AGND (X3.8) only for motor internal Hall Sensor supply (max. 100 mA)
- Cable length < 30 m
- Brake+: 24V 500mA, 1.4A_{peak} Caution: Do NOT connect AGND (X3.8) to ground or earth!

Use Y-style motor cables only (for example K15-Y/C)!

A W-style cable has a different shielding, so it cannot be modified to a Y-style cable!

Phase 2-could be used as RRwith3 phase Motors the other side of regeneration resistor has to be wired to PWR

X4

LOGIC SUPPLY / IO CONNECTION

X4. 11	[]	=
X4. 10	r _o	
X4. 9		迃
X4. 8	Ç O	Contro
X4. 7	r _o	٥,
X4. 6		a
X4. 5		Supply
X4. 4		S
X4. 3		-od
+24VDC		د
DGND		_
	رحما	_

DSUB-9 (f) Spring cage connector (has to be ordered separetely)

Nr			
11	AnIn-	X4.11	Configurable Analog Input differential (with X4.10)
10	AnIn+	X4.10	Configurable Analog Input differential (with X4.11)
9	AnIn	X4.9	Configurable Analog Input single ended
8	In	X4.8	Configurable Input
7	In	X4.7	Configurable Input
6	In	X4.6	Configurable Input
5	In	X4.5	Configurable Input
4	Out	X4.4	Configurable Output
3	Out	X4.3	Configurable Output
2	+24VDC	Supply	Logic Supply 22-26 VDC
1	GND	Supply	Ground

Supply 24V:

24V / 5mA (Low Level: -0.5 to 5VDC, High Level: 15 to 30VDC) 24V / max. 500mA, Peak 1.4A (will shut down if exceeded) 10 bit A/D converted.

Single ended analog input to GND, 0..10V, Input Resistance: $51k\Omega$ to GND Differential analog input, +/- 10V. Common mode range: +/- 5VDC to GND. Input Resistance: $11.4k\Omega$ for each signal to GND

typically 200mA / max. 2.0A (if all outputs "on" with max. load.)

- » Use 60/75°C copper conductors only
- » Conductor cross-section max. 1.5 mm²
- » Stripping length: 10 mm
- » The 24VDC supply for the control circuit (X4.2) must be protected with an external fuse (3A slow blow)

X7 - X8 RS485 / CAN (ON GP DRIVES ONLY)

RJ-45

Nr		
1	RS485_Rx+	А
2	RS485_Rx-	В
3	RS485_Tx+	Υ
4	NC	
5	GND (1k Ohm to GND)	
6	RS485_Tx-	Z
7	CAN_H	
8	CAN_L	
Case	Shield	

- » Use twisted pair (1-2, 3-6, 4-5, 7-8) cable for wiring.
- » The built in CAN and RS485 terminations can be activated by S4.2 and S4.3.
- X7 is internally connected to X8 (1:1 connection)

S5

S1 - S2 ADRESS SELECTORS (ON GP DRIVES ONLY)

S1 (58)	Bus ID High (0 F). Bit 5 is the LSB, bit 8 the MSB.
S2 (14)	Bus ID Low (0 F). Bit 1 is the LSB, bit 4 the MSB

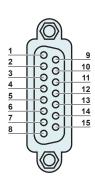
The use of these switches depends on the type of fieldbus which is used. Please see the corresponding manual for further information.

RT BUS LEDS

RT BUS State D	Display
Green	OK
Red	Error

The use of these LEDs depends on the type of fieldbus which is used. Please see the corresponding manual for further information.

S4 BUS TERMINATION (ON GP DRIVES ONLY)


Switch 4	Bootstrap
Switch 3	Termination CAN on/off
Switch 2	Termination RS485 on/off
Switch 1	RS232 / RS485

Factory settings: Switch 3 "on", all other switches "off"

BOOTSTRAP (ON EC AND PN DRIVES ONLY)

S5	Bootstrap (Internal use only	y

X13 EXTERNAL POSITION SENSOR DIFFERENTIAL HALL SWITCHES

DSUB-15 (f)

Nr		ABZ with Hall Switches	SSI / BiSS
1		+5V DC	+5V DC
	9	A+	A+
2		A-	A-
	10	B+	B+
3		B-	В-
	11	Z+	Data+
4		Z-	Data-
	12	Encoder Alarm	Encoder Alarm
5		GND	GND
	13	U+	nc
6		U-	nc
	14	V+	nc
7		V-	nc
	15	W+	Clk+
8		W-	Clk-
Case		Shield	Shield

Position Encoder Inputs (RS422):

Differential Hall Switch Inputs (RS422):

Enc. Alarm In: Sensor Supply: Max. counting frequency: 10 Mcounts/s with quadrature

decoding, 100ns edge separation

Input Frequency: <1kHz

5V / 1mA 5VDC, max 100mA

SAFETY RELAYS (ONLY FOR -1S)

X33. 4/8 Ksr+ X33. 3/7 Ksr-X33. 2/6 Ksr f+ X33. 1/5 Ksr f-

Spring cage connector (has to be ordered separetely)

- 4/8 Safety Relay 1 / 2 Input possitive Ksr+ 3/7 Ksr-Safety Relay 1 / 2 Input negative Ksr f+ Safety Relay 1 / 2 feedback positive 2/6 1/5 Ksr f-Safety Relay 1 / 2 feedback negative
- Use 60/75°C copper conductors only
- Conductor cross-section max. 1.5 mm²
- Stripping length: 10 mm
- Never connect the safety relays to the logic supply of the drive!

REALTIME ETHERNET 10/100 MBIT/S (ON EC AND PN DRIVES ONLY) X17 - X18

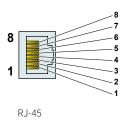
X17

X18

RJ-45

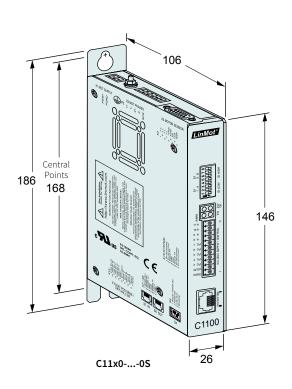
Nr		
X17	RT ETH In	Specification depends on RT-Bus.
X18	RT ETH Out	Please refer to according documentation.

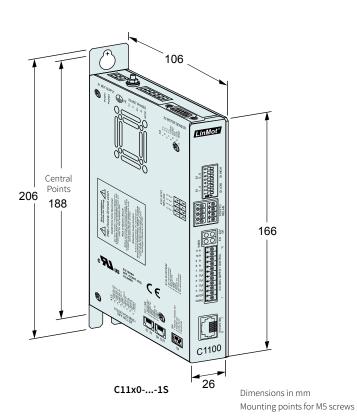
LEDS


STATE DISPLAY

Green	24V Logic Supply OK
Yellow	Motor Enabled / Error Code Low Nibble
Yellow	Warning / Error Code High Nibble
Red	Error

X19


SYSTEM



Nr	Descrption
1	(do not connect)
2	(do not connect)
3	RS232 RX
4	GND
5	GND
6	R\$232 TX
7	(do not connect)
8	(do not connect)
case	Shield

Use isolated USB-RS232 converter (Art.-No. 0150-2473) for configuration over RS232

Servo Drive Series		C11x00S		C11x01S
Width	mm (in)		26.0 (1.02)	
Height	mm (in)	146 (5.8)		166 (6.5)
Height with fixings	mm (in)	186 (7.3)		206 (8.1)
Depth	mm (in)		106 (4.2)	
Weight	kg (lb)	505 (1.21)		650 (1.43)
Mounting Screws		2 x M5		2 x M5
Mounting Distance	mm (in)	168 (6.61)		188 (7.4)
Case IP Code	IP		20	
Storage temperature	°C	-2540		
Transport temperature	°C	-2570		
Operating temperature	°C	040 at rated date 4050 with power derating		
Relative humidity		95% (non-condensing)		
Pollution	IEC/EN 60664-1	Pollution degree 2		
Shock resistance (16 ms)	-1S option			3.5 g
Vibration resistance (10-200Hz)	-S option			1 g
Max. case temperature	°C 70		70	
Max. power dissipation	W	30		
Mounting place		in the control cabinet		
Mounting position		vertical		
Distance between Drives	mm (in)	Without Power Derating 20 (0.8) left/right / 50 (2) top/bottom With Powert Derating: 5 (0.2) left/right / 20 (0.8) top/bottom		

Servo Drives				
Item	Description	Part Number		
C1100-GP-XC-0S-000	General Purpose Drive (72VDC/25)	<u>0150-2380</u>		
C1150-PN-XC-0S-000	ProfiNet Drive (72V/25A)	<u>0150-2384</u>		
C1150-EC-XC-0S-000	EtherCAT Drive (72VDC/25A)	<u>0150-2382</u>		
C1150-DS-XC-0S-000	EtherCAT CoE Drive (72VDC/25A)	<u>0150-2417</u>		
C1150-SE-XC-0S-000	EtherCAT SoE Drive (72VDC/25A)	<u>0150-2625</u>		
C1100-GP-XC-1S-000	General Purpose Drive (72VDC/25), STO	<u>0150-2381</u>		
C1150-PN-XC-1S-000	ProfiNet Drive (72V/25A), STO	<u>0150-2385</u>		
C1150-EC-XC-1S-000	EtherCAT Drive (72VDC/25A), STO	<u>0150-2383</u>		
C1150-DS-XC-1S-000	EtherCAT CoE Drive (72VDC/25A), STO	<u>0150-2418</u>		
C1150-SE-XC-1S-000	EtherCAT SoE Drive (72VDC/25A), STO	<u>0150-2626</u>		

Accessories				
Item	Description	Part Number		
DC01-C1X00-0S/X1/X4	Drive Connector Set for C1X00-0S	<u>0150-3527</u>		
DC01-C1X00-1S/X1/X4/X33	Drive Connector Set for C1X00-1S	<u>0150-3528</u>		
DC01-C1X00/X1	Drive Connector for PWR 72VDC Input	<u>0150-3525</u>		
DC01-C1X00/X2	Drive Connector Motor Phases	<u>0150-3526</u>		
DC01-Signal/X4	Drive Connector 24VDC & Logic	<u>0150-3447</u>		
DC01-Safety/X33 yello	Drive Connector Safety	<u>0150-3451</u>		