
www.animatics.com

DESCRIBES THE CLASS 5 (D/M) AND
CLASS 6 (D) SMARTMOTOR™ SUPPORT
FOR THE CANOPEN® PROTOCOL

CANOPEN® IMPLEMENTATION FOR

FULLY INTEGRATED
SERVO MOTORS
CLASS 5 AND 6 SMARTMOTOR™ WITH
COMBITRONIC™ TECHNOLOGY

Rev. J, July 2022

Copyright Notice
©2013-2022, Moog Inc.

Moog Animatics Class 5(D/M) / 6(D) SmartMotor™ CANopen Guide, Rev. J, PN:SC80100001-001.

This manual, as well as the software described in it, is furnished under license and may be used or
copied only in accordance with the terms of such license. The content of this manual is furnished for
informational use only, is subject to change without notice and should not be construed as a
commitment by Moog Inc., Animatics. Moog Inc., Animatics assumes no responsibility or liability for any
errors or inaccuracies that may appear herein.

Except as permitted by such license, no part of this publication may be reproduced, stored in a retrieval
system or transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise,
without the prior written permission of Moog Inc., Animatics.

The programs and code samples in this manual are provided for example purposes only. It is the user's
responsibility to decide if a particular code sample or program applies to the application being
developed and to adjust the values to fit that application.

Moog Animatics and the Moog Animatics logo, SmartMotor and the SmartMotor logo, Combitronic and
the Combitronic logo are all trademarks of Moog Inc., Animatics. CiA and CANopen are registered
community trademarks of CAN in Automation e.V. Other trademarks are the property of their
respective owners.

Please let us know if you find any errors or omissions in this manual so that we can improve it for
future readers. Such notifications should contain the words "CANopen Guide" in the subject line and be
sent by e-mail to: animatics_marcom@moog.com. Thank you in advance for your contribution.

Contact Us:

Americas - West
Moog Animatics
2581 Leghorn Street
Mountain View, CA 94043
USA

Americas - East
Moog Animatics
1995 NC Hwy 141
Murphy, NC 28906
USA

Tel: 1 650-960-4215

Support: 1 (888) 356-0357

Website: www.animatics.com

Email: animatics_sales@moog.com

Table of Contents

Introduction 10
Purpose 11

Combitronic Technology 11

I/O Device CAN Bus Controller 11

Time Sync for Electronic Gearing and Camming 12

Abbreviations 14

Safety Information 15

Safety Symbols 15

Other Safety Considerations 15

Motor Sizing 15

Environmental Considerations 15

Machine Safety 16

Documentation and Training 16

Additional Equipment and Considerations 17

Safety Information Resources 17

Additional Documents 18

Related Guides 18

Other Documents 18

Additional Resources 19

CANopen Resources 19

CANopen Overview 20
CANopen Description 21

CAN (CAN Bus) 21

CANopen 21

PDO and SDO Communication 22

SDO 22

PDO 23

COB-ID Allocation 24

NMT States 26

NMT Control 27

NMT Summary 27

NMT State Machine Diagram 28

PDO Communications 28

Peer-to-Peer Communications 28

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 3 of 234

Synchronous Communications 29

Other Communications with the Motor 29

Supported Features 30
Supported 31

Motion Modes 31

NMT State Machine Controller 31

PDO Transmit on Event 31

PDO Transmit on Timer Only 32

PDO Transmit on Sync 32

Dynamic PDO Mapping 32

Heartbeat Producer 32

Sync Producer 32

Not Supported 33

Emergency Messages 33

Saving Parameters 33

Heartbeat Consumer 33

MPDO Communications 33

CAN Bus Bit Rate 33

PDO Transmit on RTR (Remote frames) 33

Node Guarding 33

TIME Service 33

Sync Start 33

Status LEDs 34
Status LEDs — Class 5 D- and M-Style 35

Status LEDs — Class 6 D-Style 35

Manufacturer-Specific Objects 36
I/O 37

User Variables 37

Calling Subroutines 39

Command Interface (Object 2500h) 40

Command Interface 40

Program Upload/Download 41

Upload from Motor 41

Download to Motor (SMX file) 41

Download to Motor (SMXE encrypted file) 42

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 4 of 234

CiA 402 Drive and Motion Control Profile 43
CiA 402 Profile Motion State Machine 44

Control Words, Status Words and the Drive State Machine 44

Status Word (Object 6041h) 45

Control Word (Object 6040h) 46

Motion Profiles 47

Position Mode 47

Absolute Position Mode Summary 48

Absolute Position Mode Example 48

Relative Position Example 49

Velocity Mode 51

Velocity Mode Summary 51

Velocity Mode Example 52

Torque Mode 52

Torque Mode Summary 53

Torque Mode Example 53

Interpolated Position Mode 54

Interpolated Position Mode Summary 55

Example: Short Run on a Single Motor 56

Example: Continuous Run on a Single Motor 57

Example: Resuming Motion in IP Mode 58

Synchronization 58

User Bits 59

Splining 60

Variable-Length Segments 60

Homing Mode 60

Homing Summary 61

Homing Example 61

PDO Mapping 63
Overview 64

Mapping and Communication Parameters Objects 65

Communications Parameters Objects 66

Mapping Parameters Objects 66

Mapping Entries 67

Mapping Procedure 67

Time Sync Motors Mapping Procedure 68

Example Start-up Sequence 69

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 5 of 234

CANopen User Program Commands 71
Address and Baud Rate Commands 72

CADDR=frm 72

CBAUD=frm 72

CAN Error Reporting Commands 72

=CAN, RCAN 72

RB(2,4), x=B(2,4) 75

Network Control Commands 75

CANCTL(action, value) 75

NMT(address, command code) 77

SDORD(address, obj index, subindex, bytecount) 77

SDOWR(address, obj index, subindex, bytecount, data) 78

Exceptions to NMT, SDORD and SDOWR Commands 78

Troubleshooting 79
SDO Response Error Codes 81

Object Reference 83
Object Categories 87

Communication Profile 88

Object 1000h: Device Type 90

Object 1001h: Error Register 91

Object 1005h: COB-ID SYNC 92

Object 1006h: Communication Cycle Period 94

Object 1008h: Manufacturer Device Name 95

Object 1009h: Manufacturer Hardware Version 96

Object 100Ah: Manufacturer Software Version 97

Object 1013h: High-Resolution Timestamp 98

Object 1017h: Producer Heartbeat Time 99

Object 1018h: Identity Object 100

Object 1200h: Server SDO Parameter 1 101

Object 1400h: Receive PDO Communication Parameter 1 102

Object 1401h: Receive PDO Communication Parameter 2 103

Object 1402h: Receive PDO Communication Parameter 3 104

Object 1403h: Receive PDO Communication Parameter 4 105

Object 1404h: Receive PDO Communication Parameter 5 106

Object 1600h: Receive PDO Mapping Parameter 1 107

Object 1601h: Receive PDO Mapping Parameter 2 108

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 6 of 234

Object 1602h: Receive PDO Mapping Parameter 3 109

Object 1603h: Receive PDO Mapping Parameter 4 110

Object 1604h: Receive PDO Mapping Parameter 5 111

Object 1800h: Transmit PDO Communication Parameter 1 112

Object 1801h: Transmit PDO Communication Parameter 2 113

Object 1802h: Transmit PDO Communication Parameter 3 114

Object 1803h: Transmit PDO Communication Parameter 4 115

Object 1804h: Transmit PDO Communication Parameter 5 116

Object 1A00h: Transmit PDO Mapping Parameter 1 117

Object 1A01h: Transmit PDO Mapping Parameter 2 118

Object 1A02h: Transmit PDO Mapping Parameter 3 119

Object 1A03h: Transmit PDO Mapping Parameter 4 120

Object 1A04h: Transmit PDO Mapping Parameter 5 121

Manufacturer-Specific Profile 122

Object 2000h: Node Id 124

Object 2001h: Bit Rate Index 125

Object 2100h: Port Configuration 126

Object 2101h: Bit IO 127

Object 2200h: User EEPROM 128

Object 2201h: User Variable 129

Object 2202h: Set Position Origin 130

Object 2203h: Shift Position Origin 131

Object 2204h: Mappable 32-bit Variables 132

Object 2205h Negative Software Position Limit 133

Object 2206h Positive Software Position Limit 134

Object 2207h Encoder Modulo Limit 135

Object 2208h Encoder Follow Data 136

Object 2209h Encoder Follow Control 137

Start/Stop Capability 137

Object 220Ah MFMUL 139

Object 220Bh MFDIV 140

Object 220Ch MFA 141

Object 220Dh MFD 142

Object 2220h: 8-Bit Mappable Variables 143

Object 2221h: 16-Bit Mappable Variables 144

Object 2300h: Bus Voltage 145

Object 2301h: RMS Current 146

Object 2302h: Internal Temperature 147

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 7 of 234

Object 2303h: Internal Clock 148

Object 2304h: Motor Status 149

Object 2305h: Motor Control 158

Object 2306h: Motor Subroutine Index 159

Object 2307h: Sample Period 160

Object 2308h: Microsecond Clock 161

Object 2309h: GOSUB R2 162

Object 2400h: Interpolation Mode Status 163

Object 2401h: Buffer Control 164

Object 2402h: Buffer Setpoint 165

Object 2403h: Interpolation User Bits 166

Object 2404h: Interpolation Sample Clock 167

Object 2500h: Encapsulated SmartMotor Command 168

Drive and Motion Control Profile 169

Object 6040h: Control Word 171

Object 6041h: Status Word 173

Object 605Ah: Quick Stop Option Code 174

Object 605Ch: Disable Operation Option Code 175

Object 605Dh: Halt Option Code 176

Object 605Eh: Fault Reaction Option Code 177

Object 6060h: Modes of Operation 178

Object 6061h: Modes of Operation Display 180

Object 6062h: Position Demand Value 181

Object 6063h: Position Actual Internal Value 182

Object 6064h: Position Actual Value 183

Object 6065h: Following Error Window 184

Object 606Bh: Velocity Demand Value 185

Object 606Ch: Velocity Actual Value 186

Object 6071h: Target Torque 187

Object 6074h: Torque Demand Value 188

Object 6077h: Torque Actual 189

Object 6079h: DC Link Circuit Voltage 190

Object 607Ah: Target Position 191

Object 607Ch: Home Offset 192

Object 6080h: Max Motor Speed 194

Object 6081h: Profile Velocity in PP Mode 195

Object 6083h: Profile Acceleration 196

Object 6084h: Profile Deceleration 197

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 8 of 234

Object 6085h: Quick Stop Deceleration 198

Object 6087h: Torque Slope 199

Object 608Fh: Position Encoder Resolution 200

Object 6098h: Homing Method 201

Object 6099h: Homing Speeds 203

Object 609Ah: Homing Acceleration 204

Object 60B8h: Touch Probe Function 205

Object 60B9h: Touch Probe Status 208

Object 60BAh: Touch Probe Position 1 Positive Value 210

Object 60BBh: Touch Probe Position 1 Negative Value 211

Object 60BCh: Touch Probe Position 2 Positive Value 212

Object 60BDh: Touch Probe Position 2 Negative Value 213

Object 60C0h: Interpolation Sub-Mode Select 214

Object 60C1h: Interpolation Data Record 215

Object 60C2h: Interpolation Time Period 216

Object 60C4h: Interpolation Data Configuration 218

Object 60D0h: Touch Probe Source 219

Object 60F4h: Following Error Actual Value 220

Object 60FBh: Position Control Parameter Set 221

Object 60FCh: Position Demand Internal Value 223

Object 60FDh: Digital Inputs 224

Object 60FEh: Digital Outputs 227

Object 60FFh: Target Velocity 229

Object 6402h: Motor Type 230

Object 6502h: Supported Drive Modes 231

Object 67FFh: Single Device Type 232

Reference Documents 233

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 9 of 234

Introduction

Introduction
This chapter provides information on the purpose and scope of this manual. It also provides information
on safety notation, related documents and additional resources.

Purpose 11

Combitronic Technology 11

I/O Device CAN Bus Controller 11

Time Sync for Electronic Gearing and Camming 12

Abbreviations 14

Safety Information 15

Safety Symbols 15

Other Safety Considerations 15

Motor Sizing 15

Environmental Considerations 15

Machine Safety 16

Documentation and Training 16

Additional Equipment and Considerations 17

Safety Information Resources 17

Additional Documents 18

Related Guides 18

Other Documents 18

Additional Resources 19

CANopen Resources 19

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 10 of 234

Purpose

Purpose
This manual explains the Moog Animatics SmartMotor™ support for the CANopen® protocol. It describes
the major concepts that must be understood to integrate a SmartMotor follower with a PLC or other
CANopencontroller1. However, it does not cover all the low-level details of the CANopen protocol.

NOTE: The feature set described in this version of the manual refers to motor firmware 5.0.4.30,
5.98.4.30(Class 5 D/M, respectively) / 6.4.2.54 (Class 6 D) or later.

This manual is intended for programmers or system developers who have read and understand the CiA
402 CANopen specification. Therefore, this manual is not a tutorial on that specification or the
CANopen protocol. Instead, it should be used to understand the specific implementation details for the
Moog Animatics SmartMotor. Additionally, examples are provided for the various modes of motion and
accessing those modes through CANopen to operate the SmartMotor.

The Object Reference chapter of this manual includes details about the specific objects available in the
SmartMotor through CANopen. The objects include those required by CANopen, the CiA 402 motion
profile, and manufacturer-specific objects added by Moog Animatics. For details, see Object Reference
on page 83.

Combitronic Technology
The most unique feature of the SmartMotor is its ability to communicate with other SmartMotors and
share resources using Moog Animatics’ Combitronic™ technology. Combitronic is a protocol that
operates over a standard CAN interface. It may coexist with either CANopen or DeviceNet protocols. It
requires no single dedicated controller to operate. Each SmartMotor connected to the same network
communicates on an equal footing, sharing all information, and therefore, sharing all processing
resources.

For additional details, see the SmartMotor™ Developer's Guide.

I/O Device CAN Bus Controller
For motor firmware 5.0.4.30, 5.98.4.30(Class 5 D/M, respectively) / 6.4.2.54 (Class 6 D) or later, the
SmartMotor can interface with standard CiA 301 CANopen devices, such as CANopen valve blocks,
CANopen I/O blocks, CANopen encoders, and many other devices. This means through CAN and
Combitronic communications, you now have full machine control with just a SmartMotor as the CAN bus
controller—no other external bus controller is required. Objects and commands have been
added/modified to provide this functionality.

NOTE: This capability is currently available on Class 5 (D/M) and Class 6 (D) SmartMotors only.

Basic control allows 8, 16, or 32-bit sized data objects with support for both PDO and SDO protocols.
The supported profiles include but are not limited to I/O profile, encoder profile, and DS4xx profile.
This provides the ability to:

l Dynamically map SmartMotor PDOs, map another device's PDOs, start the NMT state

l A SmartMotor can send/receive up to 5 PDOs each for Rx (receive) and Tx (transmit)

l Read/write SDOs in expedited mode only, which works for up to 32-bit data

1Moog Animatics has replaced the terms "master" and "slave" with "controller" and "follower",
respectively.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 11 of 234

Time Sync for Electronic Gearing and Camming

Multiple SmartMotors and multiple I/O devices may be on the same CAN bus. This combined with
Combitronic motor-to-motor communications allows for complex, multi-axis, multi-I/O-device network
control. Refer to the next figure.

CANopen

ABS Encoder
SmartMotor

CANopen

Valve Block

CANopen

Remote I/O

Be sure to comply with the guidelines for CAN bus cabling and termination.

SmartMotor SmartMotor SmartMotor

Without data collision!
TM

Motor to MotorMotor to I/O®

120 ohm
terminator

120 ohm
terminator

SmartMotor as a CAN Bus Controller

Related objects are: 2220h, 2221h and 2204h. For details, see Object Reference on page 83.

Related commands are: NMT, SDORD, SDOWR, CANCTL, and B/RB. For details, see the descriptions in
this guide and in the SmartMotor Developer's Guide.

Example user programs are shown in the SmartMotor Developer's Guide, Part 3: Examples.

Time Sync for Electronic Gearing and Camming
Beginning with motor firmware 5.0.4.30, 5.98.4.30(Class 5 D/M, respectively) / 6.4.2.54 (Class 6 D) or
later, the SmartMotor provides precise time synchronization between motors for electronic gearing and
camming applications (for example, traverse and take-up spooling).

NOTE: This capability is currently available on Class 5 (D/M) and Class 6 (D) SmartMotors only.

The CANopen objects related to this are:
l 1005h: Specifies the COB-ID used for the Synchronization object (transmit or receive).

l 1006h: Defines the communication cycle period in microseconds for transmission of the sync
message.

l 2207h: Defines the encoder modulo limit in units of encoder counts.

l 2208h: Accepts data from a network (CANopen) based encoder. Three different data sizes are
provided to handle PDO mapping to data sources of 8, 16, and 32 bits.

l 2209h: Controls the behavior for the mode of following a network encoder and/or use of objects
220Ch and 220Dh.

l 220Ah: Specifies the multiplier for external encoder mode follow with ratio MFMUL/MFDIV.

l 220Bh: Specifies the divisor for external encoder mode follow with ratio MFMUL/MFDIV.

l 220Ch: Sets the ascend ramp to the specified sync ratio from a ratio of zero.

l 220Dh: Sets the descend ramp from the specified sync ratio to a ratio of zero.

For details on these objects, refer to the corresponding object descriptions in the Object Reference
chapter of this guide.

For a detailed description of motor following, electronic gearing and camming operations, refer to the
SmartMotor Developer's Guide.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 12 of 234

Time Sync for Electronic Gearing and Camming

For an example PDO mapping and application start up sequence, see Time Sync Motors Mapping
Procedure on page 68. This is based on an external PLC/controller.

An example user program is shown in the SmartMotor Developer's Guide, Part 3: Examples. This is
based on a SmartMotor acting as the CANopen controller.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 13 of 234

Abbreviations

Abbreviations
This table provides a list of abbreviations used in this manual and their descriptions.

Abbreviation Description
ACK Acknowledgment
ADU Acceleration/Deceleration Units
CiA CAN in Automation
COB Communication Object
COB-ID Communication Object Identification
CSP Cyclic Synchronous Position (mode)
CST Cyclic Synchronous Torque (mode)
CSV Cyclic Synchronous Velocity (mode)
DC Direct Current
FSA Finite State Automaton
HM Homing (mode)
IN Input
INIT Initialization (state)
NMT Network Management (state)
OP Operational (state)
OUT Output
PDO Process Data Object
PDS Power Drive System
PDS FSA Power Drive System Finite State Automaton
PP Profile Position (mode)
PREOP Pre-Operational (state)

PU Position Units
PV Profile Velocity (mode)
RxPDO Receive PDO
SDO Service Data Object
SMI SmartMotor Interface (software)
TQ Torque (mode)
TxPDO Transmit PDO
VU Velocity Units

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 14 of 234

Safety Information

Safety Information
This section describes the safety symbols and other safety information.

Safety Symbols
The manual may use one or more of these safety symbols:

WARNING: This symbol indicates a potentially nonlethal mechanical hazard, where
failure to comply with the instructions could result in serious injury to the operator
or major damage to the equipment.

CAUTION: This symbol indicates a potentially minor hazard, where failure to
comply with the instructions could result in slight injury to the operator or minor
damage to the equipment.

NOTE: Notes are used to emphasize non-safety concepts or related information.

Other Safety Considerations
The Moog Animatics SmartMotors are supplied as components that are intended for use in an
automated machine or system. As such, it is beyond the scope of this manual to attempt to cover all
the safety standards and considerations that are part of the overall machine/system design and
manufacturing safety. Therefore, this information is intended to be used only as a general guideline for
the machine/system designer.

It is the responsibility of the machine/system designer to perform a thorough "Risk Assessment" and to
ensure that the machine/system and its safeguards comply with the safety standards specified by the
governing authority (for example, ISO, OSHA, UL, etc.) for the site where the machine is being installed
and operated. For more details, see Machine Safety on page 16.

Motor Sizing

It is the responsibility of the machine/system designer to select SmartMotors that are properly sized
for the specific application. Undersized motors may: perform poorly, cause excessive downtime or
cause unsafe operating conditions by not being able to handle the loads placed on them. The System
Best Practices document, which is available on the Moog Animatics website, contains information and
equations that can be used for selecting the appropriate motor for the application.

Replacement motors must have the same specifications and firmware version used in the approved and
validated system. Specification changes or firmware upgrades require the approval of the system
designer and may require another Risk Assessment.

Environmental Considerations

It is the responsibility of the machine/system designer to evaluate the intended operating environment
for dust, high-humidity or presence of water (for example, a food-processing environment that requires
water or steam wash down of equipment), corrosives or chemicals that may come in contact with the
machine, etc. Moog Animatics manufactures specialized IP-rated motors for operating in extreme
conditions. For details, see the Moog Animatics Product Catalog, which is available on the Moog
Animatics website.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 15 of 234

Machine Safety

Machine Safety

In order to protect personnel from any safety hazards in the machine or system, the machine/system
builder must perform a "Risk Assessment", which is often based on the ISO 13849 standard. The
design/implementation of barriers, emergency stop (E-stop) mechanisms and other safeguards will be
driven by the Risk Assessment and the safety standards specified by the governing authority (for
example, ISO, OSHA, UL, etc.) for the site where the machine is being installed and operated. The
methodology and details of such an assessment are beyond the scope of this manual. However, there
are various sources of Risk Assessment information available in print and on the internet.

NOTE: The next list is an example of items that would be evaluated when performing the Risk
Assessment. Additional items may be required. The safeguards must ensure the safety of all
personnel who may come in contact with or be in the vicinity of the machine.

In general, the machine/system safeguards must:
l Provide a barrier to prevent unauthorized entry or access to the machine or system. The barrier

must be designed so that personnel cannot reach into any identified danger zones.
l Position the control panel so that it is outside the barrier area but located for an unrestricted

view of the moving mechanism. The control panel must include an E-stop mechanism. Buttons
that start the machine must be protected from accidental activation.

l Provide E-stop mechanisms located at the control panel and at other points around the
perimeter of the barrier that will stop all machine movement when tripped.

l Provide appropriate sensors and interlocks on gates or other points of entry into the protected
zone that will stop all machine movement when tripped.

l Ensure that if a portable control/programming device is supplied (for example, a hand-held
operator/programmer pendant), the device is equipped with an E-stop mechanism.

NOTE: A portable operation/programming device requires many additional system design
considerations and safeguards beyond those listed in this section. For details, see the safety
standards specified by the governing authority (for example, ISO, OSHA, UL, etc.) for the site
where the machine is being installed and operated.

l Prevent contact with moving mechanisms (for example, arms, gears, belts, pulleys, tooling, etc.).

l Prevent contact with a part that is thrown from the machine tooling or other part-handling
equipment.

l Prevent contact with any electrical, hydraulic, pneumatic, thermal, chemical or other hazards that
may be present at the machine.

l Prevent unauthorized access to wiring and power-supply cabinets, electrical boxes, etc.

l Provide a proper control system, program logic and error checking to ensure the safety of all
personnel and equipment (for example, to prevent a run-away condition). The control system
must be designed so that it does not automatically restart the machine/system after a power
failure.

l Prevent unauthorized access or changes to the control system or software.

Documentation and Training

It is the responsibility of the machine/system designer to provide documentation on safety, operation,
maintenance and programming, along with training for all machine operators, maintenance technicians,
programmers, and other personnel who may have access to the machine. This documentation must
include proper lockout/tagout procedures for maintenance and programming operations.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 16 of 234

Additional Equipment and Considerations

It is the responsibility of the operating company to ensure that:
l All operators, maintenance technicians, programmers and other personnel are tested and

qualified before acquiring access to the machine or system.
l The above personnel perform their assigned functions in a responsible and safe manner to

comply with the procedures in the supplied documentation and the company safety practices.
l The equipment is maintained as described in the documentation and training supplied by the

machine/system designer.

Additional Equipment and Considerations

The Risk Assessment and the operating company's standard safety policies will dictate the need for
additional equipment. In general, it is the responsibility of the operating company to ensure that:

l Unauthorized access to the machine is prevented at all times.

l The personnel are supplied with the proper equipment for the environment and their job
functions, which may include: safety glasses, hearing protection, safety footwear, smocks or
aprons, gloves, hard hats and other protective gear.

l The work area is equipped with proper safety equipment such as first aid equipment, fire
suppression equipment, emergency eye wash and full-body wash stations, etc.

l There are no modifications made to the machine or system without proper engineering
evaluation for design, safety, reliability, etc., and a Risk Assessment.

Safety Information Resources
Additional SmartMotor safety information can be found on the Moog Animatics website; open the topic
"Controls - Notes and Cautions" located at:

https://www.animatics.com/support/downloads/knowledgebase/controls---notes-and-cautions.html

OSHA standards information can be found at:

https://www.osha.gov/law-regs.html

ANSI-RIA robotic safety information can be found at:

http://www.robotics.org/robotic-content.cfm/Robotics/Safety-Compliance/id/23

UL standards information can be found at:

http://ulstandards.ul.com/standards-catalog/

ISO standards information can be found at:

http://www.iso.org/iso/home/standards.htm

EU standards information can be found at:

http://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/index_en.htm

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 17 of 234

https://www.animatics.com/support/downloads/knowledgebase/controls---notes-and-cautions.html
https://www.osha.gov/law-regs.html
http://www.robotics.org/robotic-content.cfm/Robotics/Safety-Compliance/id/23
http://ulstandards.ul.com/standards-catalog/
http://www.iso.org/iso/home/standards.htm
http://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/index_en.htm

Additional Documents

Additional Documents
The Moog Animatics website contains additional documents that are related to the information in this
manual. Please refer to these lists.

Related Guides
l Class 5 SmartMotor™ Installation and Startup Guide

http://www.animatics.com/cl-5-install-startup-guide

l Class 6 D-Style SmartMotor™ Installation and Startup Guide

http://www.animatics.com/cl-6-d-style-install-startup-guide

l SmartMotor™ Developer's Guide

http://www.animatics.com/smartmotor-developers-guide

l SmartMotor™ Homing Procedures and Methods Application Note

http://www.animatics.com/homing-application-note

l SmartMotor™ System Best Practices Application Note

http://www.animatics.com/system-best-practices-application-note

In addition to the documents listed above, guides for fieldbus protocols and more can be found on the
website: https://www.animatics.com/support/downloads.manuals.html

Other Documents
l SmartMotor™ Certifications

https://www.animatics.com/certifications.html

l SmartMotor Developer's Worksheet
(interactive tools to assist developer: Scale Factor Calculator, Status Words, CAN Port Status,
Serial Port Status, RMODE Decoder and Syntax Error Codes)

https://www.animatics.com/support/downloads.knowledgebase.html

l Moog Animatics Product Catalog, which is available on the Moog Animatics website

http://www.animatics.com/support/moog-animatics-catalog.html

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 18 of 234

http://www.animatics.com/cl-5-install-startup-guide
http://www.animatics.com/cl-6-d-style-install-startup-guide
http://www.animatics.com/smartmotor-developers-guide
http://www.animatics.com/homing-application-note
http://www.animatics.com/system-best-practices-application-note
https://www.animatics.com/support/downloads.manuals.html
https://www.animatics.com/certifications.html
https://www.animatics.com/support/downloads.knowledgebase.html
http://www.animatics.com/support/moog-animatics-catalog.html

Additional Resources

Additional Resources
The Moog Animatics website contains useful resources such as product information, documentation,
product support and more. Please refer to these addresses:

l General company information:

http://www.animatics.com

l Product information:

http://www.animatics.com/products.html

l Product support (Downloads, How-to Videos, Forums and more):

http://www.animatics.com/support.html

l Contact information, distributor locator tool, inquiries:

https://www.animatics.com/contact-us.html

l Applications (Application Notes and Case Studies):

http://www.animatics.com/applications.html

CANopen Resources
CANopen is a common standard maintained by CAN in Automation (CiA):

l CAN in Automation website:

http://www.can-cia.org/

l CAN in Automation website — CANopen description:

http://www.can-cia.org/index.php?id=canopen

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 19 of 234

http://www.animatics.com/
http://www.animatics.com/products.html
http://www.animatics.com/support.html
https://www.animatics.com/contact-us.html
http://www.animatics.com/applications.html
http://www.can-cia.org/
http://www.can-cia.org/index.php?id=canopen

CANopen Overview

CANopen Overview
This chapter provides an overview of the CANopen communications protocol implementation on the
Moog Animatics SmartMotor.

CANopen Description 21

CAN (CAN Bus) 21

CANopen 21

PDO and SDO Communication 22

SDO 22

PDO 23

COB-ID Allocation 24

NMT States 26

NMT Control 27

NMT Summary 27

NMT State Machine Diagram 28

PDO Communications 28

Peer-to-Peer Communications 28

Synchronous Communications 29

Other Communications with the Motor 29

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 20 of 234

CANopen Description

CANopen Description
CANopen is a standard that allows industrial devices to communicate over the CAN bus (the CAN bus
alone does not provide enough functionality for most industrial applications).

The terms CANopen, CAN and CAN bus are often used interchangeably in technical conversations, but
they are not the same. Therefore, it is important to understand their differences, which are described in
the next two sections.

CAN (CAN Bus)
CAN or CAN bus is a low-level communication system. It defines a set of electrical standards (voltages,
differential signaling method, impedance, etc.) as well as some very basic data formatting. The data
formatting permits up to eight bytes of data in a packet. This packet is transmitted with an 11-bit
identifier. There is no "to" or "from" field to indicate a specific destination for a packet. A device can
also transmit several different sets of data, each with a unique identifier. The identifier essentially
gives that data a unique meaning. However, that meaning can depend entirely on the intent of the
system designer.

Each device on the network can decide what data it wants to monitor. Typical CAN bus hardware
provides mechanisms to the software for filtering out specific identifiers. CAN also provides features
that detect errors to ensure data integrity.

When two devices attempt to transmit at the same time (which causes collisions), the device sending
data with a lower identifier will continue, while the other device will stop transmitting and retry as soon
as possible. This simple arbitration is reliable and efficient without introducing unpredictable delays,
which makes it suitable for industrial networks.

CAUTION: Two devices should never transmit with the same identifier. If that
occurs, then the situation cannot be resolved and will cause a network error.

CANopen
CANopen builds onto the basic CAN bus functionality. It also defines events driven by timers and
synchronization signals.

An address is assigned to each device on the network. This address allows a client-server relationship
to be established from a controller to each device (SDO, NMT, etc.). This relationship allows device
configuration at startup so that process-specific data can be exchanged later through PDO
communications.

All data in a device is organized into a common list of available objects. This is called the "object
library" or "object dictionary". It allows the controller to obtain some basic information directly from
the device such as range limits and descriptions.

Electronic Data Sheet (EDS) files provide details to PLCs and system integrators that describe this
organization:

l A structure is put into place to define basic data types.
l Profiles are defined for specific applications. For the SmartMotor, this means that features

common to motor control are defined, and specific data objects are assigned to specific object
numbers.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 21 of 234

PDO and SDO Communication

PDO and SDO Communication
In CANopen, there are two different modes used for passing data: PDO and SDO. In both forms of
communication, data is accessed through the same object dictionary and object-numbering scheme. The
same list of objects (position target, velocity actual, status word, control word, etc.) applies to both
PDO and SDO communications. However, there are some objects that are deliberately restricted and
only accessed through SDO communication. For specific object details, see Object Reference on page
83.

F
i
e
l
d
b
u
s

SmartMotor Motion
and Motor Control

SmartMotor User
Program

SmartMotor I/O

OBJECT DICTIONARY

SMARTMOTOR

Communications
Objects

Baud Rate

Etc.

CiA402 Motion
Objects

Velocity

Position

Etc.

SmartMotor-
Specific Objects

I/O

Command Interface

Etc.

SDO

PDO

PDO and SDO Communications

SDO
A Service Data Object (SDO) communication is intended for initial setup and occasional access to
objects that are seldom needed. Also, some CANopen controllers may use SDO communications if they
don't intend to configure any PDO communications.

l The SmartMotor provides access to SDO communications in the Pre-Operational and Operational
NMT states.

l Many PLCs only use access through SDO during a setup phase of operation, and they do so
through pre-scripted setup actions.

SDO communications have more overhead per communication because:
l The full object and subindex value are encoded in each SDO communication. This allows easy

access to any object, but it limits the amount of payload space available for data in each packet.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 22 of 234

PDO

l SDO communications also expect a response from the follower back to the controller. Both read
and write operations confirm by either sending the requested data (read) or confirming that a
command was received (write).

SDO communications have the ability to send lengthy amounts of data. For example, string data types
are best sent through SDO. In these cases, the data is split up and sent using several CAN bus packets.
The recipient of the data will reassemble the CAN bus packets and process the object normally.

PDO
A Process Data Object (PDO) communication allows for minimal overhead when transmitting
frequently-used data. Typically, this is used for information that is critical to an ongoing process, which
could include the speed, position, control word, etc.

The PDO communication does not specifically encode the object and sub-object information in each
packet. This information is agreed on between the controller and the follower before entering the
Operational state. For further information, see PDO Mapping on page 63.

This is a list of considerations for using and configuring PDO communication:
l Not all objects are suitable for access through PDO communication. Therefore, many objects are

disabled from PDO access.
l Some objects may be overwhelmed if they are only intended to be called intentionally. For

example, object 2500h should only be written to occasionally and the response must be
examined by the host.

l Data types that are too large to fit in a PDO communication will not work.

l PDO communications do not give a response when received. This makes each transaction more
efficient but also does not provide feedback (for example, if a value is out of range).

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 23 of 234

COB-ID Allocation

l To facilitate user programs in the SmartMotor, the arrival of PDOs are indicated by a status bit
in Status Word 10, see Object 2304h: Motor Status on page 149. This feature allows user
programs to handle the arrival of data as an event. The user program should clear these status
bits with a Z(10,bit) command, where bit is values 1–5, after the event handler part of the user
program is executed, for example:

WHILE 1
IF B(10,1)==1

Z(10,1) ' Clear event flag
PRINT("Rx PDO 1",#13)

ENDIF
IF B(10,2)==1

Z(10,2) ' Clear event flag
PRINT("Rx PDO 2",#13)

ENDIF
IF B(10,3)==1

Z(10,3) ' Clear event flag
PRINT("Rx PDO 3",#13)

ENDIF
IF B(10,4)==1

Z(10,4) ' Clear event flag
PRINT("Rx PDO 4",#13)

ENDIF
IF B(10,5)==1

Z(10,5) ' Clear event flag
PRINT("Rx PDO 5",#13)

ENDIF
LOOP
END

NOTE: Status Word 10, bit 0 cannot be cleared—it is an indication of the controller status,
see Network Control Commands on page 75. Also, the ZS command will have no effect on
these bits.

For more details on the B, Z and ZS commands, see the SmartMotor Developer's Guide.

COB-ID Allocation
A Communication Object Identifier (COB-ID) is the unique identifier assigned to a CAN packet. CAN
packets do not have a specific destination or source identifier. The sender of a packet, whether a
controller or follower, will attach an identifier depending on the purpose of the packet. In many cases,
the COB-ID is a combination of the node ID and a function code. In other cases, the COB-ID is assigned
to a special purpose and does not specifically include a node ID. Many COB-IDs are permanently
assigned or reserved.

For example, the SDO communication channel between the controller and a particular motor has a COB-
ID for controller-to-follower packets, and another COB-ID for follower-to-controller packets.

l Controller-to-motor SDO COB-ID: 1536 (decimal) + node ID

l Motor-to-controller SDO COB-ID: 1408 (decimal) + node ID

While it is possible to reassign many COB-IDs, it is not recommended. The "default connection set" is a
common way to assign these COB-IDs to a particular function and is adequate (and recommended) for
most purposes. Typically, the term "default connection set" is used to describe a scheme where receive
and transmit PDO numbers 1 through 4 are allocated sequentially for the 127 nodes.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 24 of 234

COB-ID Allocation

NOTE: While recommended, it is not a requirement to follow the default connection set.

The sync packet is an example where the node ID is not relevant to the COB-ID. In other words, it is a
COB-ID that is not constructed from the node ID of the follower (in contrast with the
SDO communications, described above, where the node ID is included as part of the COB-ID). The sync
packet provides a network pulse that is used by the controller and all nodes to coordinate activity. The
sync producer simply sends the COB-ID of the sync packet, and its own node ID is not part of the sync's
COB-ID.

The only recommended exception to using the default connection set is in the assignment of COB-IDs
to PDOs. Note that when configuring PDO communications, there are some choices to make in the
assignment of COB-IDs to specific PDOs. There are enough available COB-IDs to assign at least eight to
each of 127 nodes. These are some typical reasons why a network may require a change to the default
assignment of COB-IDs to PDOs:

1. If a device needs PDOs other than PDO numbers 1 through 4, then the higher-numbered PDOs
must be assigned COB-IDs. For instance, the SmartMotor has a PDO number of 5. However, the
default connection set does not provide enough COB-IDs for PDO numbers above 4.

2. By carefully assigning COB-IDs to PDOs, it is possible to have the transmit PDO of one motor be
received by other motors. This is accomplished by assigning the same COB-ID to one
transmitting motor and one or more receiving motors. This does not follow the default
connection set because a COB-ID that would typically be a transmit PDO fills the receiving role
in other motors.

3. Lower-numbered COB-IDs have a higher priority in the event of network congestion. It may be
important for an application to assign COB-IDs to a particular PDO on a particular node that are
lower than those provided by the default connection set.

The next table shows the assigned COB-ID ranges.

COB-ID
Decimal Hex Description

0 0 NMT control
1 1 Reserved

128 80 Sync event
129–255 81–FF Emergency

256 100 Timestamp
257–384 101–180 Reserved
385–1407 181–57F Available for assignment to PDO
1409–1535 581–5FF SDO Transmit (follower to controller)
1537–1663 601–67F SDO Receive (controller to follower)

1760 6E0 Reserved
1793–1919 701–77F NMT error control
2020–2047 780–7FF Reserved

2047 7FF (Largest possible COB-ID) Reserved

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 25 of 234

NMT States

The next table shows the default connection set for PDO communications based on the CANopen
standards.

NOTE: These are recommendations, but they do not need to be strictly observed.

COB-ID
Decimal Hex Description
385–511 181–1FF Transmit PDO 1 of nodes 1–127
513–639 201–27F Receive PDO 1 of nodes 1–127
641–767 281–2FF Transmit PDO 2 of nodes 1–127
769–895 301–37F Receive PDO 2 of nodes 1–127
897–1023 381–3FF Transmit PDO 3 of nodes 1–127
1025–1151 401–47F Receive PDO 3 of nodes 1–127
1153–1279 481–4FF Transmit PDO 4 of nodes 1–127
1281–1407 501–57F Receive PDO 4 of nodes 1–127

NMT States
The network management state (NMT) is used to control the general communication functions in the
CANopen devices on the network.

The primary states that are used are Pre-Operational and Operational; there are also the Initialization
and Stopped states:

l Pre-Operational state allows SDO reads/writes to the motor but prevents PDO communications

l Operational state allows all SDO and PDO communications

l Initialization state starts up the SmartMotor and sets the internal parameters

l Stopped state blocks all commands except the NMT command

The Initialization state is typically not of concern because the motor will automatically transition to the
Pre-Operational state. During this transition, the motor will send a startup message. This startup
message uses the same COB-ID as a heartbeat message, but it is a one-time event with a data value of
0.

It is also possible to restart the network stack of the motor or to reboot the motor entirely through the
NMT control. These are considered initialization states that will return to the Pre-Operational state
automatically.

The Stopped state can be used to block commands except the NMT command itself. This means that
SDO and PDO access to objects ceases to function. The SYNC, TIME, and EMCY services are also
stopped for devices that support these services.

If the heartbeat function of the motor is activated, then the motor will report the current NMT state
with each heartbeat message.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 26 of 234

NMT Control

NMT Control
NOTE: See associated command when motor is sending NMT commands: NMT(address, command
code) on page 77.

The current NMT state is set when the NMT controller sends a special packet with a COB-ID of 0. This
packet contains two individual bytes of data: the first byte indicates the commanded state that the
addressed devices will switch to; the second byte addresses the nodes, either globally or individually.

Byte 1 Value
(command code, argu-
ment 2 of NMT com-

mand)

Byte 1 Command

80h (128 dec) Go to Pre-Operational state
01h (1 dec) Go to Operational state
02h (2 dec) Go to Stopped state

82h (130 dec) Reset communications (clear objects in the 1xxxh range)
81h (129 dec) Reset application (resets the SmartMotor)

Byte 2 Value(address,
argument 1 of NMT

command)
Byte 2 Addressed Devices

0h (0 dec) All devices on network
01–7Fh

(1-127 dec)
Change the state of only the specified SmartMotor

NMT Summary
The next table provides a summary of the NMT states. Also, see the NMT State Machine diagram in the
next section. The SmartMotor =CAN and RCAN commands can be used to assign/report the value of the
NMT state, control word (object 6040h) and status word (object 6041h). For details, see =CAN, RCAN
on page 72.

NMT State
NMT
Cmnd.
code

Reported
Value (heart-

beat)

SDO
funct'l

PDO
funct'l

Auto-
transition to: Effect

Initialization
(power up)

N/A N/A No No Pre-Operational Sends startup
message

Initialization
(Reset
communication)

130 N/A No No Pre-Operational Clears objects in
the 1xxxh range

Sends startup
message

Initialization
(Reset
Application)

129 N/A No No Pre-Operational Reboots the
SmartMotor

Sends startup
message

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 27 of 234

NMT State Machine Diagram

NMT State
NMT
Cmnd.
code

Reported
Value (heart-

beat)

SDO
funct'l

PDO
funct'l

Auto-
transition to: Effect

Pre-Operational 128 127 Yes No -
Operational 1 5 Yes Yes -
Stopped 2 4 No No -

NMT State Machine Diagram
The next diagram shows the relationship and interaction between the possible NMT states.

Initialization State

Pre-Operational
State

Operational State

Stopped State

Startup ID
(Boot-up Message)

NMT State Machine

For more details on CANopen network management, see the CAN in Automation (CiA) website at:

http://www.can-cia.org/index.php?id=155

PDO Communications
There are two methods of PDO communications: peer-to-peer (versus controller-to-follower), and
synchronous (versus asynchronous). These communication methods are described in the next sections.
Note that these communications methods are not mutually exclusive. For example, peer-to-peer means
that motor 1 can send a PDO and motor 2 can receive that same PDO. This can be done through either
of these methods:

l Synchronous: Motor 1 transmits when a sync packet is seen

l Asynchronous: Motor 1 transmits based on its own internal timer

Peer-to-Peer Communications
An advantage to the peer-to-peer method of PDO communication is that any node can be a recipient of
any PDO. This allows for data to flow peer-to-peer rather than always going to the controller. It also
allows for broadcasting to multiple nodes (for example, there may be an I/O input device on the
CANopen network that all devices wish to monitor for a button press).

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 28 of 234

http://www.can-cia.org/index.php?id=155

Synchronous Communications

The CANopen controller must configure this peer-to-peer relationship. However, once it is configured
and the network is in the Operational state, the process will continue without constant intervention
from the controller.

To establish a peer-to-peer relationship, one node will transmit a data object using a particular COB-ID.
Any device that wishes to receive this information should allocate this COB-ID to a receive PDO and
map that PDO to the desired object to accept the data. For details about how PDOs are mapped, see
PDO Mapping on page 63 and COB-ID Allocation on page 24.

Synchronous Communications
PDOs may be configured to transmit from a node's own internal timer, or they may be transmitted
based on the sync event on the network. The sync event is simply a special CAN frame produced by the
node or controller that is assigned as the sync producer. PDO Mapping on page 63 describes the details
for configuring these two modes of PDO transmission.

When the sync method is chosen, it is possible to transmit on every sync message, or to sub-divide the
transmission rate by up to 240. In other words, transmission can be set to occur on every sync, every
other sync, every third sync, and so on... up to every 240th sync.

Other Communications with the Motor
In addition to communicating with the SmartMotor as a CANopen device, you can also communicate
with it directly from a PC or laptop. This is useful if you need a "back door" into the motor, for example,
to modify the stored user program or download a new one, or for troubleshooting purposes.

For information on connecting the SmartMotor directly to a PC, see the Getting Started chapter in the
corresponding SmartMotor Installation and Startup Guide.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 29 of 234

Supported Features

Supported Features
This chapter provides information on the supported and unsupported features of the CANopen
specification.

Supported 31

Motion Modes 31

NMT State Machine Controller 31

PDO Transmit on Event 31

PDO Transmit on Timer Only 32

PDO Transmit on Sync 32

Dynamic PDO Mapping 32

Heartbeat Producer 32

Sync Producer 32

Not Supported 33

Emergency Messages 33

Saving Parameters 33

Heartbeat Consumer 33

MPDO Communications 33

CAN Bus Bit Rate 33

PDO Transmit on RTR (Remote frames) 33

Node Guarding 33

TIME Service 33

Sync Start 33

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 30 of 234

Supported

Supported
This section describes the CANopen features that are supported by the SmartMotor.

Motion Modes
These motion modes are supported:

l Profile Position (PP, mode of operation: 1) — behaves like the SmartMotor MP mode; supports
"single setpoint" and "set of setpoints" modes

l Profile Velocity (PV, mode of operation: 3) — behaves like the SmartMotor MV mode

l Interpolation (IP, mode of operation: 7) — behaves like the SmartMotor MD mode

l Torque (TQ, mode of operation: 4) — behaves like the SmartMotor MT mode

l Homing (HM mode, mode of operation: 6) — only methods 1, 2, 17, 18, 33, 34 and 35 are
supported—all others are not supported; homing offset, homing speeds and homing acceleration
are supported

l Follow with Ratio (electronic gearing) & Cam (electronic camming): Allows one or more
SmartMotors to receive data from an encoder on the CANopen bus, and then rotate at a specific
ratio relative to the input encoder. Includes objects to support gearing over CANopen, such as
MFMUL, MFDIV, MFA and MFD, and to select follow or cam modes of operation. Related objects
are: 2207h, 2208h, 2209h, and 220Ah-220Dh.

The Supported Drive Modes object (6502h) is used to report the modes of operation that are available.
The Modes of Operation object (6060h) is used to request the desired mode of operation before
setting the Control Word object (6040h).

NMT State Machine Controller
Required for controlling I/O expansion across CANopen. This expanded I/O capability allows the
SmartMotor to interface with standard CiA 301 CANopen devices and function as the I/O device CAN
bus controller (i.e., no external bus controller needed). See the overview of this capability in I/O Device
CAN Bus Controller on page 11.

It includes capability to support PDO operation through:
l NMT control

l 8, 16, and 32-bit data objects that can be mapped to PDOs

l Status word indication of Rx PDO data arrival

Related objects are: 2220h, 2221h and 2204h. For details, see Object Reference on page 83.

Related commands are: NMT, SDORD, SDOWR, CANCTL, and B/RB. For details, see the descriptions in
this guide and in the SmartMotor Developer's Guide.

Example user programs are shown in the SmartMotor Developer's Guide, Part 3: Examples.

PDO Transmit on Event
Process Data Objects (PDOs) can be configured to transmit on a change of value within the motor
(Transmission type: 255). Transmission type 255 also transmits on the transmit timer event configured
in the PDO's corresponding communications parameter object. The transmit timer provides a minimum
rate at which the data is transmitted.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 31 of 234

PDO Transmit on Timer Only

l The transmission type is set using subindex 2 of objects 1800h, 1801h, 1802h, 1803h and
1804h.

l The transmission timer is set using subindex 5 of objects 1800h, 1801h, 1802h, 1803h and
1804h.

PDO Transmit on Timer Only
Transmit PDOs can be configured to transmit on a timer using a transmission type setting of 254.

l The transmission type is set using subindex 2 of objects 1800h, 1801h, 1802h, 1803h and
1804h.

l The transmission timer is set using subindex 5 of objects 1800h, 1801h, 1802h, 1803h and
1804h.

PDO Transmit on Sync
Transmit PDOs can be configured to transmit in response to a sync packet. Transmit types 1-240 in the
transmission type setting are used to configure this. The value of the transmission type controls how
often the transmit PDO is sent in response to a sync (e.g., transmit type = 1 is sent in every sync
packet; transmit type = 240 is sent in every 240th sync packet).

The transmission type is set using subindex 2 of objects 1800h, 1801h, 1802h, 1803 and 1804h.

Dynamic PDO Mapping
There are objects used to simultaneously configure (map) up to five Receive PDOs and five Transmit
PDOs. These mappings are dynamic — any object with "PDO mappable" in its description can be
mapped to a PDO through the standard CANopen mapping procedure.

Dynamic mapping of objects to PDO is configured using objects 1600h, 1601h, 1602h, 1603h, 1604h,
1A00h, 1A01h, 1A02, 1A03h and 1A04h. For details, see PDO Mapping on page 63.

Heartbeat Producer
The motor can be configured to transmit a heartbeat at a configurable rate. For details, see Object
1017h: Producer Heartbeat Time on page 99.

Sync Producer
The SmartMotor can produce sync messages. This requires setting the Communication Cycle Period
object (1006h) and the COB-ID SYNC object (1005h). There is a specific order to configuring these
objects, and object 1005h requires an additional bit setting. Therefore, it is important to review the
descriptions of both objects. For details, see Object 1005h: COB-ID SYNC on page 92 and Object
1006h: Communication Cycle Period on page 94.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 32 of 234

Not Supported

Not Supported
This section describes the CANopen features that are not supported by the SmartMotor.

Emergency Messages
Emergency (EMCY) object messages are not produced or consumed by the SmartMotor. The associated
objects, 1014h and 1015h, do not exist.

Saving Parameters
The SmartMotor does not support parameter data saving. Objects 1010h and 1011h are not
implemented.

Heartbeat Consumer
The SmartMotor does not consume heartbeat messages. Therefore, it will not take action on the
presence or absence of any heartbeat messages. However, the SmartMotor can be a heartbeat
producer. For details, see Object 1017h: Producer Heartbeat Time on page 99.

MPDO Communications
The SmartMotor does not support the multiplexed-PDO (MPDO) method of communication. Ordinary
transmit and receive PDOs are supported.

CAN Bus Bit Rate
The CAN bus bit rate of 10000 bits/sec is not supported.

PDO Transmit on RTR (Remote frames)
PDO Transmit types 252 and 253 are not supported. Remote (RTR) frames are not supported.

Node Guarding
Node Guarding is not supported.

TIME Service
TIME service is not supported.

Sync Start
Sync Start value is not present or supported. This refers specifically to subindex 6 of the Transmit PDO
Communication Parameter objects 1800h–1804h.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 33 of 234

Status LEDs

Status LEDs
This chapter provides a description of the SmartMotor status LEDs.

NOTE: For information on the SmartMotor's connector pinouts and cable diagrams, refer to the
corresponding SmartMotor Installation and Startup Guide.

Status LEDs — Class 5 D- and M-Style 35

Status LEDs — Class 6 D-Style 35

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 34 of 234

Status LEDs — Class 5 D- and M-Style

Status LEDs — Class 5 D- and M-Style
The Status LEDs provide the same functionality for the Class 5 D-style and M-style (including
IP-sealed) SmartMotors. For details, refer to the Understanding the Status LEDs topic in the Class 5
SmartMotor Installation and Startup Guide.

Status LEDs — Class 6 D-Style
The Status LEDs on the Class 6 D-style SmartMotor do not provide any special CAN-related
indications. To view the operational LED indications for the Class 6 D-style SmartMotor, refer to the
Understanding the Status LEDs topic in the Class 6 D-style SmartMotor Installation and Startup Guide.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 35 of 234

Manufacturer-Specific Objects

Manufacturer-Specific Objects
This chapter provides details on manufacturer-specific objects.

I/O 37

User Variables 37

Calling Subroutines 39

Command Interface (Object 2500h) 40

Command Interface 40

Program Upload/Download 41

Upload from Motor 41

Download to Motor (SMX file) 41

Download to Motor (SMXE encrypted file) 42

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 36 of 234

I/O

I/O
The CiA 402 motion profile provides limited access to the onboard I/O of the SmartMotor. However,
there are other manufacturer-specific objects that provide more I/O control.

As part of the CiA 402 motion profile, objects 60FDh and 60FEh are provided. For details, see Object
60FDh: Digital Inputs on page 224 and Object 60FEh: Digital Outputs on page 227.

For the D-style motor, object 2100h is highly specific to the multiplexed role of the seven I/O pins. This
function is not supported on the M-style motor. For more details, see Object 2100h: Port Configuration
on page 126.

For general access to individual I/O pins, the Bit I/O object (2101h) offers a more specific way to send
commands. This feature works on the M-style and D-style motors. It can be used to disable the limit
inputs if desired. For more details, see Object 2101h: Bit IO on page 127.

NOTE: The limit-switch inputs for all SmartMotors must be satisfied before motion is allowed. The
inputs must either be physically wired or disabled if not connected. Additionally, M-style motors
require the drive-enable input to be true (high) for motion to start.

User Variables
The SmartMotor has an array of user variables that are accessible to user programs and are visible as
CANopen objects. This provides a common area where information can be shared between a user
program and the CANopen network.

The variables use predefined names: a–z, aa–zz and aaa–zzz, which comprise a total of 78 variables;
these are 32-bit signed integers.

Additionally, there is a 204-byte array. It can be accessed as 8, 16 or 32-bit signed values. For more
details, see the SmartMotor™ Developer's Guide.

There are 12 variables that are available as "mappable" variables. This feature allows a CANopen
SmartMotor in follower or controller mode to accept PDO mappings to data of size 8, 16, or 32 bits:

l Mappable Variables object (2220h) offers access to 8-bit user variables ab[0], ab[1], ab[2] and ab
[3]. For more details, see Object 2220h: 8-Bit Mappable Variables on page 143.

l Mappable Variables object (2221h) offers access to 16-bit user variables aw[32], aw[33], aw[34]
and aw[35]. For more details, see Object 2221h: 16-Bit Mappable Variables on page 144.

l Mappable Variables object (2204h) offers access to 32-bit user variables aaa, bbb, ccc and ddd.
For more details, see Object 2204h: Mappable 32-bit Variables on page 132.

These mappable variables are available for applications such as general-purpose I/O blocks using PDO
communications. Also, note that the "controller" does not always need to be the SmartMotor receiving
all data.

A wider range of user variables is accessible through the User Variable object (2201h). However, this
mechanism does not allow PDO communications — object 2201 is only available through SDO
communications. Therefore, it is typically used to pass constants or other configuration data at startup,
when a PLC may pass SDO data. During the Operational state, a controller may continue to pass data to
variables through object 2201h if it is capable of SDO communication at that time. For more details,
see the Object 2201h: User Variable on page 129.

A typical use of user variables in combination with CANopen is to receive information from another
motor or sensor device on the network. For example, variable aaa could be mapped to a receive PDO
(RxPDO). If that PDO is allocated a COB-ID of a sensor on the network, then that information can be
used in a SmartMotor user program.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 37 of 234

User Variables

Another common use of the mapping variables is to report information that does not have a CANopen
object. For instance, a user may want to perform a calculation in a user program and report the result
back to the controller. In this case, the user program would set a variable such as bbb=<expr>. The
variable bbb should be mapped to a transmit PDO (TxPDO). Then the controller or other nodes on the
network can access that information.

It is possible to use the SmartMotor as a bridge by combining the two techniques: receiving data into a
user variable and transmitting information from a user variable. This allows interfacing of two devices
that need intermediate computation. For example, a temperature sensor could feed into the
SmartMotor, and a process control loop in a SmartMotor program could use that information to control
a cooling fan through an I/O device. This may be advantageous if there are applications that are easier
to program in the SmartMotor instead of the CANopen controller.

Often, the mapping variable is used to send or receive a field of bits. When receiving, the bitwise
program operators can be used: | (or), & (and), !| (xor). For example, the next IF expression will be true
when bit 3 is set:

IF (ddd&8)!=0 'Will be true when ddd bit 3 is true.
... do action
ENDIF

When transmitting, these are some simple techniques for setting bitwise values:

aaa=aaa|8 'Set bit 3.
aaa=aaa|bbb 'Logical OR all bits from aaa and bbb; save to aaa.
aaa=aaa!|64 'Toggle bit 6 (XOR).
aaa=aaa&-9 'Clear bit 3 and leave other bits alone.
aaa=aaa&(-3&-9) 'Clear bit 1 and 3 at the same time.
aaa=aaa|(2|8) 'Set bit 1 and 3 at the same time.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 38 of 234

Calling Subroutines

The next table lists the bit numbers and the corresponding decimal values used to set with OR (for 16
bits, only) or clear with AND (for 16 bits, only).

Bit number
(0–15)

Decimal value to
set bit with OR

(for 16 bits, only)

Decimal value to
clear bit with AND
(for 16 bits, only)

0 1 –2
1 2 –3
2 4 –5
3 8 –9
4 16 –17
5 32 –33
6 64 –65
7 128 –129
8 256 –257
9 512 –513
10 1024 –1025
11 2048 –2049
12 4096 –4097
13 8192 –8193
14 16384 –16385
15 32768 –32769

Calling Subroutines
The functionality of the SmartMotor can be extended by creating and loading a user program into the
motor. There are two ways to control the running of this program: a GOSUB call, or a RUN command to
run the entire program from the top of the program.

NOTE: A user program will always automatically run from the start when the motor is powered on or
reset unless the RUN? command is included at the top of the user program. The RUN command is
not the same as the RUN? command. For details on these commands, see the SmartMotor™
Developer's Guide.

The GOSUB R2 object (2309h) provides access to the GOSUB, RUN and END commands. It is PDO
mappable, and it only reacts to a change of value. For details, see Object 2309h: GOSUB R2 on page
162. This object replaces the functionality of objects 2305h and 2306h.

Bit 8 of the Status Word object (6041h) can be used to determine when the subroutine called with
object 2309h has finished. When the bit clears, the subroutine has completed.

Calls to subroutines using object 2309h are automatically blocked if a previous call made through
object 2309h is still busy. When that subroutine returns, bit 8 of the Status Word object (6041h) will
clear.

NOTE: Unlike GOSUB, there is no CANopen access to the GOTO function.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 39 of 234

Command Interface (Object 2500h)

Command Interface (Object 2500h)
The SmartMotor has many commands that are not mapped to CANopen objects. Many of these
commands are obscure or take a complex set of arguments. A mechanism is provided to access these
commands by sending a command string to object 2500h.

This section provides details on the object 2500h command interface and use in program
upload/download.

Command Interface
This section describes the command interface for the Encapsulated Animatics Command object
(2500h). This object provides an interface to the SmartMotor command language. Please note that:

l The status information must read back from subindex 3 of object 2500h.

l This object is not accessible through PDO.

The next table describes the elements of object 2500h.

Object Subindex Description
2500h 0 Number of entries (3).
2500h 1 Command string to motor "VISIBLE STRING" type.
2500h 2 Response from motor "VISIBLE STRING" type.
2500h 3 Status from motor "UNSIGNED 8" type.

The status bits in subindex 3 of object 2500h are:

Bit Description
0 Command in progress.
1 Command complete/response ready.
2 Overflow.
3-7 Reserved.

This procedure describes the steps to send a command:

1. Check that the "command in progress" = 0.

2. Write the command to subindex 1 of object 2500h; terminate the command with a null value.

3. Read the status from subindex 3 of object 2500h; check the status of the "command complete"
bit.

4. Repeat the previous step if the "command complete" bit is 0.

5. When the "command complete" bit is 1, the command has completed. If it was a report command,
there will be a string response to read in subindex 2 of object 2500h; if it was a non-report
command, there will be no response. The values are ASCII-encoded decimal format.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 40 of 234

Program Upload/Download

Program Upload/Download
The Encapsulated Animatics Command object (2500h) behaves like a string command. Therefore, it can
support the upload and download of user programs. The next sections describe the upload and
download procedures.

Upload from Motor

These steps are used to upload a user program from the SmartMotor to the host:

1. The host writes to the motor's subindex 1 of object 2500h with the UPLOAD (or UP) command.
Strings need to be null-terminated like most commands.

2. The host checks the "Response ready" and "Command in progress" flags in subindex 3 of object
2500h.

3. When "Response ready" = 1, the host will read a data block of 0–31 bytes plus the null
terminator from subindex 2 of object 2500h.

4. The previous step is repeated until the "Command in progress" flag is 0 and the "Response
ready" flag is 0. That indicates the process has completed.

NOTE: On the final cycle of the upload, the motor will always set the "Response ready" flag before
clearing the "Command in progress" flag. This ensures that the host has a reliable indicator when the
final cycle has occurred and will not wait forever. In other words, the host should stop looking for a
response as soon as both of those flags are clear.

Download to Motor (SMX file)

First, an SMX file must be generated from the SMS source program in the SMI software, Be sure that
the correct motor target was chosen, You may need to select Compile > Compiler Default Firmware
Version from the SMI main menu.

These steps are used to download a user program from the host to the SmartMotor:

1. The host writes to motor's subindex 1 of object 2500h with the LOAD command. Strings need to
be null-terminated like most commands.

2. The host waits for the "Command in progress" flag (bit 0) in subindex 3 of object 2500h to return
to 0.

3. The host writes the program data to subindex 1 of object 2500h, first 32 bytes, with no null
terminator. This can include a header and anything after the header. The CAN command manager
will consume the header and whatever comes after it.

4. The host waits for the "Command in progress" flag (bit 0) in subindex 3 of object 2500h to return
to 0. This serves as the ACK (acknowledgment) signal. There is no reading of subindex 2 of
object 2500h.

NOTE: Do not attempt to read subindex 2 of object 2500h because that buffer is used for
other purposes during this procedure.

5. The host writes more program data to subindex 1 of object 2500h, 32 bytes at a time, with no
null terminator. Handshaking continues through the "Command in progress" flag. Transmission
may be ended at any time by sending 0xFF 0xFF 0x20 in the character stream. There may be a
delay in responses from CANopen as the motor is busy finalizing the program load. If this causes
timeouts, increase the amount of time before requesting handshake on this last section.

NOTE: This sequence does not need to fall in the same buffer segment. There is no need to pad the
buffer.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 41 of 234

Download to Motor (SMXE encrypted file)

Download to Motor (SMXE encrypted file)

First, convert an existing SMX file to SMXE format. From the SMI software main menu, selectTools >
Create smxe File.

NOTE: At the time the SMX is compiled from the SMS program, be sure that the SMX file is
compiled for the specific motor type that you will be loading into. From the SMI software main
menu, select Compile > Compiler Default Firmware Version.

These steps are used to download a user program from the host to the SmartMotor:

1. The host writes to motor's subindex 1 of object 2500h with the LOAD(7) command. Strings need
to be null-terminated like most commands.

2. The host waits for the "Command in progress" flag (bit 0) in subindex 3 of object 2500h to return
to 0.

3. The host writes the program data to subindex 1 of object 2500h, first 32 bytes, with no null
terminator. Because the data is encrypted, you will simply copy byte-for-byte from the source
SMXE file. This can include a header and anything after the header. The CAN command manager
will consume the header and whatever comes after it.

4. The host waits for the "Command in progress" flag (bit 0) in subindex 3 of object 2500h to return
to 0. This serves as the ACK (acknowledgment) signal. There is no reading of subindex 2 of
object 2500h.

NOTE: Do not attempt to read subindex 2 of object 2500h because that buffer is used for
other purposes during this procedure.

5. The host writes more program data to subindex 1 of object 2500h, 32 bytes at a time, with no
null terminator. Handshaking continues through the "Command in progress" flag. There may be a
delay in responses from CANopen as the motor is busy finalizing the program load. If this causes
timeouts, increase the amount of time before requesting handshake on this last section.

NOTE: This sequence does not need to fall in the same buffer segment. There is no need to pad the
buffer.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 42 of 234

CiA 402 Drive and Motion Control Profile

CiA 402 Drive and Motion Control Profile
The CiA 402 Drive and Motion Control Profile supports the motion control of the SmartMotor. The
associated objects comprise a large portion of the object dictionary (see Drive and Motion Control
Profile on page 169). This profile is supported by many vendors of industrial controls.

CiA 402 Profile Motion State Machine 44

Control Words, Status Words and the Drive State Machine 44

Status Word (Object 6041h) 45

Control Word (Object 6040h) 46

Motion Profiles 47

Position Mode 47

Absolute Position Mode Summary 48

Absolute Position Mode Example 48

Relative Position Example 49

Velocity Mode 51

Velocity Mode Summary 51

Velocity Mode Example 52

Torque Mode 52

Torque Mode Summary 53

Torque Mode Example 53

Interpolated Position Mode 54

Interpolated Position Mode Summary 55

Example: Short Run on a Single Motor 56

Example: Continuous Run on a Single Motor 57

Example: Resuming Motion in IP Mode 58

Synchronization 58

User Bits 59

Splining 60

Variable-Length Segments 60

Homing Mode 60

Homing Summary 61

Homing Example 61

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 43 of 234

CiA 402 Profile Motion State Machine

CiA 402 Profile Motion State Machine
Support for the CiA 402 motion profile (DS402) in the SmartMotor includes the Control Word object
(6040h) and the Status Word object (6041h). Under all types of motion, the control word starts or
stops the drive and the status word reports the state of the drive.

However, the type of motion profile is not controlled with these objects — it is commanded through the
Modes of Operation object (6060h) and reported from the Modes of Operation Display object (6061h).
For more details, see the examples in Motion Profiles on page 47.

Control Words, Status Words and the Drive State Machine
Refer to the next diagram of the DS402 Drive State Machine. The power drive system finite state
automaton (PDS FSA) is described in the DS402 specification. This is the mechanism used to command
the motor to begin a new move or turn the drive on/off. The DS402 specification describes several
operation states controlled by the Control Word object (6040h) and read back using the Status Word
object (6041h).

Start

Not ready to
switch on

Switch on
disabled

Ready to
switch on

Switched on

Operation
enabled

Quick stop
active

Fault

Fault reaction
active

Power on and initialization

Successful
initialization

Fault
reaction
complete

Automatic
transition

From any state

Automatic
transition

through
Switched on

state

Control Word:
Bit 1 = 1
Bit 2 = 1

Control Word:
Bit 0 = 1

Control Word:
Bit 3 = 1 Control Word:

Bit 3 = 0

Control Word:
Bit 0 = 0

Control Word:
Bit 0 = 0

Control Word:
Bit 2 = 0

or
Bit 1 = 0

Control Word:
Bit 1 = 0

Control Word:
Bit 7 = 1

Control Word:
Bit 2 = 0

Control Word:
Bit 2 = 0

or
Bit 1 = 0Control Word:

Bit 1 = 0

Status Word:
xxxx_xxxx_x00x_0111

Status Word:
xxxx_xxxx_x0xx_1111

Status Word:
xxxx_xxxx_x1xx_0000

Status Word:
xxxx_xxxx_x01x_0001

Status Word:
xxxx_xxxx_x01x_0011

Status Word:
xxxx_xxxx_x01x_0111

Status Word:
xxxx_xxxx_x0xx_1000

Status Word:
xxxx_xxxx_x0xx_0000

Control Word:
Bit 0 = 1
Bit 3 = 1

DS402 Drive State Machine

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 44 of 234

Status Word (Object 6041h)

Status Word (Object 6041h)
The Status Word object (6041h) reports the PDS FSA state machine per the DS402 specification.
These distinct states are defined, where "x" is a bit that could be either a 1 or a 0:

Status Word 6041h

(16 bits)
PDS FSA state Meaning

xxxx xxxx x0xx 0000 Not ready to switch on Drive is off
xxxx xxxx x1xx 0000 Switch on disabled Drive is off
xxxx xxxx x01x 0001 Ready to switch on Drive is off
xxxx xxxx x01x 0011 Switched on Drive is off
xxxx xxxx x01x 0111 Operation enabled Drive is enabled
xxxx xxxx x00x 0111 Quick stop active Drive is enabled
xxxx xxxx x0xx 1111 Fault reaction active Drive is enabled
xxxx xxxx x0xx 1000 Fault Drive is off

The state "Operation enabled" is the only one allowing normal operation (motion) of the motor.

The quick stop will automatically transition out of the "Quick stop active" state to the "Switch on
disabled" state.

The "Fault reaction active" state will automatically transition to the "Fault" state unless the fault
reaction is "slow to a stop" rather than OFF or MTB.

For more details, see Object 6041h: Status Word on page 173.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 45 of 234

Control Word (Object 6040h)

Control Word (Object 6040h)
The Control Word object (6040h) must be written to command the motor to start motion. Only certain
state transitions are allowed. Therefore, the PLC or host writing to the Control Word object (6040h)
should read the Status Word object (6041h) to determine the current state.

The next table describes the bits in the Control Word object (6040h). For more details, see Object
6040h: Control Word on page 171.

State to enter
Bits of the Control Word

Allowed from
Bit 7 Bit 3 Bit 2 Bit 1 Bit 0

Switch on disabled 0 X X 0 X Ready to switch on,
Switched on,
Operation enabled,
Quick stop active (by forcing bit
1 to a 0)

Ready to switch on 0 X 1 1 0 Switch on disabled,
Switched on,
Operation enabled

Switched on 0 0 1 1 1 Ready to switch on,
Operation enabled

Operation Enabled 0 1 1 1 1 Ready to switch on,
Switched on

Quick Stop active 0 X 0 1 X Operation enabled,
Ready to switch on,
Switched on

Switch on disabled N/A N/A N/A N/A N/A Quick stop active (automatic
transition when quick stop
completes)

Switch on disabled 0 to 1
transition

X X X X Fault

Fault N/A N/A N/A N/A N/A Fault reaction active (automatic
transition when fault reaction
completes)

Fault reaction active N/A N/A N/A N/A N/A Occurrence of a fault will leave
current state (automatic
transition when fault occurs)

NOTE: Rising edge of bit 7 clears the fault unless a fault condition still exists.

A typical startup sequence of values to write to the control word is:

1. 0000h — Starting value.

2. 0080h — Clear past faults.

3. 0006h — Enter "Ready to Switch On" state.

4. 000Fh — Enter "Operation Enabled" state; for velocity or torque mode, this starts motion.

5. 001Fh — Start a homing or position move.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 46 of 234

Motion Profiles

Motion Profiles
This section provides example values written to specific objects for various motion profiles.

In these examples, it can be assumed that the writes are made through either PDO or SDO
communications. Typically, objects like the Control Word object (6040h) would be written cyclically
with PDO communications. However, it is also possible for a single SDO write to set these values. If
PDO communications are used, it is assumed that the controller is writing values continuously, and the
noted sequence indicates when a value should be changed to a new value.

Position Mode
This section describes the process for creating a motion using Absolute Position mode and Relative
Position mode.

It is assumed that either the SmartMotor's drive-enable input and hardware limit switch inputs are in
the ready state, or the user has issued the appropriate I/O commands to disable the limits. For details,
see Object 2100h: Port Configuration on page 126 and Object 2101h: Bit IO on page 127.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 47 of 234

Absolute Position Mode Summary

Absolute Position Mode Summary

The nexttable provides a summary of settings for creating a motion using Absolute Position mode. For
a different example in step format, see the next section.

Description SMI
Command

Index
Object
Code

Sub-
Index

Data

Length Hex Dec

Disable positive limit switch
input

CAUTION: Skip this
step if limit switches
are in use.

EIGN(2) 2101h 03 02 0002 2

Disable negative limit switch
input

CAUTION: Skip this
step if limit switches
are in use.

EIGN(3) 2101h 03 02 0003 3

Reset status word ZS 6040h 00 02 0080 128
0000 0000 1000 0000

Set Mode Position MP 6060h 00 01 01 1

Set profile speed in PP mode VT=xxxx 6081h 00 04 0000C350 50000

Set target position PT=0 607Ah 00 04 00000000 0

Set acceleration AT=xxxx 6083h 00 04 00000064 100

Set deceleration DT=xxxx 6084h 00 04 00000064 100

Change state: Ready to
switch on

6040h 00 02 0006 6
0000 0000 0000 0110

Change state: Switched on 6040h 00 02 0007 7
0000 0000 0000 0111

Enable command, single set-
point (motion not actually
started yet)

6040h 00 02 002F 47
0000 0000 0010 1111

Begin motion to target pos-
ition

G 6040h 00 02 003F 63
0000 0000 0011 1111

Prepare for next command 6040h 00 02 002F 47
0000 0000 0010 1111

Set target position PT=1000 607Ah 00 04 000003E8 1000

Begin motion to target pos-
ition

G 6040h 00 02 003F 63
0000 0000 0011 1111

Absolute Position Mode Example

This procedure shows the steps for creating a motion using Absolute Position mode. For details on
Absolute Position mode, see the SmartMotor™ Developer's Guide.

NOTE:
Position Units (PU): encoder counts
Acceleration/Deceleration Units (ADU): (encoder counts per (sample2)) * 65536
Velocity Units (VU): encoder counts per sample * 65536

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 48 of 234

Relative Position Example

1. Clear the faults by setting the Control Word object (6040h) to these values:

a. 0

b. 0080h (128 decimal)

c. 0

2. Set the Modes of Operation object (6060h) to the value 1 (decimal).

3. Set the Profile Velocity object (6081h) to the desired speed in VU (for example, the decimal
value 100000). This is always a positive value. The target position determines the direction of
motion.

4. Set the Profile Acceleration object (6083h) to the desired acceleration in ADU (for example, the
decimal value 10).

5. Set the Profile Deceleration object (6084h) to the desired deceleration in ADU (for example, the
decimal value 10).

6. Set the Target Position object (607Ah) to the desired absolute position in PU.

7. Initialize and start the motion by setting the Control Word object (6040h) to the values:

a. 0006h (6 decimal) — This is required to satisfy the CiA 402 drive state machine. For
details, see CiA 402 Profile Motion State Machine on page 44.

b. 002Fh (47 decimal) — This configures the single-setpoint positioning mode.

c. 003Fh (63 decimal) — The motion begins.

8. Wait for the motion to complete.

9. Set the Target Position object (607Ah) to a new absolute position in PU. Motion will not begin at
this time.

10. Initialize, start and stop the motion by setting the Control Word object (6040h) to these values:

a. 002Fh (47 decimal) — Bit 4 must be transitioned for the new setpoint to begin. By writing
that value to the Control Word object (6040h), bit 4 will begin in the low state. The next
step will write a different value to that object, which will transition bit 4 to a high state.

b. 003Fh (63 decimal) — Starts the motion.

c. 013Fh (319 decimal) — Stops the motion. The motor will decelerate before reaching the
target.

11. Initialize and resume the motion by setting the Control Word object (6040h) to these values:

a. 002Fh (47 decimal) — bit 4 must be transitioned for the motion to resume. By writing
that value to the Control Word object (6040h), bit 4 will begin in the low state. The next
step will write a different value to that object, which will transition bit 4 to a high state.

b. 003Fh (63 decimal) — the motion resumes.

12. Turn off motor by setting the Control Word object (6040h) to the value 0.

Relative Position Example

This procedure shows the steps for creating a motion using Relative Position mode. For details on
Relative Position mode, see the SmartMotor™ Developer's Guide.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 49 of 234

Relative Position Example

1. Clear the faults by setting the Control Word object (6040h) to these values:

a. 0

b. 0080h (128 decimal)

c. 0

2. Set the Modes of Operation object (6060h) to the value 1 (decimal).

3. Set the Profile Velocity object (6081h) to the desired speed in VU (for example, the decimal
value 100000). This is always a positive value. The target position determines the direction of
motion.

4. Set the Profile Acceleration object (6083h) to the desired acceleration in ADU (for example, the
decimal value 10).

5. Set the Profile Deceleration object (6084h) to the desired deceleration in ADU (for example, the
decimal value 10).

6. Set a relative target by setting the Target Position object (607Ah) to the desired relative
position in PU.

7. Initialize and start the motion by setting the Control Word object (6040h) to these values:

a. 0006h (6 decimal) — This is required to satisfy the 402 drive state machine.

b. 006Fh (111 decimal) — This configures the single-setpoint mode of positioning.

c. 007Fh (127 decimal) — The motion begins. This sets bit 6 to indicate a relative move.

8. Wait for the motion to complete.

NOTE: If a relative move is commanded while a previous one is in progress, the ending target
position for the in-progress move is replaced. The new ending position is calculated by adding
the current commanded position (when the command is received) and the relative target
(object 607A). The previous ending target position is not a part of this calculation.

9. Set a relative target by setting the Target Position object (607Ah) to the desired relative
position in PU. Motion will not begin at this time.

10. Set a new target and start the motion by setting the Control Word object (6040h) to these
values:

a. 006Fh (111 decimal) — Bit 4 must be transitioned for the new setpoint to begin. By
writing that value to the Control Word object (6040h), bit 4 will begin in the low state. The
next step will write a different value to that object, which will transition bit 4 to a high
state.

b. 007Fh (127 decimal) — The motion begins.

11. Stop the motion by setting the Control Word object (6040h) to the value 017Fh (383 decimal).
The motor will decelerate before reaching the target.

12. Initialize and resume the motion by setting the Control Word object (6040h) to these values:

a. 006Fh (111 decimal) — Bit 4 must be transitioned for the motion to resume. By writing
that value to the Control Word object (6040h), bit 4 will begin in the low state. The next
step will write a different value to that object, which will transition bit 4 to a high state.

b. 007Fh (127 decimal) — The motion resumes. It performs a relative move from the current
position (not the original position).

13. Turn off motor by setting the Control Word object (6040h) to the value 0.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 50 of 234

Velocity Mode

Velocity Mode
This section describes the process for creating a motion using Velocity mode.

It is assumed that either the SmartMotor's drive-enable input and hardware limit switch inputs are in
the ready state, or the user has issued the appropriate I/O commands to disable the limits. For details,
see Object 2100h: Port Configuration on page 126 and Object 2101h: Bit IO on page 127.

Velocity Mode Summary

The next table provides a summary of settings for creating a motion using Velocity mode. For a
different example in step format, see the next section.

Description SMI
Command

Index
Object
Code

Sub-
Index

Data

Length Hex Dec

Disable positive limit switch
input

CAUTION: Skip this
step if limit switches
are in use.

EIGN(2) 2101h 03 02 0002 2

Disable negative limit switch
input

CAUTION: Skip this
step if limit switches
are in use.

EIGN(3) 2101h 03 02 0003 3

Reset status word ZS 6040h 00 02 0080 128
0000 0000 1000 0000

Set Mode Velocity MV 6060h 00 01 03 3

Set velocity in PV mode VT=xxxx 60FFh 00 04 0000C350 50000

Set acceleration AT=xxxx 6083h 00 04 00000064 100

Set deceleration DT=xxxx 6084h 00 04 00000064 100

Change state: Ready to
switch on

6040h 00 02 0006 6
0000 0000 0000 0110

Change state: Switched on 6040h 00 02 0007 7
0000 0000 0000 0111

Start command G 6040h 00 02 000F 15
0000 0000 0000 1111

Update velocity while
already running in PV mode

VT=xxxx, G 60FFh 00 04 000186A0 100000

Halt command (set bit 8) X (default)

See object
605Dh

6040h 00 02 010F 271
xxxx xxx1 0000 1111

Start command G 6040h 00 02 000F 15
0000 0000 0000 1111

Quick stop command (bit 2 =
0)

Quick stop
then OFF

See objects
6085h, 605Ah

6040h 00 02 000B 11
xxxx xxxx 0000 1011

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 51 of 234

Velocity Mode Example

Velocity Mode Example

This procedure shows the steps for creating a motion using Velocity mode. For details on Velocity
mode, see the SmartMotor™ Developer's Guide.

NOTE:
Position Units (PU): encoder counts
Acceleration/Deceleration Units (ADU): (encoder counts per (sample2)) * 65536
Velocity Units (VU): encoder counts per sample * 65536

1. Clear the faults by setting the Control Word object (6040h) to these values:

a. 0

b. 0080h (128 decimal)

c. 0

2. Set the Modes of Operation object (6060h) to the value 3 (decimal).

3. Set the Target Velocity object (60FFh) to the desired speed in VU (for example, the decimal
value 100000). To reverse the direction of motion, use a negative value.

4. Set the Profile Acceleration object (6083h) to the desired acceleration in ADU (for example, the
decimal value 10).

5. Set the Profile Deceleration object (6084h) to the desired deceleration in ADU (for example, the
decimal value 10).

6. Set the Control Word object (6040h) to the value 0006h (6 decimal). This is required to satisfy
the CiA 402 drive state machine. For details, see CiA 402 Profile Motion State Machine on page
44.

7. Start, stop and resume the motion by setting the Control Word object (6040h) to these values:

a. 000Fh (15 decimal) — Starts the motion

b. 010Fh (271 decimal) — Stops the motion

c. 000Fh (15 decimal) — Resumes the motion

8. Change the speed by setting the Target Velocity object (60FFh) to the desired speed in VU (for
example, the decimal value 200000). The motor will immediately accelerate /decelerate to the
new speed. To reverse the direction of motion, use a negative value.

9. Turn off motor by setting the Control Word object (6040h) to the value 0.

Torque Mode
This section describes the process for creating a motion using Torque mode.

It is assumed that either the SmartMotor's drive-enable input and hardware limit switch inputs are in
the ready state, or the user has issued the appropriate I/O commands to disable the limits. For details,
see Object 2100h: Port Configuration on page 126 and Object 2101h: Bit IO on page 127.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 52 of 234

Torque Mode Summary

Torque Mode Summary

The next table provides a summary of settings for creating a motion using Torque mode. For a different
example in step format, see the next section.

Description SMI
Command

Index
Object
Code

Sub-
Index

Data

Length Hex Dec

Disable positive limit switch
input

CAUTION: Skip this
step if limit switches
are in use.

EIGN(2) 2101h 03 02 0002 2

Disable negative limit switch
input

CAUTION: Skip this
step if limit switches
are in use.

EIGN(3) 2101h 03 02 0003 3

Reset status word ZS 6040h 00 02 0080 128
0000 0000 1000 0000

Set Mode Torque MT 6060h 00 01 04 4

Set Torque Slope TS=xxxx 6087h 00 04 000000C8 200

Set Target Torque T=xxxx 6071h 00 02 0064 100

Change state: Ready to
switch on

6040h 00 02 0006 6
0000 0000 0000 0110

Change state: Switched on 6040h 00 02 0007 7
0000 0000 0000 0111

Start command G 6040h 00 02 000F 15
0000 0000 0000 1111

Update torque while already
running in TQ mode

T=xxxx, G 6071h 00 02 0096 150

Halt command (set bit 8) X (default)

See object
605Dh

6040h 00 02 010F 271
xxxx xxx1 0000 1111

Start command G 6040h 00 02 000F 15
0000 0000 0000 1111

Quick stop command (bit 2 =
0)

Quick stop
then OFF

See object
605Ah

6040h 00 02 000B 11
xxxx xxxx 0000 1011

Torque Mode Example

This procedure shows the steps for creating a motion using Torque mode. For details on torque mode,
see the SmartMotor™ Developer's Guide.

NOTE: Units entered for objects 6071h and 6087h are specific to the DS402 profile. In other words,
they do not use the units that would be used by the T= or TS= commands. For details, see Object
6071h: Target Torque on page 187. Also, see
Object 6087h: Torque Slope on page 199.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 53 of 234

Interpolated Position Mode

1. Clear the faults by setting the Control Word object (6040h) to these values:

a. 0

b. 0080h (128 decimal)

c. 0

2. Set the Modes of Operation object (6060h) to the value 4 (decimal).

3. Set the Target Torque object (6071h) as desired (for example, the decimal value 100). To
reverse the direction of motion, use a negative value.

4. Set the Torque Slope object (6087h) as desired (for example, the decimal value 200). This
controls the ramp-up/down rate to the previously-specified Target Torque.

5. Set the Control Word object (6040h) to the value 0006h (6 decimal). This is required to satisfy
the CiA 402 drive state machine. For details, see CiA 402 Profile Motion State Machine on page
44.

6. Start, stop and resume the motion by setting the Control Word object (6040h) to these values:

a. 000Fh (15 decimal) — Starts the motion

b. 010Fh (271 decimal) — Stops the motion

c. 000Fh (15 decimal) — Resumes the motion

7. Change the torque by setting the Target Torque object (6071h) as desired (for example, the
decimal value 50). The motor will immediately ramp up/down to the setting. To reverse the
direction of motion, use a negative value.

8. Turn off the motor by setting the Control Word object (6040h) to the value 0.

Interpolated Position Mode
Interpolated position (IP) mode allows for buffering and execution of a constant stream of positions.
This is useful for host-driven applications with complex motion paths, such as CNC machining.

There are several aspects to this mode of operation that require more effort to configure and operate
compared to position, velocity, or torque mode.

l Time synchronization should be used. Because of clock drifts, the individual motors will consume
position data at slightly different rates. Over a period of several hours, motors could be
significantly out of step (for example, one motor gets several data points ahead of another).
With time synchronization, the high-resolution timestamp object is used to coordinate clocks in
this process, and the motors will adjust their clocks accordingly.

l Buffer level of data points must be maintained. There are specific objects to monitor, and the
host must not allow the buffer of data points to run empty or to overflow. Therefore, the host
must be able to accurately monitor and control the flow of data points.

l Data points are entered as absolute positions. However, they are processed in a relative format
that depends on the position of the motor at a specific time during the setup and configuration
of IP mode.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 54 of 234

Interpolated Position Mode Summary

Interpolated Position Mode Summary

The next table provides a summary of settings for creating a motion using Interpolated Position mode.
For a different example in step format, see the next section.

Description SMI
Command

Index
Object
Code

Sub-
Index

Data

Length Hex Dec

Note: this example works
best if motor starts at pos-
ition 0. See example for pos-
ition mode to position the
motor at a target of 0.
Disable positive limit switch
input

CAUTION: Skip this
step if limit switches
are in use.

EIGN(2) 2101h 03 02 0002 2

Disable negative limit switch
input

CAUTION: Skip this
step if limit switches
are in use.

EIGN(3) 2101h 03 02 0003 3

Reset status word ZS 6040h 00 02 0080 128
0000 0000 1000 0000

Set Mode Interpolation 6060h 00 01 07 7

Change state: Ready to
switch on

6040h 00 02 0006 6
0000 0000 0000 0110

Change state: Switched on 6040h 00 02 0007 7
0000 0000 0000 0111

Clear buffer 60C4h 6 01 00 0

Enable buffer 60C4h 6 01 01 1

Set time period to 1 (second) 60C2h 1 01 01 1

Set time period to seconds 60C2h 2 01 00 0

Write data point 1 60C1h 1 04 00000000 0

Write data point 2 60C1h 1 04 000003E8 1000

Write data point 3 60C1h 1 04 00000BB8 3000

Write data point 4 60C1h 1 04 000007D0 2000

Write data point 5 60C1h 1 04 000003E8 1000

Write data point 6 60C1h 1 04 00000000 0

Write zero-length segment 60C2h 1 01 00 0

Write data point 60C1h 1 04 00000000 0

Enable command (motion not
actually started yet)

6040h 00 02 000F 15
0000 0000 0000 1111

Begin motion 6040h 00 02 001F 31
0000 0000 0001 1111

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 55 of 234

Example: Short Run on a Single Motor

Example: Short Run on a Single Motor

This example loads the interpolation buffer with a short set of data and then starts the interpolation.
This procedure is intended for demonstration. Typically, a host will run in IP mode continuously, which is
shown in the next example.

1. Use Position mode to place the motor at the starting point for IP mode. For this example, use an
absolute move to position 0.

For reasons of initializing the buffer and the starting motor position, it is best to perform a
position move or relative-position move (PRT=0) before resetting the interpolation buffer. This
will ensure the motor is in the correct state for IP mode.

NOTE: Perform any origin shift before the position move — do not change the origin (OSH=,
O=) after the position move.

2. Set the Control Word object (6040h) to the value 000Fh. Assuming the motor is holding at the
starting position, this will leave the drive on.

3. Clear the buffer by setting subindex 6 of the Interpolation Data Configuration object (60C4h) to
the value 0.

4. Buffer enable: set subindex 6 of Interpolation Data Configuration object (60C4h) to the value 1.

5. Set the interpolation time:

a. Set subindex 2 of the Interpolation Time Period object (60C2h) to the value 0, which
designates whole seconds.

b. Set subindex 1 of the Interpolation Time Period object (60C2h) to the value 1. When
combined with the above setting, this results in one second per data point.

6. Set the Modes of Operation object (6060h) to the value 7.

7. Put data in the buffer by writing these values to subindex 1 of the Interpolation Data Record
object (60C1h):

a. 0 (the current position)

b. 2000

c. 6000

d. 8000

e. 6000

f. 3000

g. 0 (the final point)

8. Create and write a zero-length segment to end Interpolation mode:

a. Write the value 0 to the Interpolation Time Period object (60C2h), subindex 1. This is used
to create a zero-length segment to end Interpolation mode.

b. Write the value 0 to the Interpolation Data Record object (60C1h), subindex 1. This is the
same value as the final point. It writes the final zero-length segment that ends
Interpolation mode.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 56 of 234

Example: Continuous Run on a Single Motor

9. Set the Control Word object (6040h) to the value 0006h (6 decimal). This is required to satisfy
the CiA 402 drive state machine. For details, see CiA 402 Profile Motion State Machine on page
44.

10. Set the Control Word object (6040h) to the value 000Fh (15 decimal).

11. Start the process by setting the Control Word object (6040h) to the value 1Fh.

12. When the final point has finished, the motor will clear the trajectory bit in the SmartMotor
status word. For details, see Object 2304h: Motor Status on page 149.

Also, the Interpolation Mode Status object (2400h) will report if IP mode is running in bit 15. For
details, see Object 2400h: Interpolation Mode Status on page 163.

Example: Continuous Run on a Single Motor

This example procedure shows how to continuously operate a host in IP mode.

1. Use Position mode to place the motor at the starting point for IP mode. For this example, use an
absolute move to position 0.

For reasons of initializing the buffer and the starting motor position, it is best to perform a
position move or relative-position move (PRT=0) before resetting the interpolation buffer. This
will ensure the motor is in the correct state for IP mode.

NOTE: Perform any origin shift before this position move — do not change the origin (OSH=,
O=) after this position move.

2. Set the Control Word object (6040h) to the value 000Fh. Assuming the motor is holding at the
starting position, this will leave the drive on.

3. Clear the buffer by setting subindex 6 of Interpolation Data Configuration object (60C4h) to the
value 0.

4. Enable the buffer by setting subindex 6 of Interpolation Data Configuration object (60C4h) to
the value 1.

5. Set the interpolation time:

a. Set subindex 2 of the Interpolation Time Period object (60C2h) to the value –3, which
designates milliseconds.

b. Set subindex 1 of the Interpolation Time Period object (60C2h) to the value 20. Combined
with the above setting, this results in 20 milliseconds per data point. Other values are
acceptable, of course, depending on the network or host cycle time.

6. Set the Modes of Operation object (6060h) to the value 7.

7. Put data in the buffer:

a. Write the value 0 (the current position) to the Interpolation Data Record object (60C1h),
subindex 1.

b. Write the first data point in units of encoder counts to the Interpolation Data Record
object (60C1h), subindex 1.

c. Repeat the previous step until a sufficient number of data points are buffered. In other
words, enough to keep feeding Interpolation mode if the host has latencies or temporarily
becomes unresponsive.

8. Start the process by setting the Control Word object (6040h) to the value 1Fh.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 57 of 234

Example: Resuming Motion in IP Mode

9. Monitor the buffer capacity by using bits 0–6 of the Interpolation Mode Status object (2400h),
which will report the number of buffer spaces available. As the number of available spaces
approaches 0, the host should wait before sending further data.

NOTE: Bits 0–6 must be masked because the upper bits are used to report other information.
For details, see Object 2400h: Interpolation Mode Status on page 163.

10. End Interpolation mode:

a. Set subindex 1 of the Interpolation Time Period object (60C2h) to the value 0.

b. Repeat the final data point after this time period has been changed, and then write the
repeated final data point to Interpolation Data Record object (60C1h), subindex 1. When
the motor consumes this point, it will end its trajectory and hold its position. No further
data points will be accepted.

11. Set the Control Word object (6040h) to the value 000Fh. This will leave the drive on but holding
at the ending position.

Example: Resuming Motion in IP Mode

To resume motion without leaving IP mode:

1. Set the Control Word object (6040h) to the value 000Fh. This will be used later to cause a rising
edge on bit 4.

2. Do not clear the buffer. It is not necessary because this example assumes the most recent value
written to subindex 6 of the Interpolation Data Configuration object (60C4h) was 1.

3. Set subindex 1 of the Interpolation Time Period object (60C2h) back to the desired value (do not
use 0).

4. Add more points to the buffer using subindex 1 of the Interpolation Data Record object (60C1h).
Start with the current position.

5. Start the process by setting the Control Word object (6040h) to the value 1Fh. The Interpolation
mode will resume. Monitor the buffer capacity and end IP mode as described in the previous
examples.

Synchronization

When running multiple motors in Interpolation mode, the rate at which data points are consumed can
vary by several parts per million. While this sounds small, over time it will lead to the SmartMotors not
reaching a coordinated point simultaneously.

This brief example is for a network of two motors with the controller producing a sync every 10
milliseconds. It is also possible for the time-producer motor to be the sync producer if the CANopen
controller cannot do so (this method is not shown here).

NOTE: This is an advanced topic that requires an understanding of PDO mapping. For details, see
PDO Mapping on page 63.

1. Configure one motor as the time producer:

a. Map transmit PDO 4 to object 1013h.

b. Set the transmission type to 100 (to transmit at once per second because the sync rate is
100/second). The exact rate is not critical, but it is typically on the order of one second.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 58 of 234

User Bits

2. Configure all other motors as time consumers:

a. Map receive PDO 4 to object 1013h. Use the same COB-ID that was used to transmit PDO
4 from the time-producer.

b. Set the transmission type to 254. This will accept the high-resolution timestamp when the
time producer transmits it. The most recent sync is the reference point in time where the
timestamps from the producer and consumers are compared.

NOTE: The time consumer adjusts itself to match the time producer.

3. Switch to a network operational state.

When the first timestamp is received by the time consumers, they will accept the value without trying
to adjust to it. This is considered the starting point, so the consumer clocks are immediately forced to
this value instead of adjusting to it. If the synchronization process is interrupted or the motors are
switched out of operational network state, then the synchronization process will stop. This means that
when it is restarted, it could take significant time for the adjustment process to catch up. Instead, the
adjustment process should be forced to reaccept the time as it did at the beginning of the process. This
can be accomplished by two different methods:

1. Issue SmartMotor command CANCTL(2,0).

2. Switch to Interpolation mode using object 6060h. The motor must be in a different operating
mode, and it must see the transition to value 7 (Interpolation mode) in object 6060h.

User Bits

A special feature is provided by the SmartMotor that allows status bits to be correlated with specific
data points in the buffer. The status bit can be used to indicate when a particular segment between two
points is achieved. This can be used to call special program routines or to set outputs to control
external devices. For example, a laser-engraving tool may need a simple on/off state at certain points
in the motion path. This event is correlated with the specific range of positions in the buffer.

To write the bits, write to object 2403h — the range of values is 0 to 3Fh, which represents six bits.
These are associated with the next data record written to the Interpolation Data Record object
(60C1h), subindex 1. When the associated data point is reached, the new value (bit pattern) will be
visible in SmartMotor status word 8 (object 2304h, subindex 9) as bits 8–13.

This procedure provides an example of the user bits feature. The value of object 2403h is initially 0.
The buffer is populated either initially or in a continuous run situation:

1. Put data in the buffer by writing these values to subindex 1 of the Interpolation Data Record
object (60C1h):

a. 2000

b. 3000

2. Set the Interpolation User Bits object (2403h) to the value 1.

3. Put data in the buffer by writing the value 4000 to the Interpolation Data Record object (60C1h),
subindex 1.

4. Set the Interpolation User Bits object (2403h) to the value 0.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 59 of 234

Splining

5. Put data in the buffer by writing these values to subindex 1 of the Interpolation Data Record
object (60C1h):

a. 5000

b. 6000

In the previous example, the user bit indicates when the motor position is between 3000 and 4000. The
user bit is accessible in SmartMotor status word 8 (object 2304h, subindex 9). This can be read in a
user program with this code:

IF B(8,8) ' RB(status word 8, bit 8)
OS(0) ' Set output 0.

ELSE
OR(0) ' Clear output 0.

ENDIF

Splining

By default, object 60C0h is set to 0. This commands the linear form of interpolation. To smooth data
points, splined motion can be enabled by setting object 60C0h to the value –3. The change to this mode
takes effect with the next data point written through object 60C1h, subindex 1.

NOTE: While it is outside the scope of this manual, it is possible to mix splined and linear
interpolation per written data point. This provides interpolation control in cases where spline
interpolation does not provide the desired motion path.

Variable-Length Segments

It is possible to vary the length (in time) of the interpolation segment between data points. Object
60C2h, subindex 1 and 2, control the interpolation timer period. There are some cases where it may be
beneficial to reduce the required number of points. For example, rounded areas require more points,
but straight segments require less points. The application of this technique is outside the scope of this
manual. However, note that any change to object 60C2h will be associated with the next position data
record written through object 60C1h, subindex 1.

Homing Mode
This section describes the process for activating the SmartMotor homing process.

l For homing modes 1, and 17 there must be a negative limit switch connected and enabled. The
positive limit may also be present or not, but it cannot be faulted.

l For homing modes 2, and 18 there must be a positive limit switch connected and enabled. The
negative limit may also be present or not, but it cannot be faulted.

l For other homing modes, the limit switches must either be cleared of faults, or they must be
disabled.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 60 of 234

Homing Summary

Homing Summary

The next table provides a summary of settings for activating the homing process. For a different
example in step format, see the next section.

Description SMI
Command

Index
Object
Code

Sub-
Index

Data

Length Hex Dec

Note: Limit switches must
be physically connected in
this example. The negative
limit switch will be used as
the home reference.

Reset status word ZS 6040h 00 02 0080 128
0000 0000 1000 0000

Set Mode Homing (HM) 6060h 00 01 06 6

Set homing method 6098h 00 01 01 1

Set homing speed 1 6099h 01 04 000186A0 100000

Set homing speed 2 6099h 02 04 00002710 10000

Set homing acceleration 609Ah 00 04 00000064 100

Set homing offset 607Ch 00 04 000003E8 1000

Change state: Ready to
switch on

6040h 00 02 0006 6
0000 0000 0000 0110

Change state: Switched on 6040h 00 02 0007 7
0000 0000 0000 0111

Enable operation 6040h 00 02 000F 15
0000 0000 0000 1111

Start command G 6040h 00 02 001F 31
0000 0000 0001 1111

The homing will begin by
heading toward the negative
limit.

Homing Example

This procedure shows the steps for activating the homing process.

NOTE:
Position Units (PU): encoder counts
Acceleration/Deceleration Units (ADU): (encoder counts per (sample2)) * 65536
Velocity Units (VU): encoder counts per sample * 65536

1. Clear the faults by setting the Control Word object (6040h) to these values:

a. 0

b. 0080h (128 decimal)

c. 0

2. Set the Modes of Operation object (6060h) to the value 6 (decimal).

3. Set the Homing Method object (6098h) to the method desired. For details, see Object 6098h:
Homing Method on page 201.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 61 of 234

Homing Example

4. Set subindex 1 of the Homing Speed object (6099h) to the desired speed in VU (for example, the
decimal value 100000). This is always a positive value. The Homing mode determines the
direction of motion.

5. Set subindex 2 of the Homing Speed object (6099h) to the desired speed in VU (for example, the
decimal value 100000). This is always a positive value. The Homing mode determines the
direction of motion.

6. Set the Homing Acceleration object (609Ah) to the desired acceleration in ADU (for example, the
decimal value 10).

7. (Optional) Set the Home Offset object (607Ch) to the desired homing offset in PU.

8. Initialize and start the motion by setting the Control Word object (6040h) to these values:

a. 0006h (6 decimal) — This is required to satisfy the CiA 402 drive state machine. For
details, see CiA 402 Profile Motion State Machine on page 44.

b. 000Fh (15 decimal)

c. 001Fh (31 decimal) — The motion begins.

9. Wait for the motion to complete. The Status Word object (6041h) will report when the home
position has been located. When the motor has come to a stop, then bit 10 =1 (target reached)
and bit 12 = 1 (home position found).

If bit 13 = 1 in the Status Word object (6041h), there was an error and homing was not
completed.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 62 of 234

PDO Mapping

PDO Mapping
This chapter provides information on the Process Data Objects (PDOs) and the PDO mapping process. It
also describes the low-level steps that must occur at startup between the controller and the motor to
enable PDO communications.

Overview 64

Mapping and Communication Parameters Objects 65

Communications Parameters Objects 66

Mapping Parameters Objects 66

Mapping Entries 67

Mapping Procedure 67

Time Sync Motors Mapping Procedure 68

Example Start-up Sequence 69

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 63 of 234

Overview

Overview
Process Data Objects (PDOs) are containers that hold one or more data objects. The set of objects in a
PDO can be configured through the process of dynamic mapping. In a SmartMotor, this means that data
objects such as the Velocity Actual Value object (606Ch) and the Status Word object (6041h) can be
placed in the same PDO transmission from the SmartMotor. The same can be done for receive PDOs —
the motor will unpack the received PDO according to the mapping configuration and consume the data
objects.

A CAN packet contains a maximum payload of 8 bytes. This creates a limit to the amount of data that is
mapped into a single PDO. For example, a PDO can contain one INTEGER32 and two INTEGER16
objects. Other combinations are allowed, but the number of bytes must be 8 or less.

A set of objects is available for performing object mapping. These objects are included in the set known
as the Communication Profile objects (1000h-1FFFh). This is the standard for any CANopen devices
that support dynamic mapping. For details on the Communication Profile objects, see Communication
Profile on page 88.

NOTE: Some CANopen controllers may have a graphical interface or automated means of
performing this mapping.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 64 of 234

Mapping and Communication Parameters Objects

Mapping and Communication Parameters Objects
The next table lists the overall set of mapping and communication parameters objects. Note that all of
these contain sub-objects, which are described in the tables later in this section.

Object
decimal hex Description
5120 1400 Receive PDO1 Communication Parameters
5121 1401 Receive PDO2 Communication Parameters
5122 1402 Receive PDO3 Communication Parameters
5123 1403 Receive PDO4 Communication Parameters
5124 1404 Receive PDO5 Communication Parameters

5632 1600 Receive PDO1 Mapping Parameters
5633 1601 Receive PDO2 Mapping Parameters
5634 1602 Receive PDO3 Mapping Parameters
5635 1603 Receive PDO4 Mapping Parameters
5636 1604 Receive PDO5 Mapping Parameters

6144 1800 Transmit PDO1 Communication Parameters
6145 1801 Transmit PDO2 Communication Parameters
6146 1802 Transmit PDO3 Communication Parameters
6147 1803 Transmit PDO4 Communication Parameters
6148 1804 Transmit PDO5 Communication Parameters

6656 1A00 Transmit PDO1 Mapping Parameters
6657 1A01 Transmit PDO2 Mapping Parameters
6658 1A02 Transmit PDO3 Mapping Parameters
6659 1A03 Transmit PDO4 Mapping Parameters
6660 1A04 Transmit PDO5 Mapping Parameters

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 65 of 234

Communications Parameters Objects

Communications Parameters Objects
The next table describes the Communications Parameters objects (receive and transmit), which have
sub-objects of the same structure.

Subindex (decimal) Description
0 Number of Entries: The number of sub-objects in the object; the value is 5 (read

only).
1 COB-ID: This PDO will listen for CAN packets with this identifier (Receive PDO) or

transmit CAN packets with this identifier (Transmit PDO).
2 Transmission Type:

Value 0: N/A

Value 1: Transmit on sync packet (Transmit PDO). Accept data on sync packet
(Receive PDO). The Transmit PDO is sent when a sync packet is seen.

Values 2–240: Same as value 1, except the rate is divided (e.g., the value 2
specifies every other sync packet).

Values 241–251: Reserved.

Values 252, 253: Not supported.

Value 254: Transmit if the self-timer has expired. This mode simply transmits this
PDO at the rate of the event timer.

Value 255: Transmit if either the event timer period expires or an object mapped
in the PDO changes value. The event timer for each PDO resets each time a
transmission occurs through either mechanism. Therefore, the event timer is a
maximum time between transmissions; the inhibit time is a minimum time between
transmissions.

3 Inhibit time: Limits how often a transmission is allowed. This is typically left at the
default setting. The units are: value * 100 microseconds (i.e., a value of 1 is 100
microseconds).

4 Compatibility entry: Use the default setting.
5 Event Timer: The maximum time (in milliseconds) between transmissions of this

PDO if the transmission type value for a transmit PDO is 254 or 255.

Mapping Parameters Objects
The next table describes the Mapping Parameters objects (receive and transmit), which have sub-
objects of the same structure.

Subindex (decimal) Description
0 Number of Entries: Defines the number of objects that are mapped within this

PDO. For instance, if "Mapping Entry 1" and "Mapping Entry 2" have been set up,
then write the value 2.

1 Mapping Entry 1: Points to the mapped object. For details, see the next sections.
2 Mapping Entry 2: Points to the mapped object. For details, see the next sections.
3 Mapping Entry 3: Points to the mapped object. For details, see the next sections.
4 Mapping Entry 4: Points to the mapped object. For details, see the next sections.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 66 of 234

Mapping Entries

Mapping Entries
Only four mapping entries are allocated for the SmartMotor. Therefore, a maximum of four objects can
be mapped into a PDO. The mapping entries must be filled contiguously starting from mapping entry 1.
For example, for three entries, use mapping entry 1, 2 and 3.

All of these mapping entries are UNSIGNED32-bit values. There are three pieces of data packed into
each of these fields to represent the object being mapped:

l The object number

l The object subindex (0 if none)

l The object size (in bits)

Therefore, in the form: (hex) nnnniiss
l n: object number

l i: subindex

l s: size

This example uses the Velocity Actual Value object (606Ch):

(hex) 606c0020

CAUTION: There is a specific procedure defined by the CANopen specification for
mapping a variable. This procedure must be used or an error will occur, which will
prevent the change to the mapping.

Mapping Procedure
This procedure uses the previous Velocity Actual Value object example. Transmit PDO 1 is mapped to
contain the Velocity Actual Value object (606Ch) and the Status Word object (6041h).

1. Enter the NMT Pre-Operational state.

2. Set bit 31 of the COB-ID — set subindex 1 of the Transmit PDO Communication Parameter 1
object (1800h) to the value C0000180h. This assumes that subindex 1 of object 1800h has been
set to the default value 40000180h.

3. Set the number of entries to 0 in subindex 0 of the Transmit PDO Mapping Parameter 1 object
(1A00h).

4. Using the same object (1A00h), set the mapping object. It uses a 32-bit value with this order:
highest 2 bytes: object; next byte: subindex; the last byte: length in bits.

a. For the status word, set subindex 1 = 60410010h.

b. For the actual velocity, set subindex 2 = 606c0020h.

5. Using the same object (1A00h), set the number of entries back to the number of items created in
the previous step — set subindex 0 to the value 2.

6. Clear bit 31 of the COB-ID — set subindex 1 of object 1800h to the value 40000180h. This will
specify this PDO to transmit with the COB-ID of 180h.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 67 of 234

Time Sync Motors Mapping Procedure

7. Set the Transmission Type in subindex 2 of object 1800h to "sync" (1-240) or "event timer"
(254-255).

If the "event timer" is chosen, then also specify the number of milliseconds between
transmissions in subindex 5 of object 1800h.

8. Enter the NMT Operational state.

Time Sync Motors Mapping Procedure
This procedure maps SmartMotors to synchronize (following) motion based on an external encoder
input.

1. External encoder:

a. Node-ID: 100

b. Transmit PDO 1:

1. Transmission type 1 (sync)

2. COB ID: 1e4h

3. Mapping: object 6004h (32-bit)

2. SmartMotor 1

a. Node-ID: 1

b. Receive PDO 1:

1. Transmit type 1 (sync reception)

2. COB ID: 1e4h (encoder’s transmit PDO)

3. Mapping: object 2208h, subindex 3 (32 bit)

c. Receive PDO 2:

1. Transmit type 1 (sync reception)

2. COB ID: 301h

3. Mapping: object 2209h, subindex 0 (16 bit)

d. Receive PDO 3: (optional if control word desired as PDO – not required to synchronize
following mode.)

1. Transmit type 1 (sync reception)

2. COB ID: 401h

3. Mapping: object 6040h, subindex 0 (16 bit)

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 68 of 234

Example Start-up Sequence

3. SmartMotor 2

a. Node-ID: 2

b. Receive PDO 1:

1. Transmit type 1 (sync reception)

2. COB ID: 1e4h (encoder’s transmit PDO.)

3. Mapping: object 2208h, subindex 3 (32 bit)

c. Receive PDO 2:

1. Transmit type 1 (sync reception)

2. COB ID: 301h (same as motor 1)

3. Mapping: object 2209h, subindex 0 (16 bit)

d. Receive PDO 3: (optional if control word desired as PDO – not required to synchronize
following mode),

1. Transmit type 1 (sync reception)

2. COB ID: 402h

3. Mapping: object 6040h, subindex 0 (16 bit)

4. Use the same process for the remaining motors.

Also, see the next example start-up sequence that is based on this mapping.

Example Start-up Sequence
This is an example start-up sequence based on an application using the previous mapping:

1. Power up of system

2. PLC/Controller: Set encoder PDO parameters, PDO mapping, any other settings.

3. PLC/Controller: Set motor 1 PDO mappings, PDO parameters. Repeat for motor 2, 3, etc.

4. PLC/Controller: Set motor 1 object 1006h to cycle time in micro seconds. Example: 10
millisecond sync rate: set value to 10000. Repeat for motor 2, 3, etc.

5. PLC/Controller: begin sending sync packet (COB-ID 80h) continuously at selected rate.

6. PLC/Controller: Set object 6060h to value -11 in each SmartMotor.

7. PLC/Controller: Clear limits in each SmartMotor(if no hardware limit switches):

a. Write to object 2101h, subindex 3: value = 2

b. Write to object 2101h, subindex 3: value = 3

8. PLC/Controller: configure object 220Ah – 220Dh in each motor to configure follow ratio, and
ramp-up/ramp-down rates in follow mode.

9. PLC/Controller: configure object 2207h in each motor to configure the maximum expected value
from the encoder. For example if encoder has position range of 0 to 4095 (4096 resolution),
then set value in object 2207h to the value: 4095.

10. PLC/Controller: Set NMT state to operational (broadcast to encoder and all motors.)

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 69 of 234

Example Start-up Sequence

11. PLC/Controller: clear faults in each SmartMotor:

a. Write 0080h to object 6040h.

b. Write 0000h to object 6040h.

12. PLC/Controller: enable operation in each SmartMotor:

a. Write 0006h to object 6040h.

b. Write 0007h to object 6040h.

c. Write 000Fh to object 6040h.

13. Motors are now following the encoder.

14. To halt all SmartMotors, send RxPDO 2 (mapped to object 2209h) with bit 0 set to value 1. All
motors receive this at the same sync interval. All motors will begin ramp down equivalent to X(2)
command.

15. To resume all SmartMotors, send RxPDO 2 (mapped to object 2209h) with bit 0 set to value 0.
All motors receive this at the same sync interval. All motors will begin ramp up equivalent to G
(2) command.

Also, see the example user program: CAN Bus - Time Sync Follow Encoder in Chapter 3 of the
SmartMotor Developer's Guide for a similar application that uses a SmartMotor as the "controller".

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 70 of 234

CANopen User Program Commands

CANopen User Program Commands
This chapter provides details on the CANopen commands used with the SmartMotor and its user
program. SmartMotor programming is described in the SmartMotor™ Developer's Guide. The
SmartMotor user program allows the motor to take on autonomous or distributed control functions
needed in an application.

NOTE: The CAN network must have all devices set to the same baud rate for proper operation.

Address and Baud Rate Commands 72

CADDR=frm 72

CBAUD=frm 72

CAN Error Reporting Commands 72

=CAN, RCAN 72

RB(2,4), x=B(2,4) 75

Network Control Commands 75

CANCTL(action, value) 75

NMT(address, command code) 77

SDORD(address, obj index, subindex, bytecount) 77

SDOWR(address, obj index, subindex, bytecount, data) 78

Exceptions to NMT, SDORD and SDOWR Commands 78

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 71 of 234

Address and Baud Rate Commands

Address and Baud Rate Commands
These are related commands. For more details on these commands, see the SmartMotor™ Developer's
Guide.

CADDR=frm
Set can address
Where frm is a number from 1 to 127. The value is stored in the SmartMotor's EEPROM. However, the
SmartMotor must be powered off and on for it to take effect.

CBAUD=frm
Set CAN baud rate
Where frm may be one of these bit rates (bits/second): 1000000, 800000, 500000, 250000, 125000,
50000 and 20000. The value is stored in the SmartMotor's EEPROM. However, the SmartMotor must
be powered off and on for it to take effect.

The setting of 10000 bits/second is not supported. For details on other unsupported CANopen
features, see Not Supported on page 33.

CAN Error Reporting Commands
These are related commands. For more details on these commands, see the SmartMotor™ Developer's
Guide.

=CAN, RCAN
Get CAN error
The =CAN and RCAN commands are used to assign/report errors and certain status information for the
CAN bus.

l Assigned to a program variable: x=CAN(y)

l As a report: RCAN(y)

Where y is:

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 72 of 234

=CAN, RCAN

Assignment Report Description
=CAN(0) RCAN(0) Gets the CAN bus status bits:

(*Indicates an error bit)

Bit Description
0 CAN power okay (not used by CANopen)
 1* DeviceNet COM fault occurred (not used by CANopen)
2 DeviceNet Power Ignore option enabled (not used by CANopen)
3 Reserved
 4* User attempted a Combitronic read from broadcast address
 5* Combitronic debug, internal issue.
 6* Timeout (Combitronic client)
 7* Combitronic server ran out of buffer slots
 8* Errors reached warning level
 9* Receive Errors reached warning level
 10* Transmit Errors reached warning level
 11* Receive Passive Error
 12* Transmit Passive Error
 13* Bus Off Error
 14* RX buffer 1 overflowed
 15* RX buffer 0 overflowed

=CAN(1) RCAN(1) Gets the value of the current NMT state:

l Pre-Operational: 127
l Operational: 5
l Stopped: 4

=CAN(2) RCAN(2) Gets the value of the Control Word object (6040h)
=CAN(3) RCAN(3) Gets the value of the Status Word object (6041h)

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 73 of 234

=CAN, RCAN

Assignment Report Description
=CAN(4) RCAN(4) Gets the result code of the most recent SDO read or write, or NMT

command as a controller.

Code Description Type
0 No error (operation succeeded). SDO

NMT
 >0 Error from remote device as defined by CANopen and/or

remote device datasheet. Refer to SDO Response Error
Codes.

SDO

-1 Timeout SDO
-2 Multiple commands issued (tried to call an SDO oper-

ation while SDO was busy, such as from an interrupt).
SDO

-3 Controller disabled. Use appropriate CANCTL(…) func-
tion to activate controller mode.

SDO
NMT

-4 Protocol not supported. The remote device attempted to
respond with an unsupported method.

SDO

-5 Transmit fail. Hardware, baud rate, cabling or similar is
causing a backlog in the transmit buffer.

SDO
NMT

-6 Wrong size. SDORD command was called with one data
size; response from remote device was different size.

SDO
read

-20 Invalid host. The remote device address is out of pos-
sible range.

SDO
NMT

-21 Invalid data size (requested an unsupported size). SDO
-22 Invalid object index (outside the allowed range). Index

must be from 0 to 65535.
SDO

-23 Invalid object subindex (outside the allowed range).
subindex must be from 0 to 255.

SDO

-24 Invalid NMT command state. Requested NMT state is
out of range (this is a gross range check; it doesn't imply
all values in the range are valid).

NMT

The =CAN(0) and RCAN(0) commands are used to report a bit map of conditions that could occur over
the CAN bus. Not all bits are error bits. Therefore, it cannot be assumed that a nonzero value for RCAN
is an error.

RCAN, which is the same as RCAN(0), reports a decimal number that is a combination of the bits shown
in the =CAN(0)/RCAN(0) row of the previous table. Use the CAN command, which is the same as =CAN
(0), in a program to assign the decimal number to a variable, for example:

x=CAN

A calculator with a binary display function can convert this decimal number to indicate the set of bits
shown. Also, the SmartMotor Developer's Worksheet can be used for this conversion. It is available
from the Moog Animatics website Knowledgebase at:

www.animatics.com/support/downloads.knowledgebase.html

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 74 of 234

http://www.animatics.com/support/downloads.knowledgebase.html

RB(2,4), x=B(2,4)

NOTE: Object 2304h, subindex 3, bit 4 (CAN error) reports true if any of the error indications above
are set. In a user program, this is a simpler test than attempting to filter the result of RCAN for the
error conditions.

RB(2,4), x=B(2,4)
Determine if CAN error has occurred
Report/get if an error state has occurred over CAN, CANopen or Combitronic. Further investigation
through RCAN(0) will give more details. This can be cleared using the Z(2,4) or ZS command.

For more details, see the SmartMotor™ Developer's Guide.

Network Control Commands
These are related commands. For more details on these commands, see the SmartMotor™ Developer's
Guide.

CANCTL(action, value)
Control network features
Commands execute based on the action argument, which controls CAN functions.

Action = Description
0 Reserved; not used in CANopen firmware.
1 Reset the CAN communications controller in the motor and all

errors. Resets the CANopen protocol in the motor. The value
argument is ignored.

2 Reset the activity of the CANopen clock sync using the
high-resolution time stamp. The value argument is ignored.

3 This action uses these value arguments:
l Value = 0: Reset the CANopen interpolation buffer through

user command. Leaves the buffer disabled to prevent new
data points.

l Value = 1: Reset the CANopen interpolation buffer through
user command. Sets buffer access to allow new data points.

4 Use of this command is discouraged. It was previously provided to
force the motion mode of operation from a user program. However,
this functionality is now available through existing SmartMotor
commands such as MV, MP, MT, MC, MFR, MSR and MD. For details
on these commands, see the SmartMotor™ Developer's Guide.

5 Set timeout for Combitronic. The value argument specifies the time
in milliseconds; it defaults to 30 (for 30 milliseconds).

12 This action uses these value arguments:
l Value = 0: Clears bit 14 in the status word (6041h). This is the

default value at power-up of the motor.
l Value = 1: Sets bit 14 in the status word (6041h).

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 75 of 234

CANCTL(action, value)

Action = Description
13 This action uses these value arguments:

l Value = 0: Disables access to several objects listed below.
Clears "remote" bit 9 in the status word (6041h).

l Value = 1: Enables access to several objects listed below. By
default, this is the state at power-up of the motor. Sets
"remote" bit 9 in the status word (6041h). The affected
objects are:

o 6040h: Control Word
o 6060h: Modes of Operation
o 6071h: Target Torque
o 6081h: Profile Velocity (pp mode)
o 6083h: Profile Acceleration
o 6084h: Profile Deceleration
o 6087h: Torque Slope
o 60FBh: Subindex 1–8, 10 (PID parameters)
o 60FFh: Target Velocity

14 Enable/disable Combitronic time sync based on <value>:

0 - Disable
1 - Enable as follower (default at power up)
2 - Enable as controller

15 Set timeout in milliseconds, where:

l Value=[time in milliseconds]
Default value is 1000 milliseconds

If the program encounters a PRINT statement while the buffer is still
waiting to be read, then the program pauses either for the specified
time or until the buffer is read—the pause lasts only for the shorter
condition. After this timeout, the string is replaced by the output
from the pending PRINT statement.

16a Sets the SDO command read/write timeout period. SDO reads or
writes initiated by the SmartMotor acting as CANopen controller will
wait up to this time before declaring a timeout.
<value> sets time in msec; range from 10 to 1000. Default value is
500.

17a,b Enables controller commands: NMT, SDORD, SDOWR. For future sup-
port of controller functionality and features, certain number ranges
are reserved (see next table).

18 CSP mode sync priority control: 5.0.4.49 / 5.98.0.49 or later

0: Default, disables this special mode
1: Enable sync timing priority suppression (uncommon)

a. Requires motor firmware 5.0.4.30, 5.98.4.30(Class 5 D/M, respectively) /
6.4.2.54 (Class 6 D) or later; these are for CANopen only.
b. When not enabled, by default, the commands NMT, SDORD, SDOWR will return
an error instead of the intended action/value. Bit 0 of status word 10 will be a 1
(true) when controller is enabled.

Reserved values for CANCTL(17,value):

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 76 of 234

NMT(address, command code)

Value Description
-1 Disable controller commands (default)
0-2 Reserved
3 Enable controller commands; "simple mode" (no flying controller, no monitoring of

nodes, no EMCY support, no LSS support)
4-9999 Reserved

NMT(address, command code)
For command codes and range of addresses, see NMT Control on page 27

NOTE: See CANCTL(17,x) on page 76, which is required to activate this command.
Transmit NMT message to network
The NMT command transmits an NMT message to the network; it can command a specific follower or
all followers to enter the commanded state. The command uses the form:

NMT(target address, desired state)

NMT(0,1) 'Tell everyone to go operational.
NMT(2,128) 'Tell motor 2 to go pre-operational.
x=CAN(4)
IF x!=0

' NMT command failed.
ENDIF

SDORD(address, obj index, subindex, bytecount)
Read value from SDO
The SDORD command gets (reads) the value from the specified SDO on a specified device.

NOTE: See CANCTL(17,x) on page 76, which is required to activate this command.

EXAMPLE: Read an SDO

x=SDORD(1, 24592,0,2) ' Read 2 bytes from address 1,
' object 0x6010, sub-index 0.

e=CAN(4) ' Get any error information

y=SDORD(1, 24608,0,2) ' Read 2 bytes from address 1,
' object 0x6020, sub-index 0.

ee=CAN(4) ' Get any error information

IF (e|ee)==0 ' Confirm the status of both SDO operations.
' Success.

b=x ' Set some example variable according
c=y ' to the data received.
GOSUB(3) ' Some routine to take action when this data is valid.

ELSE
GOSUB(8) ' Go do something to deal with error when read fails.

ENDIF

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 77 of 234

SDOWR(address, obj index, subindex, bytecount, data)

SDOWR(address, obj index, subindex, bytecount, data)
Write value to SDO
The SDOWR command writes a value to the specified SDO on a specified device.

NOTE: See CANCTL(17,x) on page 76, which is required to activate this command.

EXAMPLE: Write an SDO

a=1234
SDOWR(1,9029,0,4,a) ' Write 4 bytes to address 1.
IF CAN(4)==0 ' Confirm the status of the most recent SDO operation.

' Success.
GOSUB(4) ' Some routine to take action when the write succeeds.

ELSE
GOSUB(9) ' Go do something to deal with error when write fails.

ENDIF

Exceptions to NMT, SDORD and SDOWR Commands
Note these exceptions when using the NMT, SDORD, SDOWR commands:

l No Combitronic version of these commands, i.e., there is no ":" operator form of the command,
for example:
 x=SDORD(…):3
is not allowed. Refer to each command's description in Part 2 of this guide.

l No monitoring the heartbeat of other network nodes.

l No special commands for sending or receiving PDOs. PDOs must be mapped to existing objects
to send or receive data as a follower device. Even the SmartMotor designated as a controller
must configure its own PDO mappings.

NOTE: SmartMotors currently have 5 transmit and 5 receive PDOs.
l No capability to read EDS files. The user is responsible for writing a program with the relevant

object index, subindex and data type.
l No LSS host behavior is provided from the SmartMotor. Each follower device is expected to

have the properly configured address and baud rate. Each device must have a unique address; all
devices must use the same baud rate. Any need to set the baud rate or address is not the
responsibility of Moog Animatics.

l Only one SmartMotor may fill the controller role. No other SmartMotors on the network may
issue these commands, because this implementation does not support a mult-CANopen-
controller functionality.

l No support for controller read/write of segmented or block SDO protocol. Only Expedited (32-
bit or smaller) data transmission are supported by the controller functionality.

For more details and example programs, see the SmartMotor™ Developer's Guide.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 78 of 234

Troubleshooting

Troubleshooting
This section provides troubleshooting information for solving SmartMotor problems that may be
encountered when using CANopen. For additional support resources, see the Moog Animatics Support
page at:

http://www.animatics.com/support.html

Issue Cause Solution
CANopen Communication Issues
Controller does not
recognize motor.

Motor not powered. Check Drive Status LED. If LED is not lit,
check wiring.

Disconnected or miswired
CAN connector, or broken
wiring between motors.

Check that CANopen connector is correctly
wired and connected to motor. For details,
see Status LEDs on page 34.

Wrong CAN BAUD rate. Set CBAUD setting and then reboot motor.
For details, see Address and Baud Rate
Commands on page 72.

Wrong CAN node ID (address) Set CADDR setting and then reboot motor.
For details, see Address and Baud Rate
Commands on page 72.

Wrong firmware Contact Moog Animatics for the correct
firmware version.

Wrong bus topology, or
wrong placement of
terminators.

The CAN bus should be a linear bus
topology. For details, see Status LEDs on
page 34.

Line lengths or drop lengths
of CAN bus are too long.

Decrease line and/or drop lengths. For
details, see Status LEDs on page 34.

Network flooded with traffic. Set controller temporarily to the
Pre-Operational state. Stop user programs
in all motors. For details, see NMT States
on page 26.

Red CAN error LED. A warning or bus off
condition has occurred.

Check CAN Bus Network Fault LED — A
blinking red LED may indicate occasional
issues from any of the causes listed above;
a solid red LED indicates that these issues
have occurred frequently, which causes the
motor to stop communicating (bus off
condition). In this case, the SmartMotor
must be reset after fixing the cause of the
problem.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 79 of 234

http://www.animatics.com/support.html

Troubleshooting

Issue Cause Solution
Communication and Control Issues
Motor control power
light does not
illuminate.

Motor is equipped with the
DE option.

To energize control power, apply 24-48
VDC to pin 15 and ground to pin 14.

Motor has routed drive
power through drive-enable
pins.

Ensure cabling is correct and drive power
is not being delivered through the 15-pin
connector.

Motor does not
communicate with SMI.

Transmit, receive, or ground
pins are not connected
correctly.

Ensure that transmit, receive and ground
are all connected properly to the host PC.

Motor program is stuck in a
continuous loop or is
disabling communications.

To prevent the program from running on
power up, use the Communications Lockup
Wizard located on the SMI software
Communications menu.

Motor disconnects from
SMI sporadically.

COM port buffer settings are
too high.

Adjust the COM port buffer settings to
their lowest values.

Poor connection on serial
cable.

Check the serial cable connections and/or
replace it.

Power supply unit (PSU)
brownout.

PSU may be too high-precision and/or
undersized for the application, which
causes it to brown-out during motion.
Make moves less aggressive, increase PSU
size, or change to a linear unregulated
power supply.

Motor stops
communicating over
serial port after power
reset, requires re-
detection.

Motor does not have its
address set in the user
program. NOTE: Serial
addresses are lost when
motor power is off or reset.

Use the SADDR or ADDR= command within
the program to set the motor address.

Red PWR SERVO light
illuminated.

Critical fault. To discover the source of the fault, use the
Motor View tool located on the SMI
software Tools menu.

Common Faults
Bus voltage fault. Bus voltage is either too high

or too low for operation.
Check servo bus voltage. If motor uses the
DE power option, ensure that both drive
and control power are connected.

Overcurrent occurred. Motor intermittently drew
more than its rated level of
current. Does not cease
motion

Consider making motion less abrupt with
softer tuning parameters or acceleration
profiles.

Excessive temperature
fault.

Motor has exceeded
temperature limit of 85°C.
Motor will remain
unresponsive until it cools
down below 80°C.

Motor may be undersized or ambient
temperature is too high. Consider adding
heat sinks or forced air cooling to the
system.

Excessive position
error.

The motor's commanded
position and actual position
differ by more than the user-
supplied error limit.

Increase error limit, decrease load, or
make movement less aggressive.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 80 of 234

SDO Response Error Codes

Issue Cause Solution
Historical
positive/negative
hardware limit faults.

A limit switch was tripped in
the past.

Clear errors with the ZS command.

Motor does not have limit
switches attached.

Configure the motor to be used without
limit switches by setting their inputs as
general use.

Programming and SMI Issues
Several commands not
recognized during
compiling.

Compiler default firmware
version set incorrectly.

Use the "Compiler default firmware
version option" in the SMI software
Compile menu to select the default
firmware version closest to the motor
firmware version. In the SMI software,
view the motor firmware version by right-
clicking the motor and selecting
Properties.

SDO Response Error Codes

The next table shows the list of possible errors (abort codes) from a remote device as defined by
CANopen and/or remote device datasheet.

NOTE: Unlisted codes are reserved.

Code
Description

Hex Dec
0503 0000h 84082688 Toggle bit not alternated.
0504 0000h 84148224 SDO protocol timed out. Note that the SmartMotor uses the RCAN(4) -

1 value to indicate a timeout. Refer to Troubleshooting on page 79.
0504 0001h 84148225 Client/server command specifier not valid or unknown.
0504 0002h 84148226 Invalid block size (block mode only).
0504 0003h 84148227 Invalid sequence number (block mode only).
0504 0004h 84148228 CRC error (block mode only).
0504 0005h 84148229 Out of memory.
0601 0000h 100728832 Unsupported access to an object.
0601 0001h 100728833 Attempt to read a write only object.
0601 0002h 100728834 Attempt to write a read only object.
0602 0000h 100794368 Object does not exist in the object dictionary.
0604 0041h 100925505 Object cannot be mapped to the PDO.
0604 0042h 100925506 Number and length of objects to be mapped would exceed PDO length.
0604 0043h 100925507 General parameter incompatibility reason.
0604 0047h 100925511 General internal incompatibility in the device.
0606 0000h 101056512 Access failed due to a hardware error.
0607 0010h 101122064 Data type does not match—length of service parameter does not

match.
0607 0012h 101122066 Data type does not match—length of service parameter too high.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 81 of 234

SDO Response Error Codes

Code
Description

Hex Dec
0607 0013h 101122067 Data type does not match—length of service parameter too low.
0609 0011h 101253137 Subindex does not exist.
0609 0030h 101253168 Value range of parameter exceeded (only for write access).
0609 0031h 101253169 Value of parameter written too high.
0609 0032h 101253170 Value of parameter written too low.
0609 0036h 101253174 Maximum value is less than minimum value.
0800 0000h 134217728 General error.
0800 0020h 134217760 Data cannot be transferred or stored to the application.
0800 0021h 134217761 Data cannot be transferred or stored to the application because of

local control.
0800 0022h 134217762 Data cannot be transferred or stored to the application because of the

present device state.
0800 0023h 134217763 Object dictionary dynamic generation fails or no object dictionary is

present (e.g., object dictionary is generated from file and generation
fails because of a file error).

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 82 of 234

Object Reference

Object Reference
This chapter provides details on the CANopen objects used with the Moog Animatics SmartMotor. The
TOC below groups the objects by category.

Object Categories 87

Communication Profile 88

Object 1000h: Device Type 90

Object 1001h: Error Register 91

Object 1005h: COB-ID SYNC 92

Object 1006h: Communication Cycle Period 94

Object 1008h: Manufacturer Device Name 95

Object 1009h: Manufacturer Hardware Version 96

Object 100Ah: Manufacturer Software Version 97

Object 1013h: High-Resolution Timestamp 98

Object 1017h: Producer Heartbeat Time 99

Object 1018h: Identity Object 100

Object 1200h: Server SDO Parameter 1 101

Object 1400h: Receive PDO Communication Parameter 1 102

Object 1401h: Receive PDO Communication Parameter 2 103

Object 1402h: Receive PDO Communication Parameter 3 104

Object 1403h: Receive PDO Communication Parameter 4 105

Object 1404h: Receive PDO Communication Parameter 5 106

Object 1600h: Receive PDO Mapping Parameter 1 107

Object 1601h: Receive PDO Mapping Parameter 2 108

Object 1602h: Receive PDO Mapping Parameter 3 109

Object 1603h: Receive PDO Mapping Parameter 4 110

Object 1604h: Receive PDO Mapping Parameter 5 111

Object 1800h: Transmit PDO Communication Parameter 1 112

Object 1801h: Transmit PDO Communication Parameter 2 113

Object 1802h: Transmit PDO Communication Parameter 3 114

Object 1803h: Transmit PDO Communication Parameter 4 115

Object 1804h: Transmit PDO Communication Parameter 5 116

Object 1A00h: Transmit PDO Mapping Parameter 1 117

Object 1A01h: Transmit PDO Mapping Parameter 2 118

Object 1A02h: Transmit PDO Mapping Parameter 3 119

Object 1A03h: Transmit PDO Mapping Parameter 4 120

Object 1A04h: Transmit PDO Mapping Parameter 5 121

Manufacturer-Specific Profile 122

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 83 of 234

Object Reference

Object 2000h: Node Id 124

Object 2001h: Bit Rate Index 125

Object 2100h: Port Configuration 126

Object 2101h: Bit IO 127

Object 2200h: User EEPROM 128

Object 2201h: User Variable 129

Object 2202h: Set Position Origin 130

Object 2203h: Shift Position Origin 131

Object 2204h: Mappable 32-bit Variables 132

Object 2205h Negative Software Position Limit 133

Object 2206h Positive Software Position Limit 134

Object 2207h Encoder Modulo Limit 135

Object 2208h Encoder Follow Data 136

Object 2209h Encoder Follow Control 137

Start/Stop Capability 137

Object 220Ah MFMUL 139

Object 220Bh MFDIV 140

Object 220Ch MFA 141

Object 220Dh MFD 142

Object 2220h: 8-Bit Mappable Variables 143

Object 2221h: 16-Bit Mappable Variables 144

Object 2300h: Bus Voltage 145

Object 2301h: RMS Current 146

Object 2302h: Internal Temperature 147

Object 2303h: Internal Clock 148

Object 2304h: Motor Status 149

Object 2305h: Motor Control 158

Object 2306h: Motor Subroutine Index 159

Object 2307h: Sample Period 160

Object 2308h: Microsecond Clock 161

Object 2309h: GOSUB R2 162

Object 2400h: Interpolation Mode Status 163

Object 2401h: Buffer Control 164

Object 2402h: Buffer Setpoint 165

Object 2403h: Interpolation User Bits 166

Object 2404h: Interpolation Sample Clock 167

Object 2500h: Encapsulated SmartMotor Command 168

Drive and Motion Control Profile 169

Object 6040h: Control Word 171

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 84 of 234

Object Reference

Object 6041h: Status Word 173

Object 605Ah: Quick Stop Option Code 174

Object 605Ch: Disable Operation Option Code 175

Object 605Dh: Halt Option Code 176

Object 605Eh: Fault Reaction Option Code 177

Object 6060h: Modes of Operation 178

Object 6061h: Modes of Operation Display 180

Object 6062h: Position Demand Value 181

Object 6063h: Position Actual Internal Value 182

Object 6064h: Position Actual Value 183

Object 6065h: Following Error Window 184

Object 606Bh: Velocity Demand Value 185

Object 606Ch: Velocity Actual Value 186

Object 6071h: Target Torque 187

Object 6074h: Torque Demand Value 188

Object 6077h: Torque Actual 189

Object 6079h: DC Link Circuit Voltage 190

Object 607Ah: Target Position 191

Object 607Ch: Home Offset 192

Object 6080h: Max Motor Speed 194

Object 6081h: Profile Velocity in PP Mode 195

Object 6083h: Profile Acceleration 196

Object 6084h: Profile Deceleration 197

Object 6085h: Quick Stop Deceleration 198

Object 6087h: Torque Slope 199

Object 608Fh: Position Encoder Resolution 200

Object 6098h: Homing Method 201

Object 6099h: Homing Speeds 203

Object 609Ah: Homing Acceleration 204

Object 60B8h: Touch Probe Function 205

Object 60B9h: Touch Probe Status 208

Object 60BAh: Touch Probe Position 1 Positive Value 210

Object 60BBh: Touch Probe Position 1 Negative Value 211

Object 60BCh: Touch Probe Position 2 Positive Value 212

Object 60BDh: Touch Probe Position 2 Negative Value 213

Object 60C0h: Interpolation Sub-Mode Select 214

Object 60C1h: Interpolation Data Record 215

Object 60C2h: Interpolation Time Period 216

Object 60C4h: Interpolation Data Configuration 218

Object 60D0h: Touch Probe Source 219

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 85 of 234

Object Reference

Object 60F4h: Following Error Actual Value 220

Object 60FBh: Position Control Parameter Set 221

Object 60FCh: Position Demand Internal Value 223

Object 60FDh: Digital Inputs 224

Object 60FEh: Digital Outputs 227

Object 60FFh: Target Velocity 229

Object 6402h: Motor Type 230

Object 6502h: Supported Drive Modes 231

Object 67FFh: Single Device Type 232

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 86 of 234

Object Categories

Object Categories
The object descriptions are grouped by these categories:

l Communication Profile on page 88

This set of objects in the range 1000h to 1FFFh implement the 301 specification for general
CANopen communications. This configures CANopen services and PDO behavior.

l Manufacturer-Specific Profile on page 122

This set of objects in the range 2000h to 5FFFh implement manufacturer-specific objects,
which do not adhere to a common standard. They provide access to SmartMotor commands and
data.

l Drive and Motion Control Profile on page 169

This set of objects in the range 6000h to 67FFh implement the CiA 402 motion profile. This
provides access to common commands for controlling the motor.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 87 of 234

Communication Profile

Communication Profile
This section describes the objects in the Communication Profile. This set of objects in the range 1000h
to 1FFFh implement the 301 specification for general CANopen communications. This configures
CANopen services and PDO behavior.

Object 1000h: Device Type 90

Object 1001h: Error Register 91

Object 1005h: COB-ID SYNC 92

Object 1006h: Communication Cycle Period 94

Object 1008h: Manufacturer Device Name 95

Object 1009h: Manufacturer Hardware Version 96

Object 100Ah: Manufacturer Software Version 97

Object 1013h: High-Resolution Timestamp 98

Object 1017h: Producer Heartbeat Time 99

Object 1018h: Identity Object 100

Object 1200h: Server SDO Parameter 1 101

Object 1400h: Receive PDO Communication Parameter 1 102

Object 1401h: Receive PDO Communication Parameter 2 103

Object 1402h: Receive PDO Communication Parameter 3 104

Object 1403h: Receive PDO Communication Parameter 4 105

Object 1404h: Receive PDO Communication Parameter 5 106

Object 1600h: Receive PDO Mapping Parameter 1 107

Object 1601h: Receive PDO Mapping Parameter 2 108

Object 1602h: Receive PDO Mapping Parameter 3 109

Object 1603h: Receive PDO Mapping Parameter 4 110

Object 1604h: Receive PDO Mapping Parameter 5 111

Object 1800h: Transmit PDO Communication Parameter 1 112

Object 1801h: Transmit PDO Communication Parameter 2 113

Object 1802h: Transmit PDO Communication Parameter 3 114

Object 1803h: Transmit PDO Communication Parameter 4 115

Object 1804h: Transmit PDO Communication Parameter 5 116

Object 1A00h: Transmit PDO Mapping Parameter 1 117

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 88 of 234

Communication Profile

Object 1A01h: Transmit PDO Mapping Parameter 2 118

Object 1A02h: Transmit PDO Mapping Parameter 3 119

Object 1A03h: Transmit PDO Mapping Parameter 4 120

Object 1A04h: Transmit PDO Mapping Parameter 5 121

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 89 of 234

Object 1000h: Device Type

Object 1000h: Device Type

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1000h 000 Device Type 00000000h FFFFFFFFh 00020192h No Unsigned
32-bit

Read
Only

This object is required by CANopen to provide information about this device. The value of this object
does not change.

Bit Meaning
0–15 (16 bits) Device profile: 402 (192 hex)
16–23 (8 bits) Device type: 02 hex, to indicate a single instance of a servo drive
24–31 (8 bits) Device mode: 0 (manufacturer-specific / reserved)

Also, refer to Object 67FFh: Single Device Type on page 232.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 90 of 234

Object 1001h: Error Register

Object 1001h: Error Register

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1001h 000 Error Register 00h FFh No Unsigned
8-bit

Read
Only

The value read from this object contains a bit field that means:

Bit Function
0 General error

Includes any of these:

l motion fault
l drive not ready
l CAN communication errors
l program command error
l program checksum error
l serial communication error

1–7 Reserved

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 91 of 234

Object 1005h: COB-ID SYNC

Object 1005h: COB-ID SYNC

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1005h 000 COB-ID SYNC 00000001h FFFFFFFFh 00000080h No Unsigned
32-bit

Read
Write

This object specifies the COB-ID used for the Synchronization object (transmit or receive).

Bit Setting
0–10 COB-ID of the Synchronization object.
11–28 Set to 0.
29 Set to 0 for typical 11-bit identifiers.
30 Set to 0 to be a sync consumer (receive).

Set to a 1 to be a sync producer (transmit). Sync message is
produced in any operation mode: Stopped, Operational and
Pre-Operational.

NOTE: The Communication Cycle Period object (1006h)
must be set before setting this bit to 1; otherwise, an SDO
abort error will be issued.

31 Set to 0 (not used).

For example, the motor is a:
l Sync consumer with the default sync COB-ID of 80h: 00000080h

l Sync producer with the default sync COB-ID of 80h: 40000080h

EXAMPLE: (for the complete program, see the example "CAN Bus - Time Sync Follow Encoder" in
Chapter 3 of the SmartMotor Developer's Guide)
'++++ HEX Coded Objects for CAN +++++
. . .
#define x1005 4101 ' Object 1005h: COB-ID Sync
#define x1006 4102 ' Object 1006h: Communication Cycle Period
. . .
mmm=1 ' The network controller's address.
eee=2 ' The encoder's address.
. . .

NMT(0,128) GOSUB10 ' Network broadcast to go pre-operational state.
' Set up the sync producer/consumers and set timebase. Provides time sync so
' motor clocks keep in step and data is transmitted/accepted on sync.
SDOWR(mmm,x1006,0,4,10000) GOSUB10 ' define Cycle period object 0x1006:0,

' size 4, 10ms
SDOWR(eee,x1006,0,4,10000) GOSUB10 ' define Cycle period object 0x1006:0,

' size 4, 10ms
SDOWR(mmm,x1005,0,4,128) GOSUB10 ' define Cycle ID x0000 0080 (required

' to avoid error in next line.)
SDOWR(mmm,x1005,0,4,1073741952) GOSUB10 ' define Cycle ID, producer

' x4000 0080
SDOWR(eee,x1005,0,4,128) GOSUB10 ' define Cycle ID, consumer x0000 0080

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 92 of 234

Object 1005h: COB-ID SYNC

. . .
C10 ' Code to check for CAN error and display it.

IF CAN(4)!=0
PRINT("Communication failed!",#13)

ENDIF
RETURN

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 93 of 234

Object 1006h: Communication Cycle Period

Object 1006h: Communication Cycle Period

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1006h 000 Communication Cycle Period 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object defines the communication cycle period in microseconds for transmission of the sync
message. Set to 0 to disable the sync message transmission. Also, refer to Object 1005h: COB-ID SYNC
on page 92.

For certain applications, this object can be used to provide these features:
l Network encoder following: When receiving encoder data, it will arrive at a rate of several

milliseconds between samples. For smooth motion, the SmartMotor must interpolate this data
internally at a faster rate to take smaller steps per PID cycle. The motor will know the time
interval based on object 1006h, cycle period.

l Synchronization: When the SmartMotors should all have a common timebase, this allows data to
be produced and consumed one-for-one. The arrival time of sync packets from the controller and
the value set as the cycle period by object 1006h will coordinate this behavior.

EXAMPLE: (for the complete program, see the example "CAN Bus - Time Sync Follow Encoder" in
Chapter 3 of the SmartMotor Developer's Guide)

'++++ HEX Coded Objects for CAN +++++
. . .
#define x1005 4101 ' Object 1005h: COB-ID Sync
#define x1006 4102 ' Object 1006h: Communication Cycle Period
. . .
mmm=1 ' The network controller's address.
eee=2 ' The encoder's address.
. . .

NMT(0,128) GOSUB10 ' Network broadcast to go pre-operational state.
' Set up the sync producer/consumers and set timebase. Provides time sync so
' motor clocks keep in step and data is transmitted/accepted on sync.
SDOWR(mmm,x1006,0,4,10000) GOSUB10 ' define Cycle period object 0x1006:0,

' size 4, 10ms
SDOWR(eee,x1006,0,4,10000) GOSUB10 ' define Cycle period object 0x1006:0,

' size 4, 10ms
SDOWR(mmm,x1005,0,4,128) GOSUB10 ' define Cycle ID x0000 0080 (required

' to avoid error in next line.)
SDOWR(mmm,x1005,0,4,1073741952) GOSUB10 ' define Cycle ID, producer

' x4000 0080
SDOWR(eee,x1005,0,4,128) GOSUB10 ' define Cycle ID, consumer x0000 0080

. . .
C10 ' Code to check for CAN error and display it.

IF CAN(4)!=0
PRINT("Communication failed!",#13)

ENDIF
RETURN

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 94 of 234

Object 1008h: Manufacturer Device Name

Object 1008h: Manufacturer Device Name

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1008h 000 Manufacturer Device Name SMClass5 No String Read
Only

This object contains the manufacturer device name. This value does not change and reports as:

Product Value (string)
Class 5D-Style SMClass5

Class 5M-Style SMClass5

Class 6D-Style SMClass6

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 95 of 234

Object 1009h: Manufacturer Hardware Version

Object 1009h: Manufacturer Hardware Version

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1009h 000 Manufacturer Hardware Ver-
sion 01.00 No String Read

Only

This object contains the device hardware version. This value does not change and reports as:

01.00

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 96 of 234

Object 100Ah: Manufacturer Software Version

Object 100Ah: Manufacturer Software Version

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

100Ah 000 Manufacturer Software Version No String Read
Only

This object contains the firmware version of the motor. It reports a string in the format:

Product Value (string) Length
Class 5D-Style 5.0.y.z 16
Class 5M-Style 5.98.y.z 16
Class 6D-Style 6.4.y.z 24

The y and z positions represent the major and minor software release version, respectively.

Similar SmartMotor Commands: RFW, RSP (firmware) info

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 97 of 234

Object 1013h: High-Resolution Timestamp

Object 1013h: High-Resolution Timestamp

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1013h 000 High-Resolution Timestamp 00000000h FFFFFFFFh 00000000h Yes Unsigned
32-bit

Read
Write

This object contains a timestamp with a resolution of 1 microsecond. It can be mapped into a PDO in
order to define a high-resolution timestamp.

Typically, one motor is configured to transmit its object 1013, and one or more other motors receive
this value for the purpose of synchronization.

When this object is read, it is the captured value of the high-resolution timer at the most recent sync;
therefore, it is not the current value.

NOTE: The captured value is not the current value of the high-resolution timer.

When this object is written, it is used to skew the motor's internal timing to stay synchronized with
other motors.

For more details, see Synchronization on page 58.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 98 of 234

Object 1017h: Producer Heartbeat Time

Object 1017h: Producer Heartbeat Time

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1017h 000 Producer Heartbeat Time 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

This object defines the cycle time of the heartbeat transmission from the motor in milliseconds.
Transmission begins as soon as the value is set. If the value is 0, nothing is transmitted.

The heartbeat contains information that tells the controller (or other devices) that the heartbeat came
from this device and what network state it is in (Operational, Pre-Operational, Stopped).

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 99 of 234

Object 1018h: Identity Object

Object 1018h: Identity Object

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1018h 000 Number of Entries 01h 04h 04h No Unsigned
8-bit

Read
Only

1018h 001 Vendor ID (CANopen) 00000000h FFFFFFFFh 00000226h No Unsigned
32-bit

Read
Only

1018h 002 Product Code 00000000h FFFFFFFFh 00000003h No Unsigned
32-bit

Read
Only

1018h 003 Revision Number 00000000h FFFFFFFFh Revision num-
ber No Unsigned

32-bit
Read
Only

1018h 004 Serial Number 00000000h FFFFFFFFh Motor serial
number No Unsigned

32-bit
Read
Only

This object contains general information about the device. These values are constant and do not
change.

l Subindex 1 contains the CANopen Vendor ID number assigned to Moog Animatics: 00000226h

l Subindex 2 contains the manufacturer-specific product code (varies by product):

Product Code (CANopen)
Class 5 D-Style 3
Class 5 M-Style 3
Class 6 D-Style 4

l Subindex 3 contains the revision number:
o Bit 31–16 is the major revision number
o Bit 15–0 is the minor revision number

l Subindex 4 contains the unique serial number of this SmartMotor. This number is the same as
the serial number printed on the SmartMotor label, except that the leading alpha character is
dropped. Only the 24-bit numeric digits are reported.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 100 of 234

Object 1200h: Server SDO Parameter 1

Object 1200h: Server SDO Parameter 1

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1200h 000 Number of Entries 02h 02h 02h No Unsigned
8-bit

Read
Only

1200h 001 COB-ID Client to Server 00000600h BFFFFFFFh 00000600
+ node ID No Unsigned

32-bit
Read
Only

1200h 002 COB-ID Server to Client 00000580h BFFFFFFFh 00000580
+ node ID No Unsigned

32-bit
Read
Only

These are the COB-ID values used for SDO communications from the CANopen controller to the
SmartMotor. The value is automatically updated based on the node ID (motor address) according to the
default connection set. This information cannot be changed; it is provided for informative purposes
only.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 101 of 234

Object 1400h: Receive PDO Communication Parameter 1

Object 1400h: Receive PDO Communication Parameter 1

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1400h 000 Number of Entries 02h 05h 05h No Unsigned
8-bit

Read
Only

1400h 001 COB-ID 00000001h FFFFFFFFh 00000200h
+ node ID No Unsigned

32-bit
Read
Write

1400h 002 Transmission Type 00h FFh FFh No Unsigned
8-bit

Read
Write

1400h 003 Inhibit Time 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

1400h 004 Compatibility Entry 00h FFh 00h No Unsigned
8-bit

Read
Write

1400h 005 Event Timer 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

This object controls the behavior of receive PDO 1.

For these items, refer to the table Communications Parameters Objects on page 66:
l Sub-index 0: Number of subindex objects in this object (5)

l Sub-index 1: COB-ID used for this PDO; when set, bit 31 is used to disable the PDO

l Sub-index 2: Transmission type

l Sub-index 3: Inhibit time in units of 100 microseconds

l Sub-index 4: Not used; use the default setting

l Sub-index 5: Event time, in milliseconds, for transmit PDOs type 254 and 255

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 102 of 234

Object 1401h: Receive PDO Communication Parameter 2

Object 1401h: Receive PDO Communication Parameter 2

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1401h 000 Number of Entries 02h 05h 05h No Unsigned
8-bit

Read
Only

1401h 001 COB-ID 00000001h FFFFFFFFh 80000300h
+ node ID No Unsigned

32-bit
Read
Write

1401h 002 Transmission Type 00h FFh FFh No Unsigned
8-bit

Read
Write

1401h 003 Inhibit Time 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

1401h 004 Compatibility Entry 00h FFh 00h No Unsigned
8-bit

Read
Write

1401h 005 Event Timer 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

This object controls the behavior of receive PDO 2.

For these items, refer to the table Communications Parameters Objects on page 66:
l Sub-index 0: Number of subindex objects in this object (5)

l Sub-index 1: COB-ID used for this PDO; when set, bit 31 is used to disable the PDO

l Sub-index 2: Transmission type

l Sub-index 3: Inhibit time in units of 100 microseconds

l Sub-index 4: Not used; use the default setting

l Sub-index 5: Event time, in milliseconds, for transmit PDOs type 254 and 255

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 103 of 234

Object 1402h: Receive PDO Communication Parameter 3

Object 1402h: Receive PDO Communication Parameter 3

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1402h 000 Number of Entries 02h 05h 05h No Unsigned
8-bit

Read
Only

1402h 001 COB-ID 00000001h FFFFFFFFh 80000400h
+ node ID No Unsigned

32-bit
Read
Write

1402h 002 Transmission Type 00h FFh FFh No Unsigned
8-bit

Read
Write

1402h 003 Inhibit Time 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

1402h 004 Compatibility Entry 00h FFh 00h No Unsigned
8-bit

Read
Write

1402h 005 Event Timer 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

This object controls the behavior of receive PDO 3.

For these items, refer to the table Communications Parameters Objects on page 66:
l Sub-index 0: Number of subindex objects in this object (5)

l Sub-index 1: COB-ID used for this PDO; when set, bit 31 is used to disable the PDO

l Sub-index 2: Transmission type

l Sub-index 3: Inhibit time in units of 100 microseconds

l Sub-index 4: Not used; use the default setting

l Sub-index 5: Event time, in milliseconds, for transmit PDOs type 254 and 255

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 104 of 234

Object 1403h: Receive PDO Communication Parameter 4

Object 1403h: Receive PDO Communication Parameter 4

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1403h 000 Number of Entries 02h 05h 05h No Unsigned
8-bit

Read
Only

1403h 001 COB-ID 00000001h FFFFFFFFh 80000500h
+ node ID No Unsigned

32-bit
Read
Write

1403h 002 Transmission Type 00h FFh FFh No Unsigned
8-bit

Read
Write

1403h 003 Inhibit Time 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

1403h 004 Compatibility Entry 00h FFh 00h No Unsigned
8-bit

Read
Write

1403h 005 Event Timer 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

This object controls the behavior of receive PDO 4.

For these items, refer to the table Communications Parameters Objects on page 66:
l Sub-index 0: Number of subindex objects in this object (5)

l Sub-index 1: COB-ID used for this PDO; when set, bit 31 is used to disable the PDO

l Sub-index 2: Transmission type

l Sub-index 3: Inhibit time in units of 100 microseconds

l Sub-index 4: Not used; use the default setting

l Sub-index 5: Event time, in milliseconds, for transmit PDOs type 254 and 255

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 105 of 234

Object 1404h: Receive PDO Communication Parameter 5

Object 1404h: Receive PDO Communication Parameter 5

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1404h 000 Number of Entries 02h 05h 05h No Unsigned
8-bit

Read
Only

1404h 001 COB-ID 00000001h FFFFFFFFh 80000000h No Unsigned
32-bit

Read
Write

1404h 002 Transmission Type 00h FFh FFh No Unsigned
8-bit

Read
Write

1404h 003 Inhibit Time 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

1404h 004 Compatibility Entry 00h FFh 00h No Unsigned
8-bit

Read
Write

1404h 005 Event Timer 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

This object controls the behavior of receive PDO 5.

For these items, refer to the table Communications Parameters Objects on page 66:
l Sub-index 0: Number of subindex objects in this object (5)

l Sub-index 1: COB-ID used for this PDO; when set, bit 31 is used to disable the PDO

l Sub-index 2: Transmission type

l Sub-index 3: Inhibit time in units of 100 microseconds

l Sub-index 4: Not used; use the default setting

l Sub-index 5: Event time, in milliseconds, for transmit PDOs type 254 and 255

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 106 of 234

Object 1600h: Receive PDO Mapping Parameter 1

Object 1600h: Receive PDO Mapping Parameter 1

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1600h 000 Number of Entries 00h 04h 01h No Unsigned
8-bit

Read
Write

1600h 001 Mapping Entry 1 00000000h FFFFFFFFh 60400010h No Unsigned
32-bit

Read
Write

1600h 002 Mapping Entry 2 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1600h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1600h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into receive PDO 1.

For these items, refer to Mapping Parameters Objects on page 66:
l Subindex 0: Number of valid subindex objects in this object. This is set according to the filled

mapping entries starting from subindex 1.
l Subindexes 1–4: These provide information about the object mapped in this PDO. They contain

the indexes, the subindexes and the lengths of the mapped object. Fill these starting from
subindex 1. The structure is:

Bit Meaning
Bits 16–31 (16 bit) Index of the object to

map
Bits 8–15 (8 bit) Subindex of the object

to map
Bits 0–7 (8 bit) Length of the object

(in bits)

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 107 of 234

Object 1601h: Receive PDO Mapping Parameter 2

Object 1601h: Receive PDO Mapping Parameter 2

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1601h 000 Number of Entries 00h 04h 02h No Unsigned
8-bit

Read
Write

1601h 001 Mapping Entry 1 00000000h FFFFFFFFh 60400010h No Unsigned
32-bit

Read
Write

1601h 002 Mapping Entry 2 00000000h FFFFFFFFh 60600008h No Unsigned
32-bit

Read
Write

1601h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1601h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into receive PDO 2.

For these items, refer to Mapping Parameters Objects on page 66:
l Subindex 0: Number of valid subindex objects in this object. This is set according to the filled

mapping entries starting from subindex 1.
l Subindexes 1–4: These provide information about the object mapped in this PDO. They contain

the indexes, the subindexes and the lengths of the mapped object. Fill these starting from
subindex 1. The structure is:

Bit Meaning
Bits 16–31 (16 bit) Index of the object to

map
Bits 8–15 (8 bit) Subindex of the object

to map
Bits 0–7 (8 bit) Length of the object

(in bits)

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 108 of 234

Object 1602h: Receive PDO Mapping Parameter 3

Object 1602h: Receive PDO Mapping Parameter 3

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1602h 000 Number of Entries 00h 04h 02h No Unsigned
8-bit

Read
Write

1602h 001 Mapping Entry 1 00000000h FFFFFFFFh 60400010h No Unsigned
32-bit

Read
Write

1602h 002 Mapping Entry 2 00000000h FFFFFFFFh 607A0020h No Unsigned
32-bit

Read
Write

1602h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1602h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into receive PDO 3.

For these items, refer to Mapping Parameters Objects on page 66:
l Subindex 0: Number of valid subindex objects in this object. This is set according to the filled

mapping entries starting from subindex 1.
l Subindexes 1–4: These provide information about the object mapped in this PDO. They contain

the indexes, the subindexes and the lengths of the mapped object. Fill these starting from
subindex 1. The structure is:

Bit Meaning
Bits 16–31 (16 bit) Index of the object to

map
Bits 8–15 (8 bit) Subindex of the object

to map
Bits 0–7 (8 bit) Length of the object

(in bits)

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 109 of 234

Object 1603h: Receive PDO Mapping Parameter 4

Object 1603h: Receive PDO Mapping Parameter 4

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1603h 000 Number of Entries 00h 04h 02h No Unsigned
8-bit

Read
Write

1603h 001 Mapping Entry 1 00000000h FFFFFFFFh 60400010h No Unsigned
32-bit

Read
Write

1603h 002 Mapping Entry 2 00000000h FFFFFFFFh 60FF0020h No Unsigned
32-bit

Read
Write

1603h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1603h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into receive PDO 4.

For these items, refer to Mapping Parameters Objects on page 66:
l Subindex 0: Number of valid subindex objects in this object. This is set according to the filled

mapping entries starting from subindex 1.
l Subindexes 1–4: These provide information about the object mapped in this PDO. They contain

the indexes, the subindexes and the lengths of the mapped object. Fill these starting from
subindex 1. The structure is:

Bit Meaning
Bits 16–31 (16 bit) Index of the object to

map
Bits 8–15 (8 bit) Subindex of the object

to map
Bits 0–7 (8 bit) Length of the object

(in bits)

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 110 of 234

Object 1604h: Receive PDO Mapping Parameter 5

Object 1604h: Receive PDO Mapping Parameter 5

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1604h 000 Number of Entries 00h 04h 02h No Unsigned
8-bit

Read
Write

1604h 001 Mapping Entry 1 00000000h FFFFFFFFh 60400010h No Unsigned
32-bit

Read
Write

1604h 002 Mapping Entry 2 00000000h FFFFFFFFh 60710010h No Unsigned
32-bit

Read
Write

1604h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1604h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into receive PDO 5.

For these items, refer to Mapping Parameters Objects on page 66:
l Subindex 0: Number of valid subindex objects in this object. This is set according to the filled

mapping entries starting from subindex 1.
l Subindexes 1–4: These provide information about the object mapped in this PDO. They contain

the indexes, the subindexes and the lengths of the mapped object. Fill these starting from
subindex 1. The structure is:

Bit Meaning
Bits 16–31 (16 bit) Index of the object to

map
Bits 8–15 (8 bit) Subindex of the object

to map
Bits 0–7 (8 bit) Length of the object

(in bits)

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 111 of 234

Object 1800h: Transmit PDO Communication Parameter 1

Object 1800h: Transmit PDO Communication Parameter 1

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1800h 000 Number of Entries 02h 05h 05h No Unsigned
8-bit

Read
Only

1800h 001 COB-ID 00000001h FFFFFFFFh 40000180h
+ node ID No Unsigned

32-bit
Read
Write

1800h 002 Transmission Type 00h FFh FFh No Unsigned
8-bit

Read
Write

1800h 003 Inhibit Time 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

1800h 004 Compatibility Entry 00h FFh 00h No Unsigned
8-bit

Read
Write

1800h 005 Event Timer 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

This object controls the behavior of transmit PDO 1.

For these items, refer to the table Communications Parameters Objects on page 66:
l Sub-index 0: Number of subindex objects in this object (5)

l Sub-index 1: COB-ID used for this PDO; when set, bit 31 is used to disable the PDO

l Sub-index 2: Transmission type

l Sub-index 3: Inhibit time in units of 100 microseconds

l Sub-index 4: Not used; use the default setting

l Sub-index 5: Event time, in milliseconds, for transmit PDOs type 254 and 255

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 112 of 234

Object 1801h: Transmit PDO Communication Parameter 2

Object 1801h: Transmit PDO Communication Parameter 2

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1801h 000 Number of Entries 02h 05h 05h No Unsigned
8-bit

Read
Only

1801h 001 COB-ID 00000001h FFFFFFFFh C0000280h
+ node ID No Unsigned

32-bit
Read
Write

1801h 002 Transmission Type 00h FFh FFh No Unsigned
8-bit

Read
Write

1801h 003 Inhibit Time 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

1801h 004 Compatibility Entry 00h FFh 00h No Unsigned
8-bit

Read
Write

1801h 005 Event Timer 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

This object controls the behavior of transmit PDO 2.

For these items, refer to the table Communications Parameters Objects on page 66:
l Sub-index 0: Number of subindex objects in this object (5)

l Sub-index 1: COB-ID used for this PDO; when set, bit 31 is used to disable the PDO

l Sub-index 2: Transmission type

l Sub-index 3: Inhibit time in units of 100 microseconds

l Sub-index 4: Not used; use the default setting

l Sub-index 5: Event time, in milliseconds, for transmit PDOs type 254 and 255

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 113 of 234

Object 1802h: Transmit PDO Communication Parameter 3

Object 1802h: Transmit PDO Communication Parameter 3

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1802h 000 Number of Entries 02h 05h 05h No Unsigned
8-bit

Read
Only

1802h 001 COB-ID 00000001h FFFFFFFFh C0000380h
+ node ID No Unsigned

32-bit
Read
Write

1802h 002 Transmission Type 00h FFh 01h No Unsigned
8-bit

Read
Write

1802h 003 Inhibit Time 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

1802h 004 Compatibility Entry 00h FFh 00h No Unsigned
8-bit

Read
Write

1802h 005 Event Timer 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

This object controls the behavior of transmit PDO 3.

For these items, refer to the table Communications Parameters Objects on page 66:
l Sub-index 0: Number of subindex objects in this object (5)

l Sub-index 1: COB-ID used for this PDO; when set, bit 31 is used to disable the PDO

l Sub-index 2: Transmission type

l Sub-index 3: Inhibit time in units of 100 microseconds

l Sub-index 4: Not used; use the default setting

l Sub-index 5: Event time, in milliseconds, for transmit PDOs type 254 and 255

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 114 of 234

Object 1803h: Transmit PDO Communication Parameter 4

Object 1803h: Transmit PDO Communication Parameter 4

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1803h 000 Number of Entries 02h 05h 05h No Unsigned
8-bit

Read
Only

1803h 001 COB-ID 00000001h FFFFFFFFh C0000480h
+ node ID No Unsigned

32-bit
Read
Write

1803h 002 Transmission Type 00h FFh 01h No Unsigned
8-bit

Read
Write

1803h 003 Inhibit Time 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

1803h 004 Compatibility Entry 00h FFh 00h No Unsigned
8-bit

Read
Write

1803h 005 Event Timer 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

This object controls the behavior of transmit PDO 4.

For these items, refer to the table Communications Parameters Objects on page 66:
l Sub-index 0: Number of subindex objects in this object (5)

l Sub-index 1: COB-ID used for this PDO; when set, bit 31 is used to disable the PDO

l Sub-index 2: Transmission type

l Sub-index 3: Inhibit time in units of 100 microseconds

l Sub-index 4: Not used; use the default setting

l Sub-index 5: Event time, in milliseconds, for transmit PDOs type 254 and 255

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 115 of 234

Object 1804h: Transmit PDO Communication Parameter 5

Object 1804h: Transmit PDO Communication Parameter 5

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1804h 000 Number of Entries 02h 05h 05h No Unsigned
8-bit

Read
Only

1804h 001 COB-ID 00000001h FFFFFFFFh C0000000h No Unsigned
32-bit

Read
Write

1804h 002 Transmission Type 00h FFh 01h No Unsigned
8-bit

Read
Write

1804h 003 Inhibit Time 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

1804h 004 Compatibility Entry 00h FFh 00h No Unsigned
8-bit

Read
Write

1804h 005 Event Timer 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

This object controls the behavior of transmit PDO 5.

For these items, refer to the table Communications Parameters Objects on page 66:
l Sub-index 0: Number of subindex objects in this object (5)

l Sub-index 1: COB-ID used for this PDO; when set, bit 31 is used to disable the PDO

l Sub-index 2: Transmission type

l Sub-index 3: Inhibit time in units of 100 microseconds

l Sub-index 4: Not used; use the default setting

l Sub-index 5: Event time, in milliseconds, for transmit PDOs type 254 and 255

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 116 of 234

Object 1A00h: Transmit PDO Mapping Parameter 1

Object 1A00h: Transmit PDO Mapping Parameter 1

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1A00h 000 Number of Entries 00h 04h 01h No Unsigned
8-bit

Read
Write

1A00h 001 Mapping Entry 1 00000000h FFFFFFFFh 60410010h No Unsigned
32-bit

Read
Write

1A00h 002 Mapping Entry 2 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1A00h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1A00h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into transmit PDO 1.

For these items, refer to Mapping Parameters Objects on page 66:
l Subindex 0: Number of valid subindex objects in this object. This is set according to the filled

mapping entries starting from subindex 1.
l Subindexes 1–4: These provide information about the object mapped in this PDO. They contain

the indexes, the subindexes and the lengths of the mapped object. Fill these starting from
subindex 1. The structure is:

Bit Meaning
Bits 16–31 (16 bit) Index of the object to

map
Bits 8–15 (8 bit) Subindex of the object

to map
Bits 0–7 (8 bit) Length of the object

(in bits)

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 117 of 234

Object 1A01h: Transmit PDO Mapping Parameter 2

Object 1A01h: Transmit PDO Mapping Parameter 2

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1A01h 000 Number of Entries 00h 04h 02h No Unsigned
8-bit

Read
Write

1A01h 001 Mapping Entry 1 00000000h FFFFFFFFh 60410010h No Unsigned
32-bit

Read
Write

1A01h 002 Mapping Entry 2 00000000h FFFFFFFFh 60610008h No Unsigned
32-bit

Read
Write

1A01h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1A01h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into transmit PDO 2.

For these items, refer to Mapping Parameters Objects on page 66:
l Subindex 0: Number of valid subindex objects in this object. This is set according to the filled

mapping entries starting from subindex 1.
l Subindexes 1–4: These provide information about the object mapped in this PDO. They contain

the indexes, the subindexes and the lengths of the mapped object. Fill these starting from
subindex 1. The structure is:

Bit Meaning
Bits 16–31 (16 bit) Index of the object to

map
Bits 8–15 (8 bit) Subindex of the object

to map
Bits 0–7 (8 bit) Length of the object

(in bits)

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 118 of 234

Object 1A02h: Transmit PDO Mapping Parameter 3

Object 1A02h: Transmit PDO Mapping Parameter 3

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1A02h 000 Number of Entries 00h 04h 02h No Unsigned
8-bit

Read
Write

1A02h 001 Mapping Entry 1 00000000h FFFFFFFFh 60410010h No Unsigned
32-bit

Read
Write

1A02h 002 Mapping Entry 2 00000000h FFFFFFFFh 60640020h No Unsigned
32-bit

Read
Write

1A02h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1A02h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into transmit PDO 3.

For these items, refer to Mapping Parameters Objects on page 66:
l Subindex 0: Number of valid subindex objects in this object. This is set according to the filled

mapping entries starting from subindex 1.
l Subindexes 1–4: These provide information about the object mapped in this PDO. They contain

the indexes, the subindexes and the lengths of the mapped object. Fill these starting from
subindex 1. The structure is:

Bit Meaning
Bits 16–31 (16 bit) Index of the object to

map
Bits 8–15 (8 bit) Subindex of the object

to map
Bits 0–7 (8 bit) Length of the object

(in bits)

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 119 of 234

Object 1A03h: Transmit PDO Mapping Parameter 4

Object 1A03h: Transmit PDO Mapping Parameter 4

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1A03h 000 Number of Entries 00h 04h 02h No Unsigned
8-bit

Read
Write

1A03h 001 Mapping Entry 1 00000000h FFFFFFFFh 60410010h No Unsigned
32-bit

Read
Write

1A03h 002 Mapping Entry 2 00000000h FFFFFFFFh 606C0020h No Unsigned
32-bit

Read
Write

1A03h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1A03h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into transmit PDO 4.

For these items, refer to Mapping Parameters Objects on page 66:
l Subindex 0: Number of valid subindex objects in this object. This is set according to the filled

mapping entries starting from subindex 1.
l Subindexes 1–4: These provide information about the object mapped in this PDO. They contain

the indexes, the subindexes and the lengths of the mapped object. Fill these starting from
subindex 1. The structure is:

Bit Meaning
Bits 16–31 (16 bit) Index of the object to

map
Bits 8–15 (8 bit) Subindex of the object

to map
Bits 0–7 (8 bit) Length of the object

(in bits)

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 120 of 234

Object 1A04h: Transmit PDO Mapping Parameter 5

Object 1A04h: Transmit PDO Mapping Parameter 5

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1A04h 000 Number of Entries 00h 04h 02h No Unsigned
8-bit

Read
Write

1A04h 001 Mapping Entry 1 00000000h FFFFFFFFh 60410010h No Unsigned
32-bit

Read
Write

1A04h 002 Mapping Entry 2 00000000h FFFFFFFFh 60770010h No Unsigned
32-bit

Read
Write

1A04h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1A04h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into transmit PDO 5.

For these items, refer to Mapping Parameters Objects on page 66:
l Subindex 0: Number of valid subindex objects in this object. This is set according to the filled

mapping entries starting from subindex 1.
l Subindexes 1–4: These provide information about the object mapped in this PDO. They contain

the indexes, the subindexes and the lengths of the mapped object. Fill these starting from
subindex 1. The structure is:

Bit Meaning
Bits 16–31 (16 bit) Index of the object to

map
Bits 8–15 (8 bit) Subindex of the object

to map
Bits 0–7 (8 bit) Length of the object

(in bits)

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 121 of 234

Manufacturer-Specific Profile

Manufacturer-Specific Profile
This section describes the objects in the Manufacturer-Specific Profile. This set of objects in the range
2000h to 5FFFh implement manufacturer-specific objects, which do not adhere to a common standard.
They provide access to SmartMotor commands and data.

Object 2000h: Node Id 124

Object 2001h: Bit Rate Index 125

Object 2100h: Port Configuration 126

Object 2101h: Bit IO 127

Object 2200h: User EEPROM 128

Object 2201h: User Variable 129

Object 2202h: Set Position Origin 130

Object 2203h: Shift Position Origin 131

Object 2204h: Mappable 32-bit Variables 132

Object 2205h Negative Software Position Limit 133

Object 2206h Positive Software Position Limit 134

Object 2207h Encoder Modulo Limit 135

Object 2208h Encoder Follow Data 136

Object 2209h Encoder Follow Control 137

Object 220Ah MFMUL 139

Object 220Bh MFDIV 140

Object 220Ch MFA 141

Object 220Dh MFD 142

Object 2220h: 8-Bit Mappable Variables 143

Object 2221h: 16-Bit Mappable Variables 144

Object 2300h: Bus Voltage 145

Object 2301h: RMS Current 146

Object 2302h: Internal Temperature 147

Object 2303h: Internal Clock 148

Object 2304h: Motor Status 149

Object 2305h: Motor Control 158

Object 2306h: Motor Subroutine Index 159

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 122 of 234

Manufacturer-Specific Profile

Object 2307h: Sample Period 160

Object 2308h: Microsecond Clock 161

Object 2309h: GOSUB R2 162

Object 2400h: Interpolation Mode Status 163

Object 2401h: Buffer Control 164

Object 2402h: Buffer Setpoint 165

Object 2403h: Interpolation User Bits 166

Object 2404h: Interpolation Sample Clock 167

Object 2500h: Encapsulated SmartMotor Command 168

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 123 of 234

Object 2000h: Node Id

Object 2000h: Node Id

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2000h 000 Node Id 00h FFh
Loaded from
EEPROM at
boot-up

Yes Unsigned
8-bit

Read
Only

This object contains the active CANopen ID.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 124 of 234

Object 2001h: Bit Rate Index

Object 2001h: Bit Rate Index

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2001h 000 Bit Rate Index 00h 08h
Loaded from
EEPROM at
boot-up

Yes Unsigned
8-bit

Read
Only

This object reports the current CAN bit rate setting. The value is reported as an index representing the
bit rate. Refer to the next table:

Index Bit rate
(kilobits/sec)

0 1000
1 800*

2 500
3 250
4 125
5 N/A
6 50
7 20
8 N/A

*Not available in Class 6

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 125 of 234

Object 2100h: Port Configuration

Object 2100h: Port Configuration

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2100h 000 Port Configuration 00000000h 7FFFFFFFh 000000A0h Yes Unsigned
32-bit

Read
Write

NOTE: This command is only available in Class 5 SmartMotors.

This object controls the configuration of I/O ports 0 through 6 (formerly named A through G) on a D-
style motor. Due to constraints, some of the inputs are grouped together. For example, ports 4 and 5
(formerly named E and F) can be configured together for RS-485. For more details, see I/O on page 37.

This object is not supported in M-style firmware (5.98.x.x). For details, see I/O on page 37.

Object 2100 Port Port
Bits Binary Bits Value Effect Effect

0 (A) 1 (B)

0–3 (4 bits)

xxxx xxxx xxxx 0000 0 input input
xxxx xxxx xxxx 0001 1 output input
xxxx xxxx xxxx 0010 2 input output
xxxx xxxx xxxx 0011 3 output output

2 (C)

4–5 (2 bits)

xxxx xxxx xx00 xxxx 0 input
xxxx xxxx xx01 xxxx 1 output

xxxx xxxx xx10 xxxx 2 positive
limit
3 (D)

6–7 (2 bits)

xxxx xxxx 00xx xxxx 0 input
xxxx xxxx 01xx xxxx 1 output

xxxx xxxx 10xx xxxx 2 negative
limit
4 (E) 5 (F)

8–10 (3 bits)

xxxx x000 xxxx xxxx 0 input input
xxxx x001 xxxx xxxx 1 output input
xxxx x010 xxxx xxxx 2 input output
xxxx x011 xxxx xxxx 3 output output
xxxx x100 xxxx xxxx 4 I²C
xxxx x101 xxxx xxxx 5 RS-485

6 (G)

11–12 (2 bits)
xxx0 0xxx xxxx xxxx 0 input
xxx0 1xxx xxxx xxxx 1 output
xxx1 0xxx xxxx xxxx 2 go

13–15 (3 bits) N/A N/A Reserved

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 126 of 234

Object 2101h: Bit IO

Object 2101h: Bit IO

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2101h 000 Number of Entries 03h 03h 03h No Unsigned
8-bit

Read
Only

2101h 001 Set Output 0000h 7FFFh* 0000h Yes Unsigned
16-bit

Read
Write

2101h 002 Clear Output 0000h 7FFFh* 0000h Yes Unsigned
16-bit

Read
Write

2101h 003 Make Input 0000h 7FFFh* 0000h Yes Unsigned
16-bit

Read
Write

*Class 5 firmware may not return an error specific to the I/O ports actually present; anything unsupported may be silently
ignored.

This object allows individual control of each I/O point. It is designed for SDO-type communications at
startup. It is not intended for cyclic PDO communications.

The value written is the identifier of the I/O port to be controlled. The action to take on that port is a
function of the specified subindex object:

l subindex 1: Drive the specified I/O high.

l subindex 2: The action depends on I/O type:
l For Class 5 D-style motor ports 0–6, drive the specified I/O low

l For Class 5 D-style motor ports 16–25, turn off the specified I/O

l For Class 5 M-style motor ports 0–10, turn off the specified I/O

l For Class 6 D-Style Ports 4, 5: turn off the specified I/O

l For Class 6 D-Style Ports 8, 9; If configured for general-purpose: turn off the specified
I/O

l subindex 3: Turn off the specified I/O and disable certain special function such as a limit input.
The specified I/O point will simply become a generic input.

For example, to make I/O port 2 (formerly named port C) a generic input, write the value 2 to
subindex 3.

For more I/O details, see I/O on page 37.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 127 of 234

Object 2200h: User EEPROM

Object 2200h: User EEPROM

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2200h 000 Number of Entries 00h FFh 03h No Unsigned
8-bit

Read
Only

2200h 001 EEPROM index 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

2200h 002 EEPROM number of bytes 00h FFh 00h No Unsigned
8-bit

Read
Write

2200h 003 EEPROM value No String: 8
bytes.

Read
Write

NOTE: This command is only available in Class 5 SmartMotors.

This object provides access to user non-volatile EEPROM memory. Through SDO commands, a value can
be written to the user EEPROM. To do this:

1. Set the EEPROM index (subindex 1) to the EEPROM location where the new value will be written.
Typical values are 0 to 32339.

2. Set subindex 2 to the number of bytes that will be written.

3. Write the binary data to the EEPROM in subindex 3. Up to 8 bytes may be written at a time.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 128 of 234

Object 2201h: User Variable

Object 2201h: User Variable

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2201h 000 Number of Entries 00h FFh 03h No Unsigned
8-bit

Read
Only

2201h 001 Index 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

2201h 002 Data Type 80h 7Fh 00h No Signed
8-bit

Read
Write

2201h 003 Value 80000000h 7FFFFFFFh 00000000h No Signed
32-bit

Read
Write

This object provides access to user variables through SDO commands. To do this:

1. Set the index (subindex 1) to the user variable that a value will be written to or read from. Refer
to the next table to determine the correct index.

2. Set subindex 2 according to the table for the desired variable-type access.

3. Read or write the data using subindex 3.

Only one variable is written at a time. If the data type is ab[] or aw[], a single byte or word is written,
respectively.

Data type
(subindex 2)

Index
(subindex 1)

Variable's
data type

Variables
accessed

0 0–25 long (32-bit) a–z
0 26–51 long (32-bit) aa–zz
0 52–77 long (32-bit) aaa–zzz
1 0–50 long (32-bit) al[Index]
2 0–101 word (16-bit) aw[Index]
3 0–203 byte (8-bit) ab[Index]

The variable arrays: al[index], aw[index] and ab[index] overlap the same physical memory of 204 bytes.
This allows different access to common memory based on data size. For instance, al[0] is the same
region as ab[0] through ab[3]. The byte order is little-endian, such that ab[0] is the lowest byte of al[0].

For more details, see User Variables on page 37.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 129 of 234

Object 2202h: Set Position Origin

Object 2202h: Set Position Origin

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2202h 000 Set Position Origin 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

The value written to this object becomes the new position value. Both the commanded position (RPC)
and actual position (RPA) are shifted by this value minus the current command value. The value read
from this object is the most recent value written to this object — it is not an indication of the motor's
current state.

Similar SmartMotor Commands: O=

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 130 of 234

Object 2203h: Shift Position Origin

Object 2203h: Shift Position Origin

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2203h 000 Shift Position Origin 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

This object shifts the absolute position (RPA) and the commanded position (RPC) by the specified
value. Each time this value is written, the position is shifted by that amount. The value read from this
object is the most recent value written to this object — it is not an indication of the motor's current
state.

Similar SmartMotor Commands: OSH=

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 131 of 234

Object 2204h: Mappable 32-bit Variables

Object 2204h: Mappable 32-bit Variables

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2204h 000 Number of Entries 04h 04h 04h No Unsigned
8-bit

Read
Only

2204h 001 aaa 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

2204h 002 bbb 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

2204h 003 ccc 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

2204h 004 ddd 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

This object provides direct read or write access to user variables aaa–ddd. This object is provided to fill
the need for PDO access to user variables. SDO access is also allowed. Also, see Object 2220h: 8-Bit
Mappable Variables on page 143 and Object 2221h: 16-Bit Mappable Variables on page 144.

For more details, see User Variables on page 37.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 132 of 234

Object 2205h Negative Software Position Limit

Object 2205h Negative Software Position Limit

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2205h 000 Negative Software Position
Limit 80000000h 7FFFFFFFh 80000000h Yes Signed

32-bit
Read
Write

This object defines the negative software position limit in units of encoder counts. If the software
position limits are enabled and the actual position is out of range, then a software-limit fault occurs.

The term "negative" does not imply the value must be negative. Positive values are permitted; however,
they should be a lower value than the positive software position limit.

Similar SmartMotor Commands: SLN=, RSLN

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 133 of 234

Object 2206h Positive Software Position Limit

Object 2206h Positive Software Position Limit

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2206h 000 Positive Software Position
Limit 80000000h 7FFFFFFFh 7FFFFFFFh Yes Signed

32-bit
Read
Write

This object defines the positive software position limit in units of encoder counts. If the software limits
are enabled and the actual position is out of range, then a software-limit fault occurs.

The term "positive" does not imply the value must be positive. Negative values are permitted; however,
they should be a higher value than the negative software position limit.

Similar SmartMotor Commands: SLP=, RSLP

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 134 of 234

Object 2207h Encoder Modulo Limit

Object 2207h Encoder Modulo Limit

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2207h 000 Encoder Modulo Limit 0 FFFFFFFFh FFFFFFFFh No unsigned
32-bit

Read
Write

NOTE: This command is only available in Class 5 SmartMotors.

This object defines the encoder modulo limit in units of encoder counts.

An encoder will have some maximum value (modulo limit) before a roll-over of values. The modulo limit
must be known by the motor to correctly interpret the incoming encoder data. Object 2207h supports
this. The number is unsigned and based at 0. For example, an encoder with a resolution of 4096 will
have this register configured with the value 4095, because that is the largest possible value (i.e., the
value range is 0-4095 inclusive).

EXAMPLE:
'++++ HEX Coded Objects for CAN +++++
. . .
#define x2207 8711 'Object 2207h: External encoder follow max value

'(where encoder rolls over) i.e., 10 bit encoder
'would be 1023.

. . .
fff=3 ' The following motor's address.
. . .
' Set other objects in follow motor relating to follow mode.
SDOWR(fff,x2207,0,4,xffffffff) GOSUB10 'Set encoder modulo limit.
. . .
C10 ' Code to check for CAN error and display it.

IF CAN(4)!=0
PRINT("Communication failed!",#13)

ENDIF
RETURN

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 135 of 234

Object 2208h Encoder Follow Data

Object 2208h Encoder Follow Data

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2208h 000 Number of objects 3 3 3 No unsigned
8-bit

Read
Only

2208h 001 Encoder input value 8-bit
signed or unsigned 0 FFh 0 Yes unsigned

8-bit
Read
Write

2208h 002 Encoder input value 16-bit
signed or unsigned 0 FFFFh 0 Yes unsigned

16-bit
Read
Write

2208h 003 Encoder input value 32-bit
signed or unsigned. 0 FFFFFFFFh 0 Yes unsigned

32-bit
Read
Write

NOTE: This command is only available in Class 5 SmartMotors.

This object is provided to accept data from a network (CANopen) based encoder. Three different data
sizes are provided to handle PDO mapping to data sources of 8, 16, and 32 bits. Also, see object 2207h
for configuring the resolution of this external encoder so that the SmartMotor knows when the encoder
has rolled-over its number space.

l Subindex 0: Returns the number of subindex objects in this object

l Subindex 1: Encoder input value, 8-bit signed or unsigned

l Subindex 2: Encoder input value, 16-bit signed or unsigned

l Subindex 3: Encoder input value, 32-bit signed or unsigned

EXAMPLE:

Refer to the example program "CAN Bus - Time Sync Follow Encoder" in Chapter 3 of the SmartMotor
Developer's Guide.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 136 of 234

Object 2209h Encoder Follow Control

Object 2209h Encoder Follow Control

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2209h 000 Encoder follow control 0 FFFFh 0000h Yes unsigned
16-bit

Read
Write

This object controls the behavior for the mode of following a network encoder and behavior of Object
220Ch MFA and Object 220Dh MFD. Refer to the next table.

Bit Meaning
Bit 0 Halt CANopen encoder follow/cam mode.

0: Run/resume normally with the next increment,
NOTE: Cam mode will restart from MCW command setting depending on bit 1.

1: Mask the encoder increments. Setting to 1 will bring motors to a stop on the Sync
packet event.

See start/stop capability details below this table.
Bit 1 Control the resume of cam relative to bit 0.

Firmware 5.0.4.16 or higher and 5.98.4.16 or higher:

0: Cam is restarted on resume (bit 0).

1: Resume of Cam mode from existing controller location instead of restart.

NOTE: Previous firmware does not support this and always restarts cam on resume (bit
0).

Bit 2 Ramp-up command MFA controller or follower units. Object Object 220Ch MFA (not the
serial command MFA)
0: controller
1: follower

Bit 3 Ramp-down command MFD controller or follower units. Object Object 220Dh MFD (not
the serial command MFD)
0: controller
1: follower

Bit 4-15 Reserved. Write as 0.

Start/Stop Capability

For certain applications, object 2209h provides a start/stop capability used to maintain relative
position offset between motors:

l Start: When starting in this mode with the G(2) command (object 2209h), the next encoder value
received after this command will be the first controller position. After that, the next encoder
value received will be used to compute a difference from the first, and so on. This avoids a
sudden jump in position when restarting after a stop (i.e., the firmware must ignore the controller
encoder while the motors are stopped).

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 137 of 234

Start/Stop Capability

l Stop: To ensure multiple following motors stop while remembering position offset relative to
each other, the encoder data should be received through a single synchronous PDO to all motors.
The control command object 2209h should be configured as a single synchronous PDO from the
controller that all motors receive at the same time using the same COB-ID. This allows the
motors to receive the encoder data and control commands in a uniform way, relative to each
other, when the sync packet arrives to all motors.

EXAMPLE:

Refer to the example program "CAN Bus - Time Sync Follow Encoder" in Chapter 3 of the SmartMotor
Developer's Guide.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 138 of 234

Object 220Ah MFMUL

Object 220Ah MFMUL

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

220Ah 000 MFMUL (Mode Follow Mul-
tiplier) -32767 32767 1 No Signed

16-bit
Read
Write

This object specifies the multiplier for external encoder mode follow with ratio MFMUL/MFDIV.

Both MFMUL and MFDIV may be positive or negative; this controls the resulting direction of shaft
rotation.

For more details on MFMUL, see the SmartMotor Developer's Guide.

EXAMPLE:
'++++ HEX Coded Objects for CAN +++++
. . .
#define x220A 8714 ' Object 220Ah: External encoder follow MFMUL
. . .
fff=3 ' The following motor's address.
. . .

' Set other objects in follow motor relating to follow mode.
. . .
SDOWR(fff,x220A,0,2,100) GOSUB10 ' set MFMUL
. . .
C10 ' Code to check for CAN error and display it.

IF CAN(4)!=0
PRINT("Communication failed!",#13)

ENDIF
RETURN

Similar SmartMotor Commands: MFMUL=, RMFMUL, MFDIV

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 139 of 234

Object 220Bh MFDIV

Object 220Bh MFDIV

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

220Bh 000 MFDIV (Mode Follow Divisor) -32767 * 32767 * 1 No Signed
16-bit

Read
Write

* The value 0 is not accepted because a divide by 0 is not possible.

This object specifies the divisor for external encoder mode follow with ratio MFMUL/MFDIV.

Both MFMUL and MFDIV may be positive or negative; this controls the resulting direction of shaft
rotation.

For more details on MFDIV, see the SmartMotor Developer's Guide.

EXAMPLE:
'++++ HEX Coded Objects for CAN +++++
. . .
#define x220B 8715 ' Object 220Bh: External encoder follow MFDIV
. . .
fff=3 ' The following motor's address.
. . .

' Set other objects in follow motor relating to follow mode.
. . .
SDOWR(fff,x220B,0,2,100) GOSUB10 ' set MFDIV
. . .
C10 ' Code to check for CAN error and display it.

IF CAN(4)!=0
PRINT("Communication failed!",#13)

ENDIF
RETURN

Similar SmartMotor Commands: MFDIV=, RMFDIV, MFMUL

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 140 of 234

Object 220Ch MFA

Object 220Ch MFA

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

220Ch 000 MFA (Mode Follow Ascend) 0 7FFFFFFFh 0 (disabled) No Signed
32-bit

Read
Write

This object sets the ascend ramp to the specified sync ratio from a ratio of zero.

For more details on MFA, see the SmartMotor Developer's Guide.

EXAMPLE:
'++++ HEX Coded Objects for CAN +++++
. . .
#define x220C 8716 ' Object 220Ch: External encoder follow MFA
. . .
fff=3 ' The following motor's address.
. . .

' Set other objects in follow motor relating to follow mode.
. . .
SDOWR(fff,x220C,0,4,20000) GOSUB10 ' Set MFA control word x2209,

' determines if controller or follower units.
. . .
C10 ' Code to check for CAN error and display it.

IF CAN(4)!=0
PRINT("Communication failed!",#13)

ENDIF
RETURN

Similar SmartMotor Commands: MFA, MFD

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 141 of 234

Object 220Dh MFD

Object 220Dh MFD

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

220Ch 000 MFA (Mode Follow Descend) 0 7FFFFFFFh 0 (disabled) No Signed
32-bit

Read
Write

This object sets the descend ramp from the specified sync ratio to a ratio of zero.

For more details on MFD, see the SmartMotor Developer's Guide.

EXAMPLE:
'++++ HEX Coded Objects for CAN +++++
. . .
#define x220D 8717 ' Object 220Ch: External encoder follow MFD
. . .

' Set other objects in follow motor relating to follow mode.
. . .
fff=3 ' The following motor's address.
. . .
SDOWR(fff,x220D,0,4,10000) GOSUB10 ' Set MFD control word x2209,

' determines if controller or follower units.
. . .
C10 ' Code to check for CAN error and display it.

IF CAN(4)!=0
PRINT("Communication failed!",#13)

ENDIF
RETURN

Similar SmartMotor Commands: MFD, MFA

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 142 of 234

Object 2220h: 8-Bit Mappable Variables

Object 2220h: 8-Bit Mappable Variables

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2220h 000 Number of Entries 04h 04h 04h No Unsigned
8-bit

Read
Only

2220h 001 ab[0] 80h 7Fh 00h Yes Signed
8-bit

Read
Write

2220h 002 ab[1] 80h 7Fh 00h Yes Signed
8-bit

Read
Write

2220h 003 ab[2] 80h 7Fh 00h Yes Signed
8-bit

Read
Write

2220h 004 ab[3] 80h 7Fh 00h Yes Signed
8-bit

Read
Write

This object provides direct read or write access to user variables ab[0]–ab[3]. This object is provided to
fill the need for PDO access to user variables. SDO access is also allowed. Also, see Object 2221h: 16-
Bit Mappable Variables on page 144 and Object 2204h: Mappable 32-bit Variables on page 132.

For more details, see User Variables on page 37.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 143 of 234

Object 2221h: 16-Bit Mappable Variables

Object 2221h: 16-Bit Mappable Variables

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2221h 000 Number of Entries 04h 04h 04h No Unsigned
8-bit

Read
Only

2221h 001 aw[32] 8000h 7FFFh 0000h Yes Signed
16-bit

Read
Write

2221h 002 aw[33] 8000h 7FFFh 0000h Yes Signed
16-bit

Read
Write

2221h 003 aw[34] 8000h 7FFFh 0000h Yes Signed
16-bit

Read
Write

2221h 004 aw[35] 8000h 7FFFh 0000h Yes Signed
16-bit

Read
Write

This object provides direct read or write access to user variables aw[32]–aw[35]. This object is provided
to fill the need for PDO access to user variables. SDO access is also allowed. Also, see Object 2220h: 8-
Bit Mappable Variables on page 143 and Object 2204h: Mappable 32-bit Variables on page 132.

For more details, see User Variables on page 37.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 144 of 234

Object 2300h: Bus Voltage

Object 2300h: Bus Voltage

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2300h 000 Bus Voltage 0000h FFFFh Yes Unsigned
16-bit

Read
Only

NOTE: This command is only available in Class 5 SmartMotors.

This object reports the bus voltage (in millivolts) supplied to the motor drive stage.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 145 of 234

Object 2301h: RMS Current

Object 2301h: RMS Current

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2301h 000 RMS Current 0000h FFFFh Yes Unsigned
16-bit

Read
Only

This object reports the RMS current (in milliamperes) of the motor windings.

Similar SmartMotor Commands: RUIA

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 146 of 234

Object 2302h: Internal Temperature

Object 2302h: Internal Temperature

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2302h 000 Internal Temperature 00h FFh Yes Unsigned
8-bit

Read
Only

This object reports the SmartMotor's internal temperature in degrees C; the resolution is ±1 degree C.

Similar SmartMotor Commands: RTEMP

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 147 of 234

Object 2303h: Internal Clock

Object 2303h: Internal Clock

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2303h 000 Internal Clock 00000000h FFFFFFFFh 00000000h Yes Unsigned
32-bit

Read
Write

This object represents the SmartMotor's internal clock in milliseconds. The value can be set as desired.
This object is equivalent to the RCLK, =CLK, or CLK= commands (read or write), and it uses the same
internal clock.

NOTE: This object is not the same as Object 2308h, which uses special clock-synchronization
features that are only accessible through CANopen or serial interpolation. For details, see Object
2308h: Microsecond Clock on page 161.

Similar SmartMotor Commands: CLK=, RCLK

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 148 of 234

Object 2304h: Motor Status

Object 2304h: Motor Status

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2304h 000 Number of Entries 00h FFh 12h
(18 dec) No Unsigned

8-bit
Read
Only

2304h 001 Status Word 0 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 002 Status Word 1 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 003 Status Word 2 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 004 Status Word 3 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 005 Status Word 4 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 006 Status Word 5 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 007 Status Word 6 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 008 Status Word 7 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 009 Status Word 8 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 010 Status Word 9 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 011 Status Word 10 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 012 Status Word 11 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 013 Status Word 12 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 014 Status Word 13 0000h FFFFh Yes Unsigned
16-bit

Read
Write

2304h 015 Status Word 14 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 016 Status Word 15 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 017 Status Word 16 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 018 Status Word 17 0000h FFFFh Yes Unsigned
16-bit

Read
Only

This object reports the SmartMotor status words, which are equivalent to the RW(index) command.
There is a special case where user status bits in status word 13 are writable through this object. This
allows a host to cause user interrupts in a motor.

l Subindex 0 reports the number of status words (18)

l Subindex 1 reports SmartMotor status word 0

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 149 of 234

Object 2304h: Motor Status

l Subindex 2 reports SmartMotor status word 1

l Subindex 3 reports SmartMotor status word 2

l Subindex 4 reports SmartMotor status word 3

l Subindex 5 reports SmartMotor status word 4

l Subindex 6 reports SmartMotor status word 5

l Subindex 7 reports SmartMotor status word 6

l Subindex 8 reports SmartMotor status word 7

l Subindex 9 reports SmartMotor status word 8

l Subindex 10 reports SmartMotor status word 9

l Subindex 11 reports SmartMotor status word 10

l Subindex 12 reserved

l Subindex 13 reports SmartMotor status word 12

l Subindex 14 reports SmartMotor status word 13

l Subindexes 15–16 reserved

l Subindex 17 reports SmartMotor status word 16

l Subindex 18 reports SmartMotor status word 17

Status Word 0 Motion and motor health
0 Drive ready
1 Motor is off
2 Trajectory in progress
3 Bus voltage fault
4 Overcurrent occurred
5 Excessive temperature fault
6 Excessive position error fault
7 Velocity limit fault
8 Real-time temperature limit
9 Position error derivative fault
10 Right (+) limit enabled
11 Left (–) limit enabled
12 Historical right (+) limit
13 Historical left (–) limit
14 Right (+) limit asserted
15 Left (–) limit asserted

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 150 of 234

Object 2304h: Motor Status

Status Word 1 Index registration and soft limits
0 Arming bit for rise capture of encoder 0
1 Arming bit for fall capture of encoder 0
2 Rising edge captured on encoder 0
3 Falling edge captured on encoder 0
4 Arming bit for rise capture of encoder 1
5 Arming bit for fall capture of encoder 1
6 Rising edge captured on encoder 1
7 Falling edge captured on encoder 1
8 Capture input state 0
9 Capture input state 1
10 Soft limits enabled
11 Soft limits behavior mode
12 Historical right soft limit
13 Historical left soft limit
14 Right soft limit
15 Left soft limit

Status Word 2 Communication state and program state
0 Com 0 error
1 Com 1 error
2 USB error
3 Reserved
4 CAN error
5 Reserved
6 Ethernet error
7 IIC communications active
8 Watchdog event
9 Datablock checksum is bad (fault)
10 User program is running
11 Trace in progress
12 User EEPROM write buffer overflow
13 User EEPROM busy
14 Command error
15 Program checksum error

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 151 of 234

Object 2304h: Motor Status

Status Word 3 PID, brake, move generation
0 Reserved
1 Torque saturation
2 Voltage saturation
3 Wraparound occurred
4 KG enabled
5 Shaft direction
6 Torque direction
7 IO fault latch
8 Trajectory 1 relative position move
9 Reserved
10 Peak current saturation
11 Modulo counter rollover
12 Brake asserted
13 Brake OK
14 Go on external input
15 Velocity reached or target ratio reached

Status Word 4 Timer status
0 Timer 0 running
1 Timer 1 running
2 Timer 2 running
3 Timer 3 running
4 Reserved
5 Reserved
6 Reserved
7 Reserved
8 Time 8 event occurred
9 CDFH Drive enabled
10 CDFH Command request timeout
11 CDFH Enabled indication
12 CDFH Group fault
13 CDFH Group ready
14 CDFH Remote fault

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 152 of 234

Object 2304h: Motor Status

Status Word 4 Timer status
15 CDFH Timeout event

CDFH = Combitronic Distributed Fault Handling

Status Word 5 Interrupt enable status
0 Event 0 enabled
1 Event 1 enabled
2 Event 2 enabled
3 Event 3 enabled
4 Event 4 enabled
5 Event 5 enabled
6 Event 6 enabled
7 Event 7 enabled
8 Reserved
9 Reserved
10 Reserved
11 Reserved
12 Reserved
13 Reserved
14 Reserved
15 Events enabled

Status Word 6 Commutation status
0 MDT Trapezoidal commutation (Hall sensors)
1 MDE Enhanced trapezoidal commutation (encoder)
2 MDS Sinusoidal commutation
3 MDC Current vector FOC mode commutation
4 Reserved
5 Feedback fault
6 MDH mode active
7 Drive enable input fault
8 Electrical angle valid
9 TOB enabled (Torque overrun braking)
10 Invert direction enabled
11 MTB active

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 153 of 234

Object 2304h: Motor Status

Status Word 6 Commutation status
12 Encoder battery fault
13 Low bus voltage
14 High bus voltage
15 Reserved

Status Word 7 Multiple Trajectories
0 TG1 in progress
1 TG1 Accel/Ascend
2 TG1 Slewing
3 TG1 Decel/Descend
4 TG1 Reserved/Dwell
5 Reserved
6 Reserved
7 Reserved
8 TG2 in progress
9 TG2 Accel/Ascend
10 TG2 Slewing
11 TG2 Decel/Descend
12 TG2 Dwell (higher)
13 TG2 Traverse state
14 TG2 Lower dwell
15 TS Wait

Status Word 8 Cam/IP Mode user segment bits
0 Cam user bit 0
1 Cam user bit 1
2 Cam user bit 2
3 Cam user bit 3
4 Cam user bit 4
5 Cam user bit 5
6 Cam mode 0
7 Cam mode 1
8 IP user bit 0
9 IP user bit 1

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 154 of 234

Object 2304h: Motor Status

Status Word 8 Cam/IP Mode user segment bits
10 IP user bit 2
11 IP user bit 3
12 IP user bit 4
13 IP user bit 5
14 IP mode 0
15 IP mode 1

Status Word 9 SD Card and DMX Information (Class 6 Only)
0 SD card present
1 SD card busy
2 SD card error
3 SD card valid SMX file
4 SD card valid parameters
5 SD card valid SMXE
6 DMX comm active
7 DMX data received
8 DMX sync event
9 Reserved
10 Reserved
11 Reserved
12 Reserved
13 Reserved
14 Reserved
15 Reserved

Status Word 10 RxPDO Arrival Notification

0 Controller enabled
1 Rx PDO 1 arrived
2 Rx PDO 2 arrived
3 Rx PDO 3 arrived
4 Rx PDO 4 arrived
5 Rx PDO 5 arrived
6 Reserved
7 Reserved

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 155 of 234

Object 2304h: Motor Status

Status Word 10 RxPDO Arrival Notification

8 Reserved
9 Reserved
10 Reserved
11 Reserved
12 Reserved
13 Reserved
14 Reserved
15 Reserved

The user program should clear these status bits with a Z(10,bit) command, where bit
is values 1–5, after the event handler part of the user program is executed. Bit 0
cannot be cleared—it is an indication of the controller status, see Network Control
Commands on page 1.

NOTE: The ZS command will have no effect on these bits.

Status Word 11 Reserved

Status Word 12 User-settable status bits
(Read-only from this object)

0 User-settable bit 0
1 User-settable bit 1
2 User-settable bit 2
3 User-settable bit 3
4 User-settable bit 4
5 User-settable bit 5
6 User-settable bit 6
7 User-settable bit 7
8 User-settable bit 8
9 User-settable bit 9
10 User-settable bit 10
11 User-settable bit 11
12 User-settable bit 12
13 User-settable bit 13
14 User-settable bit 14
15 User-settable bit 15

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 156 of 234

Object 2304h: Motor Status

Status Word 13 User-settable status bits
(Writable from this object)

0 User-settable bit 16
1 User-settable bit 17
2 User-settable bit 18
3 User-settable bit 19
4 User-settable bit 20
5 User-settable bit 21
6 User-settable bit 22
7 User-settable bit 23
8 User-settable bit 24
9 User-settable bit 25
10 User-settable bit 26
11 User-settable bit 27
12 User-settable bit 28
13 User-settable bit 29
14 User-settable bit 30
15 User-settable bit 31

Status Words 14
and 15

Reserved

Status Word 16 I/O: Class 5D-style: 0-6 (7 is a virtual bit)

I/O: Class 5M-style: 0-10

I/O: Class 6D-style: 0-9

Status Word 17 I/O: Class 5D-style AD1 I/O (optional)

I/O: Class 5M-style: I/O: Reserved expansion

I/O: Class 6D-style: I/O: Reserved expansion

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 157 of 234

Object 2305h: Motor Control

Object 2305h: Motor Control

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2305h 000 Motor Control 0000h FFFFh 0000h Yes Unsigned
16-bit

Read
Write

NOTE: This command is only available in Class 5 SmartMotors.

This object provides access to certain SmartMotor commands. The value written to the object is a bit
field; the corresponding functions are called when the value of a bit is changed. The function is not
repeated if the bit value stays the same. The value read from this object is the most recent value
written to this object — it is not an indication of the motor's current state.

NOTE: This object may be difficult to use; consider using object 2309h instead. This command may
be removed in future versions.

Bit Function
0 Software limit enable:

• Transition 0 to 1: SLE command (enable software limits)
• Transition 1 to 0: SLD command (disable software limits)

1 Program control:
• Transition 0 to 1: RUN command.
• Transition 1 to 0: END command.

2–15 Reserved (set to 0).

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 158 of 234

Object 2306h: Motor Subroutine Index

Object 2306h: Motor Subroutine Index

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2306h 000 Motor Subroutine Index –1 999 –1 Yes Signed
16-bit

Read
Write

NOTE: This command is only available in Class 5 SmartMotors.

Each time this object is written, it calls the specified subroutine. Therefore, care must be taken to
ensure the subroutine has completed before calling it again. The value read from this object is the most
recent value written to this object — it is not an indication of the motor's current state.

For more details, see Calling Subroutines on page 39.

Value written Function
–1 No operation

0–999 GOSUB(value)

Object 2306h has these limitations:
l Each time it is accessed by a repeated PDO, it will call a subroutine. Therefore, this object is not

useful for PLCs or other hosts that send repeated data.
l There is no mechanism provided to indicate that the subroutine has completed. Therefore, the

progress of the subroutine cannot be monitored to know when it is finished and ready to call
again.

Object 2309h fixes these two limitations and provides additional features. For details, see Object
2309h: GOSUB R2 on page 162.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 159 of 234

Object 2307h: Sample Period

Object 2307h: Sample Period

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2307h 000 Sample Period 0000h FFFFh 12500 Yes Unsigned
16-bit

Read
Only

This object reports the SmartMotor sample period in microseconds*100. This is the time period for the
PID cycle and trajectory update.

PID
mode

Reported from
object 2307

Time
(microseconds)

1 6250 62.5
2 12500 125.0
4 25000 250.0
8 50000 500.0

Similar SmartMotor Commands: RSP (PID rate info), RSAMP

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 160 of 234

Object 2308h: Microsecond Clock

Object 2308h: Microsecond Clock

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2308h 000 Microsecond Clock 00000000h FFFFFFFFh 00000000h Yes Unsigned
32-bit

Read
Write

This object represents an internal sync clock in microseconds. Writing to this object can interfere with
the time synchronization process used with Interpolation mode. Reading this object provides a value
that is only current with the most recent PID cycle.

NOTE: This object is tied to special clock-synchronization features that are only accessible through
CANopen or serial interpolation. There is no SmartMotor command equivalent — it is not associated
with the SmartMotor CLK-type commands, which use a different physical clock that operates
independently. Therefore, this object is not the same as Object 2303h. For details, see Object
2303h: Internal Clock on page 148.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 161 of 234

Object 2309h: GOSUB R2

Object 2309h: GOSUB R2

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2309h 000 GOSUB R2 –9 +999 –1 Yes Signed
16-bit

Read
Write

This version of GOSUB will only take action when the value written is different from previous values
written to this object.

This GOSUB will not nest subroutine calls through this object (other sources of GOSUB may still nest) If
there is already an active subroutine that was called through this object, further calls are ignored
without buffering.

The next table describes the possible values:

Value Description

0–999 Corresponds to GOSUB(0) through GOSUB(999). An SDO error is issued if a previous
GOSUB called from this object is still busy.

–1 Do nothing. This is useful as a null value since a transition must be made for a new
GOSUB call.

–2 END
–3 RUN
–4 EILP
–5 EILN
–6 SLE
–7 SLD
–8 SLM(0)
–9 SLM(1)

–10 Freewheel when the drive is turned off. However, the configured fault reaction will be
in effect and will take priority if a fault is present.

Similar SmartMotor Commands: GOSUB, END, RUN, EILP, EILN, SLE, SLD, SLM()

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 162 of 234

Object 2400h: Interpolation Mode Status

Object 2400h: Interpolation Mode Status

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2400h 000 Interpolation Mode Status 0000h FFFFh Yes Unsigned
16-bit

Read
Only

This object provides additional information relevant to Interpolation mode.

Bit Function
0–5 Number of free record buffer locations
6 Position error tolerance exceeded
7 PLL locked to sync status (firmware 5.0.4.49 / 5.98.0.49 or

later)
8 IP mode pending
9 IP mode ready
10 Invalid time units error
11 Invalid position increment error
12 Drive ready
13 FIFO overflow
14 FIFO underflow
15 IP mode running

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 163 of 234

Object 2401h: Buffer Control

Object 2401h: Buffer Control

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2401h 000 Buffer Control 0000h FFFFh 0000h Yes Unsigned
16-bit

Read
Write

This object provides a special way of controlling the interpolation buffer level when the host cannot
monitor the buffer level and/or time synchronization is not possible. The value written is a proportional
response to how far the interpolation is from the target buffer level. That level is set using the Buffer
Setpoint object (2402h). For details, see Object 2402h: Buffer Setpoint on page 165.

As the buffer empties, the interpolation rate slightly decreases; as the buffer fills, the interpolation
rate slightly increases. A typical value to write is 10000.

Note that this is not an ideal way to control the buffer level for these reasons:
l The buffers of different motors will not perfectly align, so the motion will not be perfectly

synchronized.
l The host must send the data to the motor at an even time spacing. However, some hosts may fill

the buffer in bursts of activity — that will not work with the SmartMotor.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 164 of 234

Object 2402h: Buffer Setpoint

Object 2402h: Buffer Setpoint

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2402h 000 Buffer Setpoint 00h FFh 14h No Unsigned
8-bit

Read
Write

This object specifies the target buffer level. It is used in conjunction with the Buffer Control object
(2401h) to maintain the buffer at that level. For details, see Object 2401h: Buffer Control on page 164.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 165 of 234

Object 2403h: Interpolation User Bits

Object 2403h: Interpolation User Bits

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2403h 000 Interpolation User Bits 00h 3Fh 00h Yes Unsigned
8-bit

Read
Write

These bits are captured from this register when a new interpolation record is written. When the
interpolation data is consumed by Interpolation mode, these bits will be reported in the status word
(object 2304h, subindex 9) along with the corresponding data record. Those user bits will be displayed
in the segment between the previous point and the current point.

In the next example, the user bit will be visible in the status word (object 2304h, subindex 9) between
points 3000 and 4000.

1. Set the Interpolation User Bits object (2403h) to the value 0.

2. Put data in the buffer by writing these values to subindex 1 of the Interpolation Data Record
object (60C1h):

a. 2000

b. 3000

3. Set the Interpolation User Bits object (2403h) to the value 1.

4. Put data in buffer by writing the value 4000 to subindex 1 of the Interpolation Data Record
object (60C1h).

5. Set the Interpolation User Bits object (2403h) to the value 0.

6. Put data in the buffer by writing these values to subindex 1 of the Interpolation Data Record
object (60C1h):

a. Write the value 5000 to object 60C1h, subindex 1.

b. Write the value 6000 to object 60C1h, subindex 1.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 166 of 234

Object 2404h: Interpolation Sample Clock

Object 2404h: Interpolation Sample Clock

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2404h 000 Interpolation Sample Clock 00000000h FFFFFFFFh 00000000h Yes Unsigned
32-bit

Read
Only

This object reports the 32-bit unsigned count of motor PID sample periods since the start of
interpolation.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 167 of 234

Object 2500h: Encapsulated SmartMotor Command

Object 2500h: Encapsulated SmartMotor Command

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2500h 000 Number of Entries 03h 03h 03h No Unsigned
8-bit

Read
Only

2500h 001 Command String No String: 32
bytes

Read
Write

2500h 002 Command Response No String: 32
bytes

Read
Only

2500h 003 Command Status 00h FFh 00h No Unsigned
8-bit

Read
Only

This object provides an interface to the SmartMotor command language. There is a 32-character limit
for the command string and for the response string. For details, see Command Interface (Object 2500h)
on page 40.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 168 of 234

Drive and Motion Control Profile

Drive and Motion Control Profile
This section describes the objects in the Drive and Motion Control Profile. This set of objects in the
range 6000h to 67FFh implement the CiA 402 motion profile. This provides access to common
commands for controlling the motor.

Object 6040h: Control Word 171

Object 6041h: Status Word 173

Object 605Ah: Quick Stop Option Code 174

Object 605Ch: Disable Operation Option Code 175

Object 605Dh: Halt Option Code 176

Object 605Eh: Fault Reaction Option Code 177

Object 6060h: Modes of Operation 178

Object 6061h: Modes of Operation Display 180

Object 6062h: Position Demand Value 181

Object 6063h: Position Actual Internal Value 182

Object 6064h: Position Actual Value 183

Object 6065h: Following Error Window 184

Object 606Bh: Velocity Demand Value 185

Object 606Ch: Velocity Actual Value 186

Object 6071h: Target Torque 187

Object 6074h: Torque Demand Value 188

Object 6077h: Torque Actual 189

Object 6079h: DC Link Circuit Voltage 190

Object 607Ah: Target Position 191

Object 607Ch: Home Offset 192

Object 6080h: Max Motor Speed 194

Object 6081h: Profile Velocity in PP Mode 195

Object 6083h: Profile Acceleration 196

Object 6084h: Profile Deceleration 197

Object 6085h: Quick Stop Deceleration 198

Object 6087h: Torque Slope 199

Object 608Fh: Position Encoder Resolution 200

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 169 of 234

Drive and Motion Control Profile

Object 6098h: Homing Method 201

Object 6099h: Homing Speeds 203

Object 609Ah: Homing Acceleration 204

Object 60B8h: Touch Probe Function 205

Object 60B9h: Touch Probe Status 208

Object 60BAh: Touch Probe Position 1 Positive Value 210

Object 60BBh: Touch Probe Position 1 Negative Value 211

Object 60BCh: Touch Probe Position 2 Positive Value 212

Object 60BDh: Touch Probe Position 2 Negative Value 213

Object 60C0h: Interpolation Sub-Mode Select 214

Object 60C1h: Interpolation Data Record 215

Object 60C2h: Interpolation Time Period 216

Object 60C4h: Interpolation Data Configuration 218

Object 60D0h: Touch Probe Source 219

Object 60F4h: Following Error Actual Value 220

Object 60FBh: Position Control Parameter Set 221

Object 60FCh: Position Demand Internal Value 223

Object 60FDh: Digital Inputs 224

Object 60FEh: Digital Outputs 227

Object 60FFh: Target Velocity 229

Object 6402h: Motor Type 230

Object 6502h: Supported Drive Modes 231

Object 67FFh: Single Device Type 232

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 170 of 234

Object 6040h: Control Word

Object 6040h: Control Word

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6040h 000 Control Word 0000h FFFFh 0000h Yes Unsigned
16-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the CANCTL(13,0) command.

The control word is the primary method of commanding motion in the SmartMotor. The object provides
access to these features:

l Enable or disable the motor drive

l Quick stop function

l Halt function

l New position setpoint in Profile Position mode (PP)

l Start motion: Profile Position (PP), Profile Velocity (PV), Torque (TQ), Interpolation (IP), and
Homing (HM)

For more details, see Control Words, Status Words and the Drive State Machine on page 44.

The SmartMotor =CAN and RCAN commands can be used to assign/report the value of the NMT state,
control word (object 6040h) and status word (object 6041h). For details, see =CAN, RCAN on page 72.

The next table provides a listing of the available bits, their names and descriptions.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 171 of 234

Object 6040h: Control Word

Bit Name Description
0 Switch on These bits control the CiA 402 profile drive state machine. For more

details, see CiA 402 Profile Motion State Machine on page 44.1 Enable voltage
2 Quick stop
3 Enable operation
4 Operation mode

specific: "New set-
point"

Used by PP, HM, and IP modes. In PP mode: all positions must be set with
a rising transition of this bit. In IP mode: rising edge of this bit is used to
initially start operation but not required at each data point.

5 Operation mode
specific: "Change
set immediately"

Used in PP mode; other modes can leave as 0.

6 Operation mode
specific: "Relative"

In PP mode, this sets a position relative target (PRT=) instead of a pos-
ition target (PT=) type of move.

7 Fault reset Rising transition resets fault in all modes of operation. If the fault con-
dition still exists (status word object 6041h), then the cause has not
been cleared.

8 Halt If this bit is set, then the motor will stop from any mode of operation.
The action taken is set in advance by the halt option code.

9 Operation mode
specific

Used in PP mode; other modes can leave as 0.

10 Reserved Reserved by the CiA 402 specification.
11 Manufacturer-spe-

cific: Reserved for
user application

Reserved for the user's application. This bit is visible in a program
through RCAN(2).

12 Manufacturer-spe-
cific

Do not use; leave at 0.

13 Manufacturer-spe-
cific

Do not use; leave at 0.

14 Manufacturer-spe-
cific

Do not use; leave at 0.

15 Manufacturer-spe-
cific: Reset inter-
polation buffer

Used to reset the IP mode buffer.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 172 of 234

Object 6041h: Status Word

Object 6041h: Status Word

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6041h 000 Status Word 0000h FFFFh Yes Unsigned
16-bit

Read
Only

This object indicates the current state of the drive. For more details, see Control Words, Status Words
and the Drive State Machine on page 44. The SmartMotor =CAN and RCAN commands can be used to
assign/report the value of the NMT state, control word (object 6040h) and status word (object 6041h).
For details, see =CAN, RCAN on page 72.

Bit Name Description
0 Ready to switch on The bits 0–3, 5 and 6 represent the state of the CiA 402 profile

drive state machine. For more details, see Control Words, Status
Words and the Drive State Machine on page 44.

1 Switched on
2 Operation enabled

3 Fault
4 Voltage enabled Sufficient voltage is present to operate the motor.
5 Quick stop The bits 0–3, 5 and 6 represent the state of the CiA 402 profile

drive state machine. For more details, see Control Words, Status
Words and the Drive State Machine on page 44.6 Switch on disabled

7 Warning Not used (reports as 0).
8 Manufacturer-specific Used by the GOSUB R2 object (2309h) to indicate the subroutine is

busy.
9 Remote Controlled through CANCTL(13,x). This bit indicates if the motor is

accepting commands from the CANopen network. Default is 1,
which indicates the motor is accepting commands.

10 Target reached "Target reached" — this is operation-mode specific. It indicates the
speed, position, or torque profile was achieved.

In Homing (HM) mode, the motor has come to rest after finding the
home position. However, the motor is not specifically at the home
position because a deceleration distance was required after finding
the position.

11 Internal limit active "Limit" — set if a position limit is currently showing a fault.
12 Operation mode spe-

cific
"Setpoint acknowledgment" — this is operation-mode specific to
PP, IP and PV modes. It indicates a new setpoint was received.

In Homing (HM) mode, the homing process has found the home
position, and the "position actual" has been adjusted to the new
home position and home offset.

13 Operation mode spe-
cific

"Move error" — set if a position error occurred.

14 Manufacturer-specific User-controlled bit through CANCTL(12,x).
15 Manufacturer-specific Not used (reports as 0).

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 173 of 234

Object 605Ah: Quick Stop Option Code

Object 605Ah: Quick Stop Option Code

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

605Ah 000 Quick Stop Option Code –1 2 2 No Signed
16-bit

Read
Write

This object determines what action should be taken if the quick stop function is active. That function is
activated by bit 2 of the Control Word object (6040h). For details, see Object 6040h: Control Word on
page 171.

In Profile Torque (TQ) mode, quick stop option code values 1 and 2 will reduce the torque according to
the torque slope rate because this is not a servo mode that can follow the deceleration or quick-stop
deceleration rates.

Value Function
–1 MTB (drive turned off, resists rotation)
0 Disable drive (drive turned off, free to rotate)
1 Decelerate on the profile deceleration ramp (see Object

6084h: Profile Deceleration on page 197); drive will
automatically leave the quick stop state.

2 Decelerate on the quick stop ramp (see Object 6085h: Quick
Stop Deceleration on page 198); drive will automatically leave
the quick stop state

3–8 Not supported
9–32767 Reserved

If using Follow or Cam mode, be aware that these decelerations are not applied. The AniBasic MFD()
command controls the deceleration in those cases. For details on that command, see the SmartMotor™
Developer's Guide.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 174 of 234

Object 605Ch: Disable Operation Option Code

Object 605Ch: Disable Operation Option Code

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

605Ch 000 Disable Operation Option Code –1 1 1 No Signed
16-bit

Read
Write

NOTE: This feature is not available in Class 5 SmartMotors.

This object determines what action should be taken if the Enable Operation bit is cleared in the Control
Word object (6040h) while in the operation (enabled drive) state. For details, see Object 6040h: Control
Word on page 171.

In Profile Torque (TQ) mode, disable operation option code values 1 will reduce the torque according to
the torque slope rate because this is not a servo mode that can follow the deceleration or quick-stop
deceleration rates.

Value Function
–1 MTB (drive turned off, resists rotation)
0 Disable drive (drive turned off, free to rotate)
1 Decelerate on the profile deceleration ramp (see Object

6084h: Profile Deceleration on page 197)
2–32767 Reserved

If using Follow or Cam mode, be aware that these decelerations are not applied. The AniBasic MFD()
command controls the deceleration in those cases. For details on that command, see the SmartMotor™
Developer's Guide.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 175 of 234

Object 605Dh: Halt Option Code

Object 605Dh: Halt Option Code

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

605Dh 000 Halt Option Code 1 2 1 No Signed
16-bit

Read
Write

This object determines what action should be taken if the halt bit (bit 8) is set in Control Word object
(6040h). For details, see Object 6040h: Control Word on page 171.

In Profile Torque (TQ) mode, halt option code values 1 and 2 will reduce the torque according to the
torque slope rate because this is not a servo mode that can follow the deceleration or quick-stop
deceleration rates.

Value Function
0 Reserved
1 (Default) Decelerate on the profile deceleration ramp (see

Object 6084h: Profile Deceleration on page 197)
2 Slow down on quick-stop ramp

3–4 Not supported
5–32767 Reserved

If using Follow or Cam mode, be aware that these decelerations are not applied. The AniBasic MFD()
command controls the deceleration in those cases. For details on that command, see the SmartMotor™
Developer's Guide.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 176 of 234

Object 605Eh: Fault Reaction Option Code

Object 605Eh: Fault Reaction Option Code

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

605Eh 000 Fault Reaction Option Code –1 1* -1 Yes Signed
16-bit

Read
Write

This object determines what action should be taken if a fault occurs in the motor. Causes of a fault
include: limit switches, software limits, overtemperature, excessive position error, etc.

In Profile Torque (TQ) mode, fault reaction option code value 1 will reduce the torque according to the
torque slope rate because this is not a servo mode that can follow the deceleration rate.

Value Function
–1 (Default) MTB (drive turned off, resists rotation)
0 Disable drive (drive turned off, free to rotate)
1 Decelerate on the profile deceleration ramp (see Object

6084h: Profile Deceleration on page 197)
2 Not supported
3 Not supported
4 Not supported

5–32767 Reserved

If using Follow or Cam mode, be aware that these decelerations are not applied. The AniBasic MFD()
command controls the deceleration in those cases. For details on that command, see the SmartMotor™
Developer's Guide.

Similar SmartMotor Commands: FSA()

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 177 of 234

Object 6060h: Modes of Operation

Object 6060h: Modes of Operation

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6060h 000 Modes of Operation -12** 8** 0 Yes Signed
8-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the CANCTL(13,0) command.

**The value 0 is allowed and will not return error (but is does not enter a mode of motion). Class 5 firmware doesn't necessarily
return a range error. Anything not supported in the table below may be silently ignored. Class 5 supported mode 8 (CSP) as of
firmware version 5.0.4.46 / 5.98.4.46 or later.

WARNING: For Class 5 D-series motors, certain special features may override the
brake function. In particular, follow or step modes, or any similar feature from a
network interface (including CANopen modes of operation: -2, -3, -11), may
interfere with a brake assignment to I/O 0 or 1). Therefore, use of I/O 0 or 1 is not
recommended for the brake in the Class 5 D-series if follow or step modes are
used, regardless of SRC setting. For more information on the EOBK command, see
theObject 6060h: Modes of Operation on page 178.

The type of motion control is selected by setting this object to one of the values shown in the next
table. The new setting will take effect immediately. When transitioning to Interpolated Position (IP)
mode or Profile Position (PP) mode, the motor will stop, there must be a rising transition on bit 4 of the
control word and then motion will begin in the new mode.

The value read back from this object does not indicate the current mode of operation; it is only an
indication of what was written previously and not an indication of the motor's current state. Use the
Modes of Operation Display object (6061h) to see the currently active mode. For details, see Object
6061h: Modes of Operation Display on page 180.

Value -11 or -12 should be used as the mode of operation where follow or cam mode is accepting data
from the CANopen data object and position profile mode is active (dual trajectory).

Value Motion Control Mode
-12 Cam from CANopen encoder + position mode1,2

-11 Follow CANopen encoder + position mode
-10 to -4 Reserved / not supported

–3 Step and direction input
–2 Follow quadrature encoder input
–1 Reserved / not supported
0 Null (not an error, but not a mode of motion either.)
1 Profile Position (PP) mode
2 Reserved / not supported
3 Profile Velocity (PV) mode
4 Torque Profile (TQ) mode
5 Reserved / not supported
6 Homing (HM) mode
7 Interpolated Position (IP) mode3

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 178 of 234

Object 6060h: Modes of Operation

Value Motion Control Mode
8 Cyclic Sync Position (CSP) mode (as of firmware version 5.0.4.46 /

5.98.4.46 or later)
9 to 10 Reserved / not supported

11 to 127 Reserved / not supported
1. Cam mode operation requires user program to configure cam.
2. Cam mode still uses MFA, MFD, MFMUL, MFDIV to control encoder input into
cam controller. See the SmartMotor Developer's Guide for details.
3. This mode is not supported in the standard release; consult Moog Animatics for
further information.

Similar SmartMotor Commands: MV, MP, MT, MFR, MSR

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 179 of 234

Object 6061h: Modes of Operation Display

Object 6061h: Modes of Operation Display

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6061h 000 Modes of Operation Display 80h 7Fh 00h Yes Signed
8-bit

Read
Only

Displays the current mode of motion control; refer to Object 6060h: Modes of Operation on page 178.

Similar SmartMotor Commands: RMODE

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 180 of 234

Object 6062h: Position Demand Value

Object 6062h: Position Demand Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6062h 000 Position Demand Value 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Only

This object reports the position calculated by the motion profile; it takes into account the acceleration
and velocity targets. Because user units are not supported, the value is in units of encoder counts,
which are the same units as those for object 60FCh. For details, see Object 60FCh: Position Demand
Internal Value on page 223.

When the motor drive is inactive or in torque mode, the value reported is simply the current position.

Similar SmartMotor Commands: RPC

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 181 of 234

Object 6063h: Position Actual Internal Value

Object 6063h: Position Actual Internal Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6063h 000 Position Actual Internal Value 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Only

This object reports the current position of the motor shaft in units of encoder counts.

Similar SmartMotor Commands: RPA

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 182 of 234

Object 6064h: Position Actual Value

Object 6064h: Position Actual Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6064h 000 Position Actual Value 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Only

This object reports the current position of the motor shaft in units of encoder counts. Because user
units are not supported, the value is in units of encoder counts, which are the same units as those for
object 6063h. For details, see Object 6063h: Position Actual Internal Value on page 182.

Similar SmartMotor Commands: RPA

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 183 of 234

Object 6065h: Following Error Window

Object 6065h: Following Error Window

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6065h 000 Following Error Window 00000000h 0003FFFFh* 000003E8h Yes Unsigned
32-bit

Read
Write

*The value -1 is allowed. Class 5 firmware doesn't necessarily return a range error, the high limit shown is what will be accepted
by the firmware. Anything higher may be silently ignored.

This object defines the range of tolerated deviation for the actual position relative to the calculated
demand position. If the actual position is out of range, a following-error fault occurs and the drive will
react according to the fault reaction. The units of this object are in encoder counts.

Similar SmartMotor Commands: EL=, REL

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 184 of 234

Object 606Bh: Velocity Demand Value

Object 606Bh: Velocity Demand Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

606Bh 000 Velocity Demand Value 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Only

This object reports the velocity calculated by the motion profile; it takes into account acceleration and
velocity targets. The units are: (encoder counts per sample period) * 65536.

Similar SmartMotor Commands: RVC

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 185 of 234

Object 606Ch: Velocity Actual Value

Object 606Ch: Velocity Actual Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

606Ch 000 Velocity Actual Value 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Only

This object reports the actual velocity of the motor shaft. The units are: (encoder counts per sample
period) * 65536.

Similar SmartMotor Commands: RVA

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 186 of 234

Object 6071h: Target Torque

Object 6071h: Target Torque

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6071h 000 Target Torque -1000 1000 0000h Yes Signed
16-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the CANCTL(13,0) command.

This object is the target value for the motor when operating in Profile Torque (TQ) mode. The value
written will be reached at a rate specified by the Torque Slope object (6087h). When the Control Word
object (6040h) has enabled motion, the value written here will be accepted immediately. The units of
this value are per thousand of the motor's rated torque.

A value of 1000 in this object is equivalent to T=32767 in the corresponding SmartMotor command. In
other words, DS402 considers 1000 to be full-scale torque, whereas 32767 is considered to be full-
scale torque for the SmartMotor serial commands.

Similar SmartMotor Commands: T=, RT

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 187 of 234

Object 6074h: Torque Demand Value

Object 6074h: Torque Demand Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6074h 000 Torque Demand Value 8000h 7FFFh 0000h Yes Signed
16-bit

Read
Only

This object provides the motor's demand torque from the PID when in Position (PP), Velocity (PV) or
interpolation (IP) mode, or the torque profile when in Torque (TQ) mode. The units of this value are per
thousand of the motor's rated torque.

NOTE: This object represents the requested value from the Torque profile (in TQ mode) or the PID
(in all other closed-loop servo modes). However, due to current limits, torque profile, etc., the motor
may not be able to deliver the requested torque.

A value of 1000 in this object is equivalent to T=32767 in the corresponding SmartMotor command. In
other words, DS402 considers 1000 to be full-scale torque, whereas 32767 is considered to be full-
scale torque for the SmartMotor serial commands.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 188 of 234

Object 6077h: Torque Actual

Object 6077h: Torque Actual

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6077h 000 Torque Actual 8000h 7FFFh 0000h Yes Signed
16-bit

Read
Only

This object reports the actual torque based on measured current. The value is reported in units per
thousand of rated torque.

NOTE: This object's intent is to report the actual measured torque based on the current in the motor
windings. However, not all SmartMotor modes of commutation can successfully measure current-
producing torque. Therefore, this command doesn't provide actual measurements of torque on the
Class 5 D-Style SmartMotor. On the SmartMotors that do support it (Class 5 M-Style, Class 6 M-
Style and D-Style), it is only valid while in MDC or MDS commutation mode. MDT or MDE mode
operation will produce an undefined result for this value. Class 5 D-Style report the same data as
object 6074h. For details, see Object 6074h: Torque Demand Value on page 188.

A value of 1000 in this object is equivalent to T=32767 in the corresponding SmartMotor command. In
other words, DS402 considers 1000 to be full-scale torque, whereas 32767 is considered to be full-
scale torque for the SmartMotor serial commands.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 189 of 234

Object 6079h: DC Link Circuit Voltage

Object 6079h: DC Link Circuit Voltage

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6079h 000 DC Link Circuit Voltage 00000000h FFFFFFFFh Yes Unsigned
32-bit

Read
Only

This object describes the supplied voltage, in millivolts, measured at the motor's power inverter.

Similar SmartMotor Commands: RUJA

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 190 of 234

Object 607Ah: Target Position

Object 607Ah: Target Position

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

607Ah 000 Target Position 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

This object specifies the target position that the motor should move to in Profile Position (PP) mode.
The units of this object are in encoder counts. When the "relative" bit (bit 6) of the Control Word object
(6040h) is set, the value written is added to the position currently demanded.

The target position will be approached according to the Profile Acceleration object (6083h), Profile
Deceleration object (6084h), and Profile Velocity object (6081h).

This object is not immediately accepted when written. It is only accepted when the "New setpoint" bit
(bit 4) of the Control Word object (6040h) has a rising transition.

Similar SmartMotor Commands: PT=, PRT=, RPT, RPRT

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 191 of 234

Object 607Ch: Home Offset

Object 607Ch: Home Offset

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

607Ch 000 Home Offset 80000000h 7FFFFFFFh 0 Yes Signed
32-bit

Read
Write

This object shifts the origin of the actual position when the Homing (HM) mode is executed. When HM
mode is commanded to begin, the home position is first discovered. The home position is the physical
location of the switch or index per the specific homing method. Once found, that physical location is
assigned the negative of the home offset value:

Home position = –Home offset

The home position is assigned with –home offset. See the next example.

6
0

6
4

h
=

0
S

ta
rt

in
g

 p
o

si
ti

o
n

P
hy

si
ca

l s
to

p
 −

P
hy

si
ca

l s
to

p
 +

Positive limit switch = 1

6
0

6
4

h
=

0

P
o

si
ti

o
n

af
te

r
ho

m
in

g

Positive limit switch = 1

6
0

6
4

h
=

1
2

0
0

6
0

6
4

h
=

1
1

5
4

H
o

m
e

 p
o

si
ti

o
n

Homing method = 18
Incremental encoder (powers up at value = 0)

Condition: Initial power up

Condition: Find home

(Fast speed)

(slow
speed)

Homing offset object 607Ch = +600

Green: machine physical position

Red: Home Position — where the sensors say it is

Blue: Zero Position — after homing completes, where the machine reports 6064h = 0

P
hy

si
ca

l s
to

p
 −

P
hy

si
ca

l s
to

p
 +

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 192 of 234

Object 607Ch: Home Offset

6
0

6
4

h
=

−6
0

0

Positive limit switch = 1

R
e

st
in

g
 P

o
si

ti
o

n

H
o

m
e

 p
o

si
ti

o
n

CiA 402 and ETG guidelines state: “Zero position = home position + home offset”
0 = Home position + home offset
Home position = −home offset

Z
e

ro
 p

o
si

ti
o

n
6

0
6

4
h

=
0

6
0

6
4

h
=

−6
4

6
Condition: Apply home offset

6
0

6
4

h
=

0

Positive limit switch = 1

R
e

st
in

g
 P

o
si

ti
o

n

H
o

m
e

 p
o

si
ti

o
n

Condition: Set home position to 0

6
0

6
4

h
=

−4
6P

hy
si

ca
l s

to
p

 −

P
hy

si
ca

l s
to

p
 +

P
hy

si
ca

l s
to

p
 −

P
hy

si
ca

l s
to

p
 +

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 193 of 234

Object 6080h: Max Motor Speed

Object 6080h: Max Motor Speed

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6080h 000 Max Motor Speed 00000000h FFFFFFFFh
Set according
to factory set-

tings
Yes Unsigned

32-bit
Read
Write

This object specifies the speed limit for the motor in either direction. The units are in revolutions per
minute (rpm). If this value is exceeded, the motor will enter a fault condition.

The value is specific to each SmartMotor model. For details, see the Moog Animatics Product Catalog,
which is available on the Moog Animatics website.

Similar SmartMotor Commands: VL=, RVL

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 194 of 234

Object 6081h: Profile Velocity in PP Mode

Object 6081h: Profile Velocity in PP Mode

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6081h 000 Profile Velocity in PP Mode 00000000h 7FFFFFFFh 00000000h Yes Unsigned
32-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the CANCTL(13,0) command.

This object only applies to Profile Position (PP) mode. The position profile will accelerate to this speed
and remain at this speed until deceleration begins for approach of the position target. The units are:
(encoder counts per sample period) * 65536.

Also, refer to Object 60FFh: Target Velocity on page 229.

Similar SmartMotor Commands: VT= (NOTE: The value written to 6081h does not appear when reading
back VT.)

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 195 of 234

Object 6083h: Profile Acceleration

Object 6083h: Profile Acceleration

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6083h 000 Profile Acceleration 00000000h 7FFFFFFFh 00000004h Yes Unsigned
32-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the CANCTL(13,0) command.

This object is the acceleration in the Profile Velocity (PV) mode and the Profile Position (PP) mode. The
units are: (encoder counts per (sample2)) * 65536.

Similar SmartMotor Commands: AT=, ADT=, RAT

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 196 of 234

Object 6084h: Profile Deceleration

Object 6084h: Profile Deceleration

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6084h 000 Profile Deceleration 00000000h 7FFFFFFFh 00000004h Yes Unsigned
32-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the CANCTL(13,0) command.

This object is the deceleration in the Profile Velocity (PV) mode and the Profile Position (PP) mode. The
units are: (encoder counts per (sample2)) * 65536.

Similar SmartMotor Commands: DT=, ADT=, RDT

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 197 of 234

Object 6085h: Quick Stop Deceleration

Object 6085h: Quick Stop Deceleration

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6085h 000 Quick Stop Deceleration 00000000h 7FFFFFFFh 7FFFFFFFh Yes Unsigned
32-bit

Read
Write

This object is used to stop the drive with the quick stop function, which is commanded from bit 2 of the
Control Word object (6040h). The value is the deceleration used to stop the motor if the quick stop
command is given and the Quick Stop Option Code object (605Ah) is set to 2. The units are: (encoder
counts per (sample2)) * 65536.

For additional details, see Object 6040h: Control Word on page 171 and Object 605Ah: Quick Stop
Option Code on page 174.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 198 of 234

Object 6087h: Torque Slope

Object 6087h: Torque Slope

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6087h 000 Torque Slope 00000000h FFFFFFFFh 007A12F4h Yes Unsigned
32-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the CANCTL(13,0) command.

This object is the torque mode acceleration/deceleration slope. The units are in torque units per
second. To put this into context, a value of 1000 in this object can ramp the SmartMotor to full torque
in one second.

In SmartMotor commands, the corresponding command is TS=, where the units are different. In the TS=
command, the units are: ("T=" per sample)*65536. Therefore, a value of 1000 in this object is equivalent
to TS=268427, assuming the default PID rate of 8000 Hz.

For related information, see Object 6071h: Target Torque on page 187.

Similar SmartMotor Commands: TS=, RTS

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 199 of 234

Object 608Fh: Position Encoder Resolution

Object 608Fh: Position Encoder Resolution

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

608Fh 000 Number of Entries 02h 02h 02h No Unsigned
8-bit

Read
Only

608Fh 001 Encoder Counts 00000000h FFFFFFFFh Encoder res-
olution. Yes Unsigned

32-bit
Read
Only

608Fh 002 Motor Revolutions 00000000h FFFFFFFFh 00000001h Yes Unsigned
32-bit

Read
Only

This object defines the resolution of the encoder. There are two subindex objects that describe the
encoder resolution — subindex 001: Encoder Counts and subindex 002: Motor Revolutions. To
determine the encoder resolution (number of encoder counts per motor revolution), divide the value of
subindex 1 by the value of subindex 2. The units are in encoder counts.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 200 of 234

Object 6098h: Homing Method

Object 6098h: Homing Method

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6098h 000 Homing Method 80h 7Fh 0 Yes Signed
8-bit

Read
Write

This object selects the method used in Homing (HM) mode. This must be set before starting a homing
process, and it should not be changed while HM mode is actively seeking home.

NOTE: The homing input is I/O 6. For more details on I/O, consult theSmartMotor™ Installation and
Startup Guide for your SmartMotor, and the SmartMotor™ Developer's Guide.

Homing
Method
Value

Description

1, 2 Home position is the first index in the positive direction from the negative limit switch
(1), or in the negative direction from the positive limit switch (2)
(requires that limit switches are enabled).

17, 18 Home position is at the negative limit switch (17) or at the positive limit switch (18)
(requires that limit switches are enabled).

33, 34 Home position is the location of the first index in the negative direction (33) or pos-
itive direction (34) from the current position.

35 Accept the current position as the home position.
(current position = –home offset)

NOTE: Methods 1, 2, 33 and 34 make use of the index of the internal encoder, which provides a
precise location (switches may have some position uncertainty). The construction of the machine
should consider the proximity of the index mark to the switch threshold. The index location should
be at 180 degrees rotation of the encoder (RRES/2) from the switch threshold. This will ensure that
the index mark does not fall within the uncertainty of the switch transition.

NOTE: Methods 1, 2, 17 and 18 make use of the limit switches. Limit switches must be enabled and
physically wired to the motor. Under these methods, the homing process will not start if the
relevant limit has been disabled.

The next figures illustrate the differences between the methods that use an index pulse and those that
do not. For example, methods 1 and 2 use an index pulse signal, while methods 17 and 18 do not.

Method 2

Method 1

Index Pulse
Signal

Methods 1 & 2 - Limit Switches and Index Pulses

Limit Switches

-LS +LS

Limit Switches

Method 18

Method 17

Methods 17 & 18 - Limit Switches no Index Pulses

-LS +LS

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 201 of 234

Object 6098h: Homing Method

The next figures illustrate homing methods 7-14. Note that:
l the number in the hexagon is the selected homing mode

l the solid circle is the location of the motor when homing mode started, each possibility is shown

Home Switch
Signal

Index Pulse
Signal

Methods 7-10: Positive Initial Motion

7

8

9

10

9

107

8

7

8

9

10

Positive Limit
Switch

Home Switch
Signal

Index Pulse
Signal

Methods 11-14: Negative Initial Motion

Negative Limit
Switch

1214

1114

12

1113

13

13

14 12

11

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 202 of 234

Object 6099h: Homing Speeds

Object 6099h: Homing Speeds

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6099h 000 Number of Entries 02h 02h 02h No Unsigned
8-bit

Read
Only

6099h 001 Speed during search for switch 00000000h 7FFFFFFFh 00000000h Yes Unsigned
32-bit

Read
Write

6099h 002 Speed during search for zero 00000000h 7FFFFFFFh 00000000h Yes Unsigned
32-bit

Read
Write

This object only applies to Homing (HM) mode. The homing profile will accelerate to these speeds
depending on the segment of the homing routine that is in use.

In general, the "speed during search for switch" segment is expected to be faster than the "speed
during search for zero" segment. The "speed during search for zero" segment is selected when the
homing mode expects to find the home position with the move it is currently starting. If the homing
mode expects an intermediate switch event before the home position, then the "speed during search
for switch" segment is selected (for example, a limit switch is tripped before changing direction to find
the home index).

The units are: (encoder counts per sample period) * 65536.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 203 of 234

Object 609Ah: Homing Acceleration

Object 609Ah: Homing Acceleration

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

609Ah 000 Homing Acceleration 00000000h 7FFFFFFFh 00000004h Yes Unsigned
32-bit

Read
Write

This object is the acceleration and deceleration in Homing (HM) mode. The units are: (encoder counts
per (sample2)) * 65536.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 204 of 234

Object 60B8h: Touch Probe Function

Object 60B8h: Touch Probe Function

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60B8h 000 Touch Probe Function 0 65535 0 Yes Unsigned
16-bit

Read
Write

NOTE: This feature applies to firmware version 6.0.1.9 and later.

NOTE: This feature is not available in Class 5 SmartMotors.

The touch probe function allows the motor's position to be captured on a specific event. This feature is
commonly used for homing, registration applications or other cases where the motor position must be
recorded at a specific point in time. This value can be read back later, in a less time-critical manner,
from the capture register.

Object 60B8h is a bit field that can be written to for the purpose of configuring and setting the event
trigger(s).

There are two independent touch probes—each has the ability to capture a rising and falling edge. Each
of these four possible captures is recorded independently in its own register. For more details, see
objects 60BAh, 60BBh, 60BCh, 60BDh.

NOTE: Touch probe 1 always records the value of the internal encoder RCTR(0); touch probe 2
always records the external encoder RCTR(1).

NOTE: When the touch probe is enabled, no changes should be made to the input source selection
until the touch probe is disabled.

Also, see Object 60B9h: Touch Probe Status on page 208.

Bit Touch
Probe Value Definition

0 TP1 0 Switch off touch probe 1. Also, clears the corresponding captured status
bit for any touch probe 1 event.

1 Enable touch probe 1
1 TP1 0 Trigger on first event

1 Continuously trigger
3,2 TP1 00 Trigger with touch probe 1's external input—for the Class 6 M-Style or

Class 6 D-Style motor, this is general purpose input 5
01 Trigger with internal encoder's index

NOTE: Only the positive edge is supported.
10 Touch probe source defined by object 60D0:1
11 Reserved; do not use this state

4 TP1 0 Disable sampling of positive edge of touch probe 1; clears the
corresponding captured status bit for this event

1 Enable sampling of positive edge of touch probe 1
5 TP1 0 Disable sampling of negative edge of touch probe 1;

clears the corresponding captured status bit for this event
1 Enable sampling of negative edge of touch probe 1

6 N/A 0 Reserved; set bit to 0
7 N/A 0 Reserved; set bit to 0

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 205 of 234

Object 60B8h: Touch Probe Function

Bit Touch
Probe Value Definition

8 TP2 0 Disable touch probe 2; clears the corresponding captured status bit for
any touch probe 2 event

1 Enable touch probe 2
9 TP2 0 Trigger on first event

1 Continuously trigger
11,10 TP2 00 Trigger with touch probe 2's external input—for the Class 6 M-Style or

Class 6 D-Style motor, this is general purpose input 4
01 Trigger with differential input (using RS-485 port)

Class 6 M-Style: (COM 0 differential pair with COM port 0 closed)

Class 6 D-Style: (COM 1 differential pair with COM port 1 closed)
10 Touch probe source defined by object 60D0:2
11 Reserved; do not use this state

12 TP2 0 Disable sampling of positive edge of touch probe 2;
clears the corresponding captured status bit for this event

1 Enable sampling of positive edge of touch probe 2
13 TP2 0 Disable sampling of negative edge of touch probe 2;

clears the corresponding captured status bit for this event
1 Enable sampling of negative edge of touch probe 2

14 N/A 0 Reserved: set bit to 0
15 N/A 0 Reserved: set bit to 0

To arm a capture, the general enable (bit 0 for touch probe 1) and the rising and/or falling enable must
be set (bits 4 and/or 5 for touch probe 1). For example, to capture a single, rising edge of the internal
encoder on touch probe 1, follow this sequence:

1. Write value 0 to object 60B8h. This disables both touch probe 1 and touch probe 2 from any
events. Any recorded events in the status register (60B9h) will also be cleared. The status
register will report 0.

2. Write 21 decimal (15 hex) to object 60B8h. This will arm touch probe 1 to capture the rising
edge of the internal encoder's index.

3. Read object 60B9h (touch probe status). If bit 1 is true (1), then the event has occurred. If bit 1
is false (0), then the event has not yet occurred. Therefore, repeat this step.

4. Read object 60BAh (which has become valid with the indication in the status word.) This is the
value of position of RCTR(0) when the index event occurred.

5. Write the value 0 to object 60B8h to disable the touch probe feature.

There are two event-capture modes: a single-event mode and a continuous-trigger mode.
l The single-event mode captures the first event (the bit is set when the first capture occurs). It

then disarms itself from capturing further events. The data remains valid as long as the
corresponding status bit is true. To capture another event, the enable bit(s) must be cleared then
reset.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 206 of 234

Object 60B8h: Touch Probe Function

l The continuous-trigger mode continuously captures the events (in other words, it captures each
time the index or designated input has an event). The bit will not set until at least one event has
occurred. However, there is no further indication as additional events occur. The value read will
simply be the most recent position recorded. This mode is disabled by clearing the associated
enable bit (e.g., positive edge enable of TP1).

CAUTION: The SmartMotor ZS command can clear the armed touch probe events.
Therefore, use caution when operating the touch probes along with the ZS
command or other fault-clearing events such as those in object 6040h or 2309h.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 207 of 234

Object 60B9h: Touch Probe Status

Object 60B9h: Touch Probe Status

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60B9h 000 Touch Probe Status 0 65535 0 Yes Unsigned
16-bit

Read
Only

NOTE: This feature applies to firmware version 6.0.1.9 and later.

NOTE: This feature is not available in Class 5 SmartMotors.

This object is used to report when there is valid data in any of the four capture registers. If the bit is
set, then the corresponding position register can be read as shown in the next table.

There are two event-capture modes: a single-event mode and a continuous-trigger mode.
l The single-event mode captures the first event (the bit is set when the first capture occurs). It

then disarms itself from capturing further events. The data remains valid as long as the
corresponding status bit is true. To capture another event, the enable bit(s) must be cleared then
reset.

l The continuous-trigger mode continuously captures the events (in other words, it captures each
time the index or designated input has an event). The bit will not set until at least one event has
occurred. However, there is no further indication as additional events occur. The value read will
simply be the most recent position recorded. This mode is disabled by clearing the associated
enable bit (e.g., positive edge enable of TP1).

NOTE: For either mode, capture registers should not be read until the corresponding bit indicates
that data is valid. Refer to the next table.

Bit Touch
Probe Value Definition

0 TP1 0 Touch probe 1 is switched off, or no rising or falling events are enabled
1 Touch probe 1 is enabled (at least one rising or falling edge is enabled and

the main enable for touch probe 1 is set)
1 TP1 0 No positive edge yet for touch probe 1

1 Positive edge position stored for touch probe 1 in object 60BAh
2 TP1 0 No negative edge yet for touch probe 1

1 Negative edge position stored for touch probe 1 in object 60BBh
3 N/A 0 Reserved
4 N/A 0 Reserved
5 N/A 0 Reserved
6 N/A 0 Reserved
7 N/A 0 Reserved
8 TP2 0 Touch probe 2 is switched off, or no rising or falling events are enabled

1 Touch probe 2 is enabled (at least one rising or falling edge is enabled and
the main enable for touch probe 2 is set)

9 TP2 0 No positive edge yet for touch probe 2
1 Positive edge position stored for touch probe 2 in object 60BCh

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 208 of 234

Object 60B9h: Touch Probe Status

Bit Touch
Probe Value Definition

10 TP2 0 No negative edge yet for touch probe 2
1 Negative edge position stored for touch probe 2 in object 60BDh

11 N/A 0 Reserved
12 N/A 0 Reserved
13 N/A 0 Reserved
14 N/A 0 Reserved
15 N/A 0 Reserved

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 209 of 234

Object 60BAh: Touch Probe Position 1 Positive Value

Object 60BAh: Touch Probe Position 1 Positive Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60BAh 000 Touch probe position 1
positive value 80000000h 7FFFFFFFh 0 Yes Signed

32-bit
Read
Only

NOTE: This feature applies to firmware version 6.0.1.9 and later.

NOTE: This feature is not available in Class 5 SmartMotors.

This object is the captured value of RCTR(0) when the positive edge event of touch probe 1 occurs. The
capture event is configured in object 60B8h (see Object 60B8h: Touch Probe Function on page 205).
This data is only valid if object 60B9h, bit 1 is true (see Object 60B9h: Touch Probe Status on page
208).

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 210 of 234

Object 60BBh: Touch Probe Position 1 Negative Value

Object 60BBh: Touch Probe Position 1 Negative Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60BBh 000 Touch probe position 1
negative value 80000000h 7FFFFFFFh 0 Yes Signed

32-bit
Read
Only

NOTE: This feature applies to firmware version 6.0.1.9 and later.

NOTE: This feature is not available in Class 5 SmartMotors.

This object is the captured value of RCTR(0) when the negative edge event of touch probe 1 occurs. The
capture event is configured in object 60B8h (see Object 60B8h: Touch Probe Function on page 205).
This data is only valid if object 60B9h, bit 2 is true (see Object 60B8h: Touch Probe Function on page
205).

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 211 of 234

Object 60BCh: Touch Probe Position 2 Positive Value

Object 60BCh: Touch Probe Position 2 Positive Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60BCh 000 Touch probe position 2
positive value 80000000h 7FFFFFFFh 0 Yes Signed

32-bit
Read
Only

NOTE: This feature applies to firmware version 6.0.1.9 and later.

NOTE: This feature is not available in Class 5 SmartMotors.

This object is the captured value of RCTR(0) when the positive edge event of touch probe 2 occurs. The
capture event is configured in object 60B8h (see Object 60B8h: Touch Probe Function on page 205).
This data is only valid if object 60B9h, bit 9 is true (see Object 60B9h: Touch Probe Status on page
208).

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 212 of 234

Object 60BDh: Touch Probe Position 2 Negative Value

Object 60BDh: Touch Probe Position 2 Negative Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60BDh 000 Touch probe position 2
negative value 80000000h 7FFFFFFFh 0 Yes Signed

32-bit
Read
Only

NOTE: This feature applies to firmware version 6.0.1.9 and later.

NOTE: This feature is not available in Class 5 SmartMotors.

This object is the captured value of RCTR(0) when the negative edge event of touch probe 2 occurs. The
capture event is configured in object 60B8h (see Object 60B8h: Touch Probe Function on page 205).
This data is only valid if object 60B9h, bit 10 is true (see Object 60B9h: Touch Probe Status on page
208).

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 213 of 234

Object 60C0h: Interpolation Sub-Mode Select

Object 60C0h: Interpolation Sub-Mode Select

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60C0h 000 Interpolation Sub-Mode Select 8000h 0000h 0000h Yes Signed
16-bit

Read
Write

Interpolation (IP) mode uses the position data object (60C1h) and the interpolation time period object
(60C2h) in one of these ways:

l Linear interpolation (default): generates a path of linear set of positions in the times between
the data points. The velocity during each segment between points is constant. The disadvantage
is that the velocity changes abruptly at the data points; the advantage is that the actual path
taken between points is very predictable.

l Spline interpolation: uses the current point, the next point, and the previous point to generate
curvature of the path over time. This results in a more continuous velocity. Also, following of
curved shapes is typically more accurate between points. However, the disadvantage can be
certain cases where a position overshoot can occur. While this is generally avoided in the
algorithm, extreme cases will overshoot.

The next table shows the possible sub-mode functions. The sub-mode data is read from the buffer
along with the associated data point; the sub-mode applies to the segment between that point and the
previous point.

Value Function
–3 Spline Interpolation
0 Linear Interpolation

1–32767 Reserved

In the next example, the sub-mode will use Spline Interpolation between points 3000 and 4000.

1. Set the Interpolation Sub-Mode Select object (60C0h) to the value 0.

2. Put data in the buffer by writing these values to subindex 1 of the Interpolation Data Record
object (60C1h):

a. 2000

b. 3000

3. Set the Interpolation Sub-Mode Select object (60C0h) to the value –3.

4. Put data in buffer by writing the value 4000 to subindex 1 of the Interpolation Data Record
object (60C1h).

5. Set the Interpolation Sub-Mode Select object (60C0h) to the value 0.

6. Put data in the buffer by writing these values to subindex 1 of the Interpolation Data Record
object (60C1h):

a. 5000

b. 6000

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 214 of 234

Object 60C1h: Interpolation Data Record

Object 60C1h: Interpolation Data Record

Object subindex Description Low
Limit

High
Limit Default PDO

Map
Data
type Access

60C1h 000 Number of Entries 01h 02h 02h No Unsigned
8-bit

Read
Only

60C1h 001 Data Record 1 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

60C1h 002 Data Record 2 (not sup-
ported) 80000000h 7FFFFFFFh 00000000h Yes Signed

32-bit N/A

This object is used to enter the position data required in Interpolation (IP) mode. Only subindex 1 is
used; subindex 2 is not used.

When data is written to subindex 1, it is entered into the buffer. Also, the current values of the
Interpolation User Bits object (2403h), Interpolation Sub-Mode object (60C0h) and the Interpolation
Time object (60C2h) are captured and entered into the buffer with the same record as the position
data.

The value read from this object is the most recent value written to this object — it is not an indication
of the motor's current state.

NOTE: Object 60C1h, subindex 1, "Data Record 1" can only be written if the "buffer clear" property
(object 60C4h, subindex 6) is set to a 1. By default, writing to a data record will produce an error
until this action is taken.

NOTE: Object 60C1h, subindex 2, "Data Record 2" is not to be used.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 215 of 234

Object 60C2h: Interpolation Time Period

Object 60C2h: Interpolation Time Period

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60C2h 000 Number of Elements 00h FFh 02h No Unsigned
8-bit

Read
Only

60C2h 001 Interpolation time units 00h FFh 01h Yes Unsigned
8-bit

Read
Write

60C2h 002 Interpolation time index 80h 3Fh FDh (-3) Yes Signed
8-bit

Read
Write

This object is used for Interpolated Position (IP) mode. The time written is captured when a data record
is written using subindex 1 of the Interpolation Data Record object (60C1h). The time data is read from
the buffer along with the associated data point. The time period applies to the segment between that
point and the previous point. After it is started, the interpolation process reads data points out of the
interpolation buffer once per the time period.

The default time index is –3, which gives the time units in milliseconds.

Interpolation
Time Index Value

–128 to –4 Not allowed (returns SDO error)
–3 0.001 seconds (default)
–2 0.01 seconds
–1 0.1 seconds
 0 1 second

1 to 127 Not recommended

The representation of the time is a combination of a value (time units) and a decimal shift (time index):

Time = (time units) * 10(time index) seconds

Desired time range Resolution Suggested Time
Index

Suggested
Time Units

1 to 255 milliseconds 0.001 seconds –3 1 to 255
10 milliseconds to 2.55 seconds 0.010 seconds –2 1 to 255
100 milliseconds to 4 seconds 0.100 seconds –1 1 to 40
1 second to 4 seconds 1.000 seconds 0 1 to 4

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 216 of 234

Object 60C2h: Interpolation Time Period

In the next example, the time segment will be the longer time of 2 seconds between point 3000 and
point 4000.

1. Set subindex 1 of the Interpolation Time Period object (60C2h) to the value 1.

2. Set subindex 2 of the Interpolation Time Period object (60C2h) to the value 0, which represents
seconds.

3. Put data in the buffer by writing these values to subindex 1 of the Interpolation Data Record
object (60C1h):

a. 2000

b. 3000

4. Set subindex 1 of the Interpolation Time Period object (60C2h) to the value 2.

5. Put data in buffer by writing the value 4000 to subindex 1 of the Interpolation Data Record
object (60C1h).

6. Set subindex 1 of the Interpolation Time Period object (60C2h) to the value 1.

7. Put data in the buffer by writing these values to subindex 1 of the Interpolation Data Record
object (60C1h):

a. 5000

b. 6000

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 217 of 234

Object 60C4h: Interpolation Data Configuration

Object 60C4h: Interpolation Data Configuration

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60C4h 000 Number of Entries 00h FFh 06h No Unsigned
8-bit

Read
Only

60C4h 001 Maximum buffer size 00000000h FFFFFFFFh 0000002dh Yes Unsigned
32-bit

Read
Only

60C4h 002 Actual buffer size 00000000h FFFFFFFFh 0000002dh Yes Unsigned
32-bit

Read
Only

60C4h 003 Buffer organization 00h FFh 00h Yes Unsigned
8-bit

Read
Only

60C4h 004 Buffer position 0000h FFFFh 0000h Yes Unsigned
16-bit

Read
Only

60C4h 005 Size of data record 04h 04h 04h Yes Unsigned
8-bit

Read
Only

60C4h 006 Buffer clear 00h 01h 00h Yes Unsigned
8-bit

Write
Only

This object controls some miscellaneous aspects of the Interpolation mode buffer.

The subindex objects have these functions:
l Subindex 1: Cannot be changed because the SmartMotor buffer cannot be resized. This object

can be ignored.
l Subindex 2: Cannot be changed because the buffer cannot be resized. The value is 2Dh or 45

(decimal); this is the number of data records that can be held in the buffer. Each record contains
information about the position, time, user bits and Interpolation mode for that segment.

l Subindex 3: Cannot be set. It reports the value 0, which indicates that the buffer is a FIFO type
— data records are written into one end of the buffer and the motor firmware reads data out of
the other end.

l Subindex 4: Reports the number of occupied buffer slots.

l Subindex 5: Not implemented.

l Subindex 6: Cannot be read. To control buffer access, write one of the values from the next
table.

Subindex 6 Function
0 Clear input buffer, access disabled (will not accept writes to object

60C1h), clear all IP data records
1 Enable write access to the buffer (object 60C1h)

2–255 Reserved

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 218 of 234

Object 60D0h: Touch Probe Source

Object 60D0h: Touch Probe Source

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60D0h 000 Number of Entries 2 2 2 No Unsigned
8-bit

Read
Only

60D0h 001 Touch Probe 1 Source 1 6 5 Yes Signed
16-bit

Read
Write

60D0h 002 Touch Probe 2 Source 1 6 3 Yes Signed
16-bit

Read
Write

NOTE: This feature applies to firmware version 6.0.1.9 and later.

NOTE: This feature is not available in Class 5 SmartMotors.

This object is used to select the external input that is applied to the specified touch probe. The
selected input becomes the trigger source for initiating the capture of encoder data to the specific
touch probe.

NOTE: The input source must be chosen before enabling the corresponding touch probe. After the
touch probe is enabled, do not change the input-source selection until the touch probe is disabled.

Touch Probe 1: 60D0h, subindex 1

Value Definition (Class 6 M-Style and Class 6 D-Style motor type)
1 Use single-ended input, general-purpose input 5
2 Not supported
3 Not supported
4 Not supported
5 Use internal encoder's index (support for rising edge only)
6 Not supported

Touch Probe 2: 60D0h, subindex 2

Value Definition (Class 6 M-Style and Class 6 D-Style motor type)
1 Use single-ended input, general-purpose input 5
2 Use single-ended input, general-purpose input 4
3 Use differential input (using RS-485 port)

Class 6 M-Style: (Uses COM0 pins, requires closing the COM 0 RS-485 port)

Class 6 D-Style: (Uses COM1 pins, requires closing the COM 1 RS-485 port)
4 Not supported
5 Not supported
6 Not supported

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 219 of 234

Object 60F4h: Following Error Actual Value

Object 60F4h: Following Error Actual Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60F4h 000 Following Error Actual Value 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Only

This object reports the actual value of the following (position) error. This is the difference between the
demand position and the actual position:

Following Error Actual Value object (60F4h) = Position Demand Value object (6062h) –
Position Actual Value object (6064h)

Similar SmartMotor Commands: REA

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 220 of 234

Object 60FBh: Position Control Parameter Set

Object 60FBh: Position Control Parameter Set

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60FBh 000 Number of Entries 00h FFh 0Ah (10) No Unsigned
8-bit

Read
Only

60FBh 001 KP, Proportional Gain 0000h FFFFh From
EEPROM Yes Unsigned

16-bit
Read
Write*

60FBh 002 KI, Integral Gain 0000h 7FFFh From
EEPROM Yes Unsigned

16-bit
Read
Write*

60FBh 003 KL, Integral Limit 0000h 7FFFh 7FFFh Yes Unsigned
16-bit

Read
Write*

60FBh 004 KD, Derivative Gain 0000h FFFFh From
EEPROM Yes Unsigned

16-bit
Read
Write*

60FBh 005 KS, Derivative Damping Sample
Rate 00h 03h 01h Yes Unsigned

8-bit
Read
Write*

60FBh 006 KV, Velocity Feedforward Gain 0000h FFFFh From
EEPROM Yes Unsigned

16-bit
Read
Write*

60FBh 007 KA, Acceleration Feedforward
Gain 0000h FFFFh From

EEPROM Yes Unsigned
16-bit

Read
Write*

60FBh 008 KG, Gravitational Offset FF000000h 00FFFFFFh From
EEPROM Yes Signed

32-bit
Read
Write*

60FBh 009 N/A 0000h FFFFh 0000h No Unsigned
16-bit

Read
Only

60FBh 010 Position Loop Control 00h FFh 00h Yes Unsigned
8-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the CANCTL(13,0) command.

This object contains manufacturer-specific parameters for the drive controller. For the SmartMotor,
this is primarily used to set the PID parameters (see the next table).

NOTE: The PID parameters do not take effect until subindex 10 is written.

For more details on these PID parameters, see the SmartMotor™ Developer's Guide.

Similar SmartMotor Commands: KP=, RKP, KI=, RKI, KL=, RKL, KD=, RKD, KS=, RKS, KV=, RKV, KA=, RKA,
KG=, RKG, F

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 221 of 234

Object 60FBh: Position Control Parameter Set

Sub-
index

SMI
Command

PID
Parameter Function

1 RKP, KP= KP Proportional coefficient
2 RKI, KI= KI Integral coefficient
3 RKL, KL= KL Integral limit
4 RKD, KD= KD Derivative coefficient
5 RKS, KS= KS Velocity filter option for KD (value is 0, 1, 2

or 3; larger numbers specify longer filter
times)

6 RKV, KV= KV Velocity feed-forward gain
7 RKA, KA= KA Acceleration feed-forward gain
8 RKG, KG= KG Gravitational offset
9 Reserved

10 F (no equal
sign)

Position loop control (set bit 0 to the value
1 to make the PID parameters take effect)

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 222 of 234

Object 60FCh: Position Demand Internal Value

Object 60FCh: Position Demand Internal Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60FCh 000 Position Demand Internal Value 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Only

This object reports the position calculated by the motion profile; it takes into account the acceleration
and velocity targets. The value is in units of encoder counts.

When the motor is inactive or in torque mode, the value reported is simply the current position.

Similar SmartMotor Commands: RPC

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 223 of 234

Object 60FDh: Digital Inputs

Object 60FDh: Digital Inputs

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60FDh 000 Digital Inputs 00000000h FFFFFFFFh Yes Unsigned
32-bit

Read
Only

This object reports the current state of the digital input signals from the I/O connector(s).

For details, see the table corresponding to your motor model:

Class 5 D-style motor
Bit Function
0 Negative limit (if enabled)
1 Positive limit (if enabled)
2 Not supported
3 Not supported

4–15 Reserved
16 General purpose input 0
17 General purpose input 1
18 General purpose input 2
19 General purpose input 3
20 General purpose input 4
21 General purpose input 5
22 General purpose input 6

23-31 Reserved

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 224 of 234

Object 60FDh: Digital Inputs

Class 5 M-style motor
Bit Function
0 Negative limit (if enabled)
1 Positive limit (if enabled)
2 Not supported
3 Not supported

4–15 Reserved
16 General purpose input 0
17 General purpose input 1
18 General purpose input 2
19 General purpose input 3
20 General purpose input 4
21 General purpose input 5
22 General purpose input 6
23 General purpose input 7
24 General purpose input 8
25 General purpose input 9
26 General purpose input 10
27 Not fault state
28 Drive enable input

29-31 Reserved

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 225 of 234

Object 60FDh: Digital Inputs

Class 6 D-Style motor
Bit Function
0 Negative limit (if enabled)
1 Positive limit (if enabled)
2 Not supported
3 Not supported

4–15 Reserved
16 General purpose input 0
17 General purpose input 1
18 General purpose input 2 (vendor-specific positive limit)
19 General purpose input 3 (vendor-specific negative limit)
20 General purpose input* 4
21 General purpose input* 5 (SYNC-encoder capture input)
22 General purpose input 6
23 Vendor Specific Drive Enable State (input 7)
24 Brake output function by default / input* 8
25 Not faulted function by default / input* 9

26-31 Reserved

*These inputs: 4, 5, 8, 9, have output drivers, also. The input functionality is always available and
reports based on voltage at the pin. Therefore, when outputs are active, the input effectively provides
feedback information about the output driver state.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 226 of 234

Object 60FEh: Digital Outputs

Object 60FEh: Digital Outputs

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60FEh 000 Number of Entries 01h 02h 01h No Unsigned
8-bit

Read
Only

60FEh 001 Physical Outputs 00000000h FFFFFFFFh Yes Unsigned
32-bit

Read
Write

This object allows the digital outputs to the I/O connector(s) to be set or cleared.

NOTE: There is no support for subindex 2.

For details, see the table corresponding to your motor model:

Class 5 D-style motor
Bit Function
0 Brake Set - Not Supported

1-15 Reserved
16 General purpose output 0
17 General purpose output 1
18 General purpose output 2
19 General purpose output 3
20 General purpose output 4
21 General purpose output 5
22 General purpose output 6
23 Unconnected bit; remembers value

24-31 Reserved

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 227 of 234

Object 60FEh: Digital Outputs

Class 5 M-style motor
Bit Function
0 Brake Set - Not Supported

1-15 Reserved
16 General purpose output 0
17 General purpose output 1
18 General purpose output 2
19 General purpose output 3
20 General purpose output 4
21 General purpose output 5
22 General purpose output 6
23 General purpose output 7
24 General purpose output 8
25 General purpose output 9
26 General purpose output 10

27-31 Reserved

Class 6D-Style motor
Bit Function
0 Brake Set - Not Supported

1-15 Reserved
16-19 Reserved

20 Output 4
21 Output 5

22-23 Reserved
24 Output 8. See EOBK command to enable this general purpose

output. This output is controlled by brake function by default.
25 Output 9. See EOFT command to enable this general purpose

output. This output is controlled by notFault status by
default.

26-31 Reserved

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 228 of 234

Object 60FFh: Target Velocity

Object 60FFh: Target Velocity

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60FFh 000 Target Velocity 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the CANCTL(13,0) command.

This object only applies to Profile Velocity (PV) mode. The velocity profile will accelerate to the
specified speed and remain at that speed until a stop is commanded or a new speed is specified.

Writing this value takes effect immediately in PV mode, assuming the motor is already in the operation
enabled state through Control Word object (6040h). The units are: (encoder counts per sample period) *
65536.

Also, refer to Object 6081h: Profile Velocity in PP Mode on page 195.

Similar SmartMotor Commands: VT=, RVT

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 229 of 234

Object 6402h: Motor Type

Object 6402h: Motor Type

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6402h 000 Motor Type 0000h FFFFh 000Ah No Unsigned
16-bit

Read
Only

NOTE: This command is only available in Class 5 SmartMotors.

This object reports the type of motor connected to the controller. The value of this object does not
change. It always reports 000Ah (10 decimal), which represents a "Sinusoidal PM BL motor" (per the
CiA 402 specification).

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 230 of 234

Object 6502h: Supported Drive Modes

Object 6502h: Supported Drive Modes

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6502h 000 Supported Drive Modes 00000000h FFFFFFFFh
Varies by

motor class
and version

No Unsigned
32-bit

Read
Only

This object reports a value that corresponds to a bit field indicating the operational modes supported
by the drive. The value reports as the default value listed above and does not change.

Bit Mode
0 Profile Position (PP)
1 Velocity (VL)
2 Profile Velocity (PV)
3 Torque (TQ)
4 Reserved
5 Homing (HM)
6 Interpolation (IP)
7 Cyclic Synchronous Profile (CSP)
8 Cyclic Synchronous Torque (CSV)
9 Cyclic Synchronous Torque (CST)

10–15 Reserved
16–31 Manufacturer specific

Bit value 0: Not supported
Bit value 1: Supported

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 231 of 234

Object 67FFh: Single Device Type

Object 67FFh: Single Device Type

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

67FFh 000 Single Device Type 00000000h FFFFFFFFh 00020192h No Unsigned
32-bit

Read
Only

This object specifies the type of device (profile) for objects in the range 6000h to 67FFh. Refer to the
next table the possible values and their corresponding functions.

Bit Value Function
0–15 0192h (402 decimal) DS402 device
16–23 02h (2 decimal) Servo drive
24–31 0 Reserved (manufacturer specific)

Also, refer to Object 1000h: Device Type on page 90.

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 232 of 234

Reference Documents

Reference Documents
These CiA documents were referenced for this guide:

l CiA 402 CANopen - Drives and motion control device profile:

This specification is now comprised of these IEC specifications:
l IEC 61800-7-1 (An abstracted view of motion control over a variety of protocols)

l IEC 61800-7-201 (Describes the implementation of the 402 specification)

l IEC 61800-7-301 (Describes the default settings of certain objects in the 402
specification)

l CiA 301 CANopen - Application layer and communication profile

The CiA documents are maintained by CAN in Automation (CiA):

http://www.can-cia.org/

The IEC documents are maintained by the International Electrotechnical Commission (IEC):

http://www.iec.ch/

Moog Animatics Class 5(D/M) / 6(D) CANopen Guide Rev. J

Page 233 of 234

http://www.cancia.org/
http://www.iec.ch/

www.animatics.com

For Animatics product information, visit
For more information or to find the office nearest you, email animatics_sales@moog.com

Moog is a registered trademark of Moog Inc. and its subsidiaries.
All trademarks as indicated herein are the property of Moog Inc. and its subsidiaries.

TAKE A CLOSER LOOK

Americas - West Americas - East Europe Asia
Moog Animatics Moog Animatics Moog GmbH Moog Animatics
2581 Leghorn Street 1995 NC Hwy 141 Memmingen Branch

Allgaeustr. 8a
 Kichijoji Nagatani City Plaza 405

Mountain View, CA 94043 Murphy, NC 28906
87766 Memmingerberg

 1-20-1, Kichijojihoncho
United States United States

Germany
 Musashino-city, Tokyo 180-0004

 Japan

Tel: +1 650-960-4215 Tel: +49 8331 98 480-0 Tel: +81 (0)422 201251
Email: animatics_sales@moog.com Email: info.mm@moog.com Email: mcg.japan@moog.com

www.animatics.com

Moog Animatics, a sub-brand of Moog Inc. since 2011, is a global leader in integrated automation solutions. With over 30
years of experience in the motion control industry, the company has U.S. operations and international offices in Germany and
Japan as well as a network of Automation Solution Providers worldwide.

©2013-2022 Moog Inc. All rights reserved. All changes are reserved.

Moog Animatics Class 5(D/M) / 6(D) SmartMotor™ CANopen Guide, Rev. J
SC80100001-001

	Introduction
	Purpose
	Combitronic Technology
	I/O Device CAN Bus Controller
	Time Sync for Electronic Gearing and Camming

	Abbreviations
	Safety Information
	Safety Symbols
	Other Safety Considerations
	Motor Sizing
	Environmental Considerations
	Machine Safety
	Documentation and Training
	Additional Equipment and Considerations

	Safety Information Resources

	Additional Documents
	Related Guides
	Other Documents

	Additional Resources
	CANopen Resources

	CANopen Overview
	CANopen Description
	CAN (CAN Bus)
	CANopen

	PDO and SDO Communication
	SDO
	PDO

	COB-ID Allocation
	NMT States
	NMT Control
	NMT Summary
	NMT State Machine Diagram

	PDO Communications
	Peer-to-Peer Communications
	Synchronous Communications

	Other Communications with the Motor

	Supported Features
	Supported
	Motion Modes
	NMT State Machine Controller
	PDO Transmit on Event
	PDO Transmit on Timer Only
	PDO Transmit on Sync
	Dynamic PDO Mapping
	Heartbeat Producer
	Sync Producer

	Not Supported
	Emergency Messages
	Saving Parameters
	Heartbeat Consumer
	MPDO Communications
	CAN Bus Bit Rate
	PDO Transmit on RTR (Remote frames)
	Node Guarding
	TIME Service
	Sync Start

	Status LEDs
	Status LEDs — Class 5 D- and M-Style
	Status LEDs — Class 6 D-Style

	Manufacturer‑Specific Objects
	I/O
	User Variables
	Calling Subroutines
	Command Interface (Object 2500h)
	Command Interface
	Program Upload/Download
	Upload from Motor
	Download to Motor (SMX file)
	Download to Motor (SMXE encrypted file)

	CiA 402 Drive and Motion Control Profile
	CiA 402 Profile Motion State Machine
	Control Words, Status Words and the Drive State Machine
	Status Word (Object 6041h)
	Control Word (Object 6040h)

	Motion Profiles
	Position Mode
	Absolute Position Mode Summary
	Absolute Position Mode Example
	Relative Position Example

	Velocity Mode
	Velocity Mode Summary
	Velocity Mode Example

	Torque Mode
	Torque Mode Summary
	Torque Mode Example

	Interpolated Position Mode
	Interpolated Position Mode Summary
	Example: Short Run on a Single Motor
	Example: Continuous Run on a Single Motor
	Example: Resuming Motion in IP Mode
	Synchronization
	User Bits
	Splining
	Variable‑Length Segments

	Homing Mode
	Homing Summary
	Homing Example

	PDO Mapping
	Overview
	Mapping and Communication Parameters Objects
	Communications Parameters Objects
	Mapping Parameters Objects

	Mapping Entries
	Mapping Procedure
	Time Sync Motors Mapping Procedure
	Example Start-up Sequence

	CANopen User Program Commands
	Address and Baud Rate Commands
	CADDR=frm
	CBAUD=frm

	CAN Error Reporting Commands
	=CAN, RCAN
	RB(2,4), x=B(2,4)

	Network Control Commands
	CANCTL(action, value)
	NMT(address, command code)
	SDORD(address, obj index, subindex, bytecount)
	SDOWR(address, obj index, subindex, bytecount, data)
	Exceptions to NMT, SDORD and SDOWR Commands

	Troubleshooting
	SDO Response Error Codes

	Object Reference
	Object Categories
	Communication Profile
	Object 1000h: Device Type
	Object 1001h: Error Register
	Object 1005h: COB-ID SYNC
	Object 1006h: Communication Cycle Period
	Object 1008h: Manufacturer Device Name
	Object 1009h: Manufacturer Hardware Version
	Object 100Ah: Manufacturer Software Version
	Object 1013h: High‑Resolution Timestamp
	Object 1017h: Producer Heartbeat Time
	Object 1018h: Identity Object
	Object 1200h: Server SDO Parameter 1
	Object 1400h: Receive PDO Communication Parameter 1
	Object 1401h: Receive PDO Communication Parameter 2
	Object 1402h: Receive PDO Communication Parameter 3
	Object 1403h: Receive PDO Communication Parameter 4
	Object 1404h: Receive PDO Communication Parameter 5
	Object 1600h: Receive PDO Mapping Parameter 1
	Object 1601h: Receive PDO Mapping Parameter 2
	Object 1602h: Receive PDO Mapping Parameter 3
	Object 1603h: Receive PDO Mapping Parameter 4
	Object 1604h: Receive PDO Mapping Parameter 5
	Object 1800h: Transmit PDO Communication Parameter 1
	Object 1801h: Transmit PDO Communication Parameter 2
	Object 1802h: Transmit PDO Communication Parameter 3
	Object 1803h: Transmit PDO Communication Parameter 4
	Object 1804h: Transmit PDO Communication Parameter 5
	Object 1A00h: Transmit PDO Mapping Parameter 1
	Object 1A01h: Transmit PDO Mapping Parameter 2
	Object 1A02h: Transmit PDO Mapping Parameter 3
	Object 1A03h: Transmit PDO Mapping Parameter 4
	Object 1A04h: Transmit PDO Mapping Parameter 5

	Manufacturer-Specific Profile
	Object 2000h: Node Id
	Object 2001h: Bit Rate Index
	Object 2100h: Port Configuration
	Object 2101h: Bit IO
	Object 2200h: User EEPROM
	Object 2201h: User Variable
	Object 2202h: Set Position Origin
	Object 2203h: Shift Position Origin
	Object 2204h: Mappable 32-bit Variables
	Object 2205h Negative Software Position Limit
	Object 2206h Positive Software Position Limit
	Object 2207h Encoder Modulo Limit
	Object 2208h Encoder Follow Data
	Object 2209h Encoder Follow Control
	Start/Stop Capability

	Object 220Ah MFMUL
	Object 220Bh MFDIV
	Object 220Ch MFA
	Object 220Dh MFD
	Object 2220h: 8-Bit Mappable Variables
	Object 2221h: 16-Bit Mappable Variables
	Object 2300h: Bus Voltage
	Object 2301h: RMS Current
	Object 2302h: Internal Temperature
	Object 2303h: Internal Clock
	Object 2304h: Motor Status
	Object 2305h: Motor Control
	Object 2306h: Motor Subroutine Index
	Object 2307h: Sample Period
	Object 2308h: Microsecond Clock
	Object 2309h: GOSUB R2
	Object 2400h: Interpolation Mode Status
	Object 2401h: Buffer Control
	Object 2402h: Buffer Setpoint
	Object 2403h: Interpolation User Bits
	Object 2404h: Interpolation Sample Clock
	Object 2500h: Encapsulated SmartMotor Command

	Drive and Motion Control Profile
	Object 6040h: Control Word
	Object 6041h: Status Word
	Object 605Ah: Quick Stop Option Code
	Object 605Ch: Disable Operation Option Code
	Object 605Dh: Halt Option Code
	Object 605Eh: Fault Reaction Option Code
	Object 6060h: Modes of Operation
	Object 6061h: Modes of Operation Display
	Object 6062h: Position Demand Value
	Object 6063h: Position Actual Internal Value
	Object 6064h: Position Actual Value
	Object 6065h: Following Error Window
	Object 606Bh: Velocity Demand Value
	Object 606Ch: Velocity Actual Value
	Object 6071h: Target Torque
	Object 6074h: Torque Demand Value
	Object 6077h: Torque Actual
	Object 6079h: DC Link Circuit Voltage
	Object 607Ah: Target Position
	Object 607Ch: Home Offset
	Object 6080h: Max Motor Speed
	Object 6081h: Profile Velocity in PP Mode
	Object 6083h: Profile Acceleration
	Object 6084h: Profile Deceleration
	Object 6085h: Quick Stop Deceleration
	Object 6087h: Torque Slope
	Object 608Fh: Position Encoder Resolution
	Object 6098h: Homing Method
	Object 6099h: Homing Speeds
	Object 609Ah: Homing Acceleration
	Object 60B8h: Touch Probe Function
	Object 60B9h: Touch Probe Status
	Object 60BAh: Touch Probe Position 1 Positive Value
	Object 60BBh: Touch Probe Position 1 Negative Value
	Object 60BCh: Touch Probe Position 2 Positive Value
	Object 60BDh: Touch Probe Position 2 Negative Value
	Object 60C0h: Interpolation Sub-Mode Select
	Object 60C1h: Interpolation Data Record
	Object 60C2h: Interpolation Time Period
	Object 60C4h: Interpolation Data Configuration
	Object 60D0h: Touch Probe Source
	Object 60F4h: Following Error Actual Value
	Object 60FBh: Position Control Parameter Set
	Object 60FCh: Position Demand Internal Value
	Object 60FDh: Digital Inputs
	Object 60FEh: Digital Outputs
	Object 60FFh: Target Velocity
	Object 6402h: Motor Type
	Object 6502h: Supported Drive Modes
	Object 67FFh: Single Device Type

	Reference Documents

