
www.animatics.com

TM

DEVELOPER’S GUIDE FOR

CLASS 5 AND LATER SMARTMOTORS
WITH COMBITRONIC™ TECHNOLOGY

DESCRIBES THE SMARTMOTOR™
COMMANDS AND PROGRAMMING FOR
CLASS 5 AND LATER

FULLY INTEGRATED
SERVO MOTORS

Rev. R, July 2022

Copyright Notice
©2001–2022 Moog Inc.

Moog Animatics SmartMotor™ Developer's Guide, Rev. R, PN: SC80100003-002.

This manual, as well as the software described in it, is furnished under license and may be used or
copied only in accordance with the terms of such license. The content of this manual is furnished for
informational use only, is subject to change without notice and should not be construed as a
commitment by Moog Inc., Animatics. Moog Inc., Animatics assumes no responsibility or liability for any
errors or inaccuracies that may appear herein.

Except as permitted by such license, no part of this publication may be reproduced, stored in a retrieval
system or transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise,
without the prior written permission of Moog Inc., Animatics.

The programs and code samples in this manual are provided for example purposes only. It is the user's
responsibility to decide if a particular code sample or program applies to the application being
developed and to adjust the values to fit that application.

Moog Animatics and the Moog Animatics logo, SmartMotor and the SmartMotor logo, Combitronic and
the Combitronic logo, and SMI are all trademarks of Moog Inc., Animatics. Other trademarks are the
property of their respective owners.

Please let us know if you find any errors or omissions in this manual so that we can improve it for
future readers. Such notifications should contain the words "Developer's Guide" in the subject line and
be sent by e-mail to: animatics_marcom@moog.com. Thank you in advance for your contribution.

Contact Us:

Americas - West
Moog Animatics
2581 Leghorn Street
Mountain View, CA 94043
USA

Americas - East
Moog Animatics
1995 NC Hwy 141
Murphy, NC 28906
USA

Tel: 1 650-960-4215

Support: 1 888-356-0357

Website: www.animatics.com

Email: animatics_sales@moog.com

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 3 of 969

Table Of Contents

Introduction 28
Overview 29

Combitronic Support 29

Combitronic with the DS2020 Combitronic System 30

Communication Lockup Wizard 31

Safety Information 31

Safety Symbols 31

Other Safety Considerations 31

Motor Sizing 32

Environmental Considerations 32

Machine Safety 32

Documentation and Training 33

Additional Equipment and Considerations 33

Safety Information Resources 33

Additional Documents 35

Related Guides 35

Other Documents 35

Additional Resources 36

Part 1: Programming the SmartMotor 37
Beginning Programming 47

Understanding Firmware Versions 48

Downloading and Installing the Latest Firmware 48

Understanding the FIRMWARE VERSION Field in the Command Descriptions 48

Class 5 Firmware for D- and M-Style Motors 48

Class 6 Firmware for M-Style (MT/MT2) Motors 49

Class 6 Firmware for D-Style Motors 49

DS2020 Combitronic System Firmware 49

Setting the Motor Firmware Version in SMI 50

Setting the Default Firmware Version 50

Checking the Default Firmware Version 51

Opening the SMI Window (Program Editor) 51

Understanding the Program Requirements 52

Creating a "Hello World" Program 54

Entering the Program in the SMI Editor 54

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 4 of 969

Adding Comments to the Code 54

Checking the Program Syntax 54

Saving the Program 55

Downloading a Program to the SmartMotor 55

Syntax Checking, Compiling and Downloading the Program 55

Additional Notes on Downloaded Programs 55

Running a Downloaded Program 56

Using the Program Download Window 57

Using the Terminal Window and Run Program Button 57

Using the RUN Command in the Terminal Window 57

Creating a Simple Motion Program 59

SMI Software Features 60

Introduction 61

Menu Bar 62

Toolbar 62

Configuration Window 64

Terminal Window 67

Initiating Motion from the Terminal Window 69

Information Window 69

Program Editor 70

Motor View 72

SMI Trace Functions 73

Monitor Window 76

Serial Data Analyzer 78

Chart View 79

Chart View Example 80

Macros (Keyboard Shortcuts or Hotkeys) 83

Tuner 85

SMI Options 89

SMI Help 90

Context-Sensitive Help Using F1 90

Context-Sensitive Help Using the Mouse 90

Help Buttons 90

Hover Help 90

Table of Contents 90

Projects 91

SmartMotor Playground 92

Opening the SmartMotor Playground 93

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 5 of 969

Moving the Motor 94

Communication Details 96

Introduction 98

Connecting to a Host 99

Daisy Chaining Multiple D-Style SmartMotors over RS-232 100

ADDR=formula 102

SLEEP, SLEEP1 102

WAKE, WAKE1 102

ECHO, ECHO1 103

ECHO_OFF, ECHO_OFF1 103

Serial Commands 104

OCHN(type,channel,parity,bit rate,stop bits,data bits,mode,timeout) 104

CCHN(type,channel) 105

BAUDrate, BAUD(channel)=formula 105

PRINT(), PRINT1() 105

SILENT, SILENT1 106

TALK, TALK1 106

a=CHN(channel) 106

a=ADDR 106

Communicating over RS-485 107

Using Data Mode 107

CAN Communications 110

CADDR=formula 110

CBAUD=formula 110

=CAN, =CAN(arg) 110

CANCTL(function,value) 110

SDORD(...) 111

SDOWR(...) 111

NMT 112

RB(2,4), x=B(2,4) 112

Exceptions to NMT, SDORD and SDOWR Commands 112

I/O Device CAN Bus Controller 113

Combitronic Communications 113

Combitronic Features 114

Other Combitronic Benefits 114

Program Loops with Combitronic 115

Global Combitronic Transmissions 115

Simplify Machine Support 116

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 6 of 969

Combitronic with RS-232 Interface 116

Combitronic with the DS2020 Combitronic System 117

Other CAN Protocols 118

CANopen - CAN Bus Protocol 118

DeviceNet - CAN Bus Protocol 118

I²C Communications (Class 5 D-Style Motors) 118

OCHN(IIC,1,N,baud,1,8,D) 120

CCHN(IIC,1) 120

PRINT1(arg1,arg2, … ,arg_n) 120

RGETCHR1, Var=GETCHR1 120

RLEN1, Var=LEN1 120

Motion Details 121

Introduction 122

Motion Command Quick Reference 123

Basic Motion Commands 124

Target Commands 124

PT=formula 124

PRT=formula 125

ADT=formula 125

AT=formula 125

DT=formula 125

VT=formula 125

Motion Mode Commands 126

MP 126

MV 126

MT 126

Torque Commands 127

TS=formula 127

T=formula 127

Brake Commands 127

BRKRLS 127

BRKENG 127

BRKSRV 128

BRKTRJ 128

Brake Command Examples 128

EOBK(IO) 129

MTB 130

Index Capture Commands 130

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 7 of 969

DS2020 Combitronic System Index Capture 131

Other Motion Commands 132

G 132

S 132

X 132

O=formula 133

OSH=formula 133

OFF 133

SCALEA(m,d), SCALEP(m,d), SCALEV(m,d) 133

Commutation Modes 134

MDT 134

MDE 134

MDS 134

MDC 135

MDB 135

MINV(0), MINV(1) 135

Modes of Operation 136

Torque Mode 136

Torque Mode Example 136

Dynamically Change from Velocity Mode to Torque Mode 136

Velocity Mode 137

Constant Velocity Example 137

Change Commanded Speed and Acceleration 137

Absolute (Position) Mode 138

Absolute Move Example 138

Two Moves with Delay Example 138

Change Speed and Acceleration Example 138

Shift Point of Origin Example 139

Relative Position Mode 139

Relative Mode Example 139

Follow Mode with Ratio (Electronic Gearing) 140

Electronic Gearing and Camming over CANopen 140

Electronic Gearing Commands 140

SRC(enc_src) 141

MFR 141

MSR 141

MF0 141

MS0 141

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 8 of 969

MFMUL=formula, MFDIV=formula 141

MFA(distance[,m/s]) 142

MFD(distance[,m/s]) 142

MFSLEW(distance[,m/s]) 142

Follow Internal Clock Source Example 142

Follow Incoming Encoder Signal With Ramps Example 143

Electronic Line Shaft 145

ENCD(in_out) 145

Spooling and Winding Overview 146

Relative Position, Auto-Traverse Spool Winding 146

MFSDC(distance,mode) 147

Dedicated, Absolute Position, Winding Traverse Commands 149

MFSDC(distance,2) 150

MFLTP=formula 150

MFHTP=formula 150

MFCTP(arg1,arg2) 150

MFL(distance[,m/s]) 151

MFH(distance[,m/s]) 151

ECS(counts) 151

Single Trajectory Example Program 152

Chevron Wrap Example 153

Other Traverse Mode Notes 155

Traverse Mode Status Bits 156

Cam Mode (Electronic Camming) 156

Electronic Camming Details 158

Understanding the Inputs 158

Should I choose Source Counts or Intermediate Counts? 160

Should I choose Variable or Fixed cam? 160

Electronic Camming Notes and Best Practices 162

Examples 164

Electronic Gearing and Camming over CANopen 164

Electronic Camming Commands 165

CTE(table) 165

CTA(points,seglen[,location]) 165

CTW(pos[,seglen][,user]) 165

MCE(arg) 166

MCW(table,point) 166

RCP 166

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 9 of 969

RCTT 167

MC 167

MCMUL=formula 167

MCDIV=formula 167

O(arg)=formula 167

OSH(arg)=formula 167

Cam Example Program 168

Mode Switch Example 171

Position Counters 173

Modulo Position 174

Modulo Position Commands 174

Dual Trajectories 175

Commands That Read Trajectory Information 177

Dual Trajectory Example Program 178

Using Mixed Mode Operations After Homing 179

Synchronized Motion 179

Synchronized-Target Commands 179

PTS(), PRTS() 179

VTS=formula 180

ADTS=formula, ATS=formula, DTS=formula 180

PTSS(), PRTSS() 180

A Note About PTS and PRTS 181

Other Synchronized-Motion Commands 183

GS 183

TSWAIT 183

Program Flow Details 185

Introduction 186

Flow Commands 186

RUN 186

RUN? 187

GOTO#, GOTO(label), C# 187

GOSUB#, GOSUB(label), RETURN 188

IF, ENDIF 188

ELSE, ELSEIF 188

WHILE, LOOP 189

SWITCH, CASE, DEFAULT, BREAK, ENDS 190

TWAIT 190

WAIT=formula 191

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 10 of 969

STACK 191

END 191

Program Flow Examples 192

IF, ELSEIF, ELSE, ENDIF Examples 192

WHILE, LOOP Examples 192

GOTO(), GOSUB() Examples 193

SWITCH, CASE, BREAK, ENDS Examples 194

Interrupt Programming 195

ITR(), ITRE, ITRD, EITR(), DITR(), RETURNI 195

TMR(timer,time) 197

Variables and Math 198

Introduction 199

Variable Commands 199

EPTR=formula 199

VST(variable,number) 199

VLD(variable,number) 200

Math Expressions 200

Math Operations 200

Logical Operations 200

Integer Operations 200

Floating Point Functions 200

Math Operation Details and Examples 201

Array Variables 201

Array Variable Examples 202

Error and Fault Handling Details 203

Motion and Motor Faults 204

Overview 204

Drive Stage Indications and Faults 204

Fault Bits 204

Error Handling 205

Example Fault-Handler Code 205

PAUSE 206

RESUME 206

Limits and Fault Handling 207

Position Error Limits 207

dE/dt Limits 207

Velocity Limits 208

Hardware Limits 208

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 11 of 969

Software Limits 208

Fault Handling 209

Monitoring the SmartMotor Status 210

System Status 213

Introduction 214

Retrieving and Manipulating Status Words/Bits 214

System and Motor Status Bits 214

Reset Error Flags 217

System Status Examples 217

Timer Status Bits 218

Interrupt Status Bits 218

I/O Status 219

User Status Bits 219

Multiple Trajectory Support Status Bits 220

Cam Status Bits 221

Interpolation Status Bits 222

Motion Mode Status 222

RMODE, RMODE(arg) 222

I/O Control Details 223

I/O Port Hardware 224

I/O Connections Example (Class 5 D-Style Motors) 225

I/O Voltage Protection 225

Discrete Input and Output Commands 225

Discrete Input Commands 226

Discrete Output Commands 226

Output Condition and Fault Status Commands 227

Output Condition Commands 227

Output Fault Status Reports 227

General-Use Input Configuration 228

Multiple I/O Functions Example 228

Analog Functions of I/O Ports 230

5 Volt Push-Pull I/O Analog Functions (Class 5 D-Style Motors) 230

24 Volt I/O Analog Functions (Class 5 D-Style AD1 Option Motors, Class 5 M-Style Motors) 230

24 Volt I/O Analog Functions (Class 6 M-Style Motors) 230

24 Volt I/O Analog Functions (Class 6 D-Style Motors) 231

Special Functions of I/O Ports 232

Class 5 D-Style Motors: Special Functions of I/O Ports 233

I/O Ports 0 and 1 – External Encoder Function Commands 233

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 12 of 969

I/O Ports 2 and 3 – Travel Limit Inputs 233

I/O Ports 4 and 5 – Communications 233

I/O Port 6 – Go Command, Encoder Index Capture Input 234

Class 5 M-Style Motors: Special Functions of I/O Ports 235

COM Port Pins 4, 5, 6, and 8 – A-quad-B or Step-and-Direction Modes 235

I/O Ports 2 and 3 – Travel Limit Inputs 235

I/O Port 5 – Encoder Index Capture Input 235

I/O Port 6 – Go Command 236

Class 6 Motors: Special Functions of I/O Ports 237

A-quad-B or Step-and-Direction Modes 237

I/O Ports 2 and 3 – Travel Limit Inputs 238

I/O Port 4 and 5 – Encoder Index Capture Input 238

I/O Port 6 – Go Command 238

I/O Brake Output Commands 238

I²C Expansion (D-Style Motors) 239

Tuning and PID Control 240

Introduction 241

Tuning and PID Control on the DS2020 Combitronic System 241

Understanding the PID Control 241

Tuning the PID Control 242

Using F 243

Setting KP 243

Setting KD 243

Setting KI and KL 244

Setting EL=formula 244

Other PID Tuning Parameters 244

KG=formula 245

KV=formula 245

KA=formula 245

Current Limit Control 246

AMPS=formula 246

Part 2: SmartMotor Command Reference 247
(Single Space Character) 248

a...z 249

aa...zz 249

aaa...zzz 249

Ra...Rz 249

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 13 of 969

Raa...Rzz 249

Raaa...Rzzz 249

ab[index]=formula 252

Rab[index] 252

ABS(value) 255

RABS(value) 255

AC 256

RAC 256

ACOS(value) 259

RACOS(value) 259

ADDR=formula 261

RADDR 261

ADT=formula 263

ADTS=formula 265

af[index]=formula 267

Raf[index] 267

Ai(enc) 270

Aij(enc) 272

Aj(enc) 274

Aji(enc) 276

al[index]=formula 278

Ral[index] 278

AMPS=formula 281

RAMPS 281

ASIN(value) 284

RASIN(value) 284

AT=formula 286

RAT 286

ATAN(value) 289

RATAN(value) 289

ATOF(index) 291

RATOF(index) 291

ATS=formula 292

aw[index]=formula 294

Raw[index] 294

B(word,bit) 297

RB(word,bit) 297

Ba 301

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 14 of 969

RBa 301

BAUD(channel)=formula 303

RBAUD(channel) 303

Be 305

RBe 305

Bh 307

RBh 307

Bi(enc) 309

RBi(enc); supports the DS2020 Combitronic system over RS-232 only 309

Bj(enc) 312

RBj(enc) 312

Bk 315

RBk 315

Bl 316

RBl 316

Bls 318

RBls 318

Bm 320

RBm 320

Bms 322

RBms 322

Bo 324

RBo 324

Bp 325

RBp 325

Bps 327

RBps 327

Br 329

RBr 329

BREAK 331

BRKENG 333

BRKRLS 335

BRKSRV 337

BRKTRJ 339

Brs 341

RBrs 341

Bs 343

RBs 343

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 15 of 969

Bt 345

RBt 345

Bv 347

RBv 347

Bw 349

RBw 349

Bx(enc) 351

RBx(enc) 351

C{number} 353

CADDR=formula 355

RCADDR 355

CAN, CAN(arg) 357

RCAN, RCAN(arg) 357

CANCTL(function,value) 359

CASE formula 360

CBAUD=formula 363

RCBAUD 363

CCHN(type,channel) 365

CHN(channel) 367

RCHN(channel) 367

CLK=formula 369

RCLK 369

COMCTL(function,value) 370

COS(value) 372

RCOS(value) 372

CP 374

RCP 374

CTA(points,seglen[,location]) 376

CTE(table) 378

CTR(enc) 380

RCTR(enc) 380

CTT 382

RCTT 382

CTW(pos[,seglen][,user]) 383

DEA 386

RDEA 386

DEFAULT 388

DEL=formula 390

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 16 of 969

RDEL 390

DELM(arg) 392

DFS(value) 393

RDFS(value) 393

DITR(int) 394

DT=formula 396

RDT 396

DTS=formula 399

EA 401

REA 401

ECHO 403

ECHO0 405

ECHO1 406

ECHO_OFF 407

ECHO_OFF0 408

ECHO_OFF1 409

ECS(counts) 410

EIGN(...) 412

EILN 415

EILP 417

EIRE 419

EIRI 421

EISM(x) 423

EITR(int) 424

EL=formula 426

REL 426

ELSE 428

ELSEIF formula 430

ENC0 432

ENC1 433

ENCCTL(function,value) 435

ENCD(in_out) 437

END 439

ENDIF 441

ENDS 443

EOBK(IO) 445

EOFT(IO) 447

EOIDX(number) 449

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 17 of 969

EPTR=formula 450

REPTR 450

ERRC 451

RERRC 451

ERRW 453

RERRW 453

ETH(arg) 455

RETH(arg) 455

ETHCTL(function,value) 456

F 457

FAUSTS(x) 459

FD=expression 461

FABS(value) 463

RFABS(value) 463

FSA(cause,action) 465

FSAD(n,m) 467

FSQRT(value) 469

RFSQRT(value) 469

FW 471

RFW 471

G 473

GETCHR 476

RGETCHR 476

GETCHR1 478

RGETCHR1 478

GOSUB(label) 480

GOTO(label) 482

GROUP(function,value) 484

GS 487

HEX(index) 489

RHEX(index) 489

HM_ADT=formula 491

HM_MTHD=formula 492

RHM_MTHD 492

HM_OSET=formula 496

RHM_OSET 496

HM_VTS=formula 498

HM_VTZ=formula 500

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 18 of 969

I(enc) 502

RI(enc); supports the DS2020 Combitronic system over RS-232 only 502

IDENT=formula 504

RIDENT 504

IF formula 506

IN(...) 509

RIN(...) 509

INA(...) 512

RINA(...) 512

IPCTL(function,"string") 515

ITR(Int#,StatusWord,Bit#,BitState,Label#) 517

ITRD 520

ITRE 522

J(enc) 524

RJ(enc) 524

KA=formula 526

RKA 526

KD=formula 528

RKD 528

KG=formula 530

RKG 530

KI=formula 532

RKI 532

KII=formula 534

RKII 534

KL=formula 535

RKL 535

KP=formula 537

RKP 537

KPI=formula 539

RKPI 539

KS=formula 540

RKS 540

KV=formula 542

RKV 542

LEN 544

RLEN 544

LEN1 545

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 19 of 969

RLEN1 545

LFS(value) 547

RLFS(value) 547

LOAD 548

LOCKP 551

LOOP 553

MC 555

MCDIV=formula 557

RMCDIV 557

MCE(arg) 558

MCMUL=formula 560

RMCMUL 560

MCW(table,point) 562

MDB 564

MDC 566

MDE 568

MDH 570

MDHV 572

MDS 574

MDT 576

MF0 578

MFA(distance[,m/s]) 580

MFCTP(arg1,arg2) 583

MFD(distance[,m/s]) 585

MFDIV=formula 588

MFH(distance[,m/s]) 590

MFHTP=formula 592

MFL(distance[,m/s]) 594

MFLTP=formula 596

MFMUL=formula 598

MFR 600

MFSDC(distance,mode) 603

MFSLEW(distance[,m/s]) 605

MH 607

MINV(arg) 608

MODE 610

RMODE 610

MP 613

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 20 of 969

MS0 616

MSR 618

MT 620

MTB 622

MV 624

NMT 626

N/A 626

O=formula, O(trj#)=formula 628

OC(...) 630

ROC(...) 630

OCHN(...) 632

OF(...) 634

ROF(...) 634

OFF 636

OR(value) 638

OS(...) 640

OSH=formula, OSH(trj#)=formula 642

OUT(...)=formula 644

PA 646

RPA 646

PAUSE 648

PC, PC(axis) 650

RPC, RPC(axis) 650

PI 653

RPI 653

PID# 654

PMA 657

RPMA 657

PML=formula 659

RPML 659

PMT=formula 661

RPMT 661

PRA 663

RPRA 663

PRC 666

RPRC 666

PRINT(...) 669

PRINT0(...) 673

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 21 of 969

PRINT1(...) 677

PRINT8(...) 680

PRT=formula 683

RPRT 683

PRTS(...) 685

PRTSS(...) 688

PT=formula 690

RPT 690

PTS(...) 692

PTSD 695

RPTSD 695

PTSS(...) 696

PTST 698

RPTST 698

RANDOM=formula 699

RRANDOM 699

RCKS 701

RES 702

RRES 702

RESUME 704

RETURN 706

RETURNI 708

RSP 710

RSP1 712

RSP5 713

RUN 714

RUN? 716

S (as command) 718

SADDR# 720

SAMP 722

RSAMP 722

SCALEA(m,d) 724

SCALEP(m,d) 726

SCALEV(m,d) 728

SDORD(...) 730

RSDORD 730

SDOWR(...) 732

SILENT 734

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 22 of 969

SILENT1 736

SIN(value) 738

RSIN(value) 738

SLD 740

SLE 742

SLEEP 744

SLEEP1 746

SLM(mode) 748

RSLM 748

SLN=formula 750

RSLN 750

SLP=formula 752

RSLP 752

SNAME("string") 754

SP2 755

RSP2 755

SP6 756

RSP6 756

SQRT(value) 757

RSQRT(value) 757

SRC(enc_src) 759

STACK 761

STDOUT=formula 764

SWITCH formula 766

T=formula 769

RT 769

TALK 771

TALK1 773

TAN(value) 775

RTAN(value) 775

TEMP, TEMP(arg) 777

RTEMP, RTEMP(arg) 777

TH=formula 779

RTH 779

TMR(timer,time) 782

RTMR(timer) 782

TRQ 784

RTRQ 784

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 23 of 969

TS=formula 786

RTS 786

TSWAIT 788

TWAIT(gen#) 789

UIA 791

RUIA 791

UJA 793

RUJA 793

UO(...)=formula 795

UP 797

UPLOAD 799

UR(...) 801

US(...) 803

USB(arg) 805

RUSB 805

VA 807

RVA 807

VAC(arg) 810

VC 815

RVC 815

VL=formula 818

RVL 818

VLD(variable,number) 820

VST(variable,number) 824

VT=formula 828

RVT 828

VTS=formula 831

W(word) 833

RW(word) 833

WAIT=formula 835

WAKE 837

WAKE1 839

WHILE formula 841

X 844

Z 846

Z(word,bit) 848

Za 850

Ze 851

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 24 of 969

Zh 852

Zl 853

Zls 854

Zr 855

Zrs 856

Zs 857

ZS 858

Zv 860

Zw 861

Part 3: Example SmartMotor Programs 862
Move Back and Forth 863

Move Back and Forth with Watch 863

Home Against a Hard Stop (Basic) 864

Home Against a Hard Stop (Advanced) 864

Home Against a Hard Stop (Two Motors) 865

Home to Index Using Different Modes 867

Maintain Velocity During Analog Drift 868

Long-Term Storage of Variables 869

Find Errors and Print Them 869

Change Speed on Digital Input 870

Pulse Output on a Given Position 870

Stop Motion if Voltage Drops 871

Camming - Variable Cam Example 872

Camming - Fixed Cam with Input Variables 873

Camming - Demo XY Circle 875

Chevron Traverse & Takeup 877

CAN Bus - Timed SDO Poll 879

CAN Bus - I/O Block with PDO Poll 880

CAN Bus - Time Sync Follow Encoder 883

Text Replacement in an SMI Program 891

Appendix 893
Motion Command Quick Reference 895

Array Variable Memory Map 897

ASCII Character Set 899

Binary Data 900

Commands Affected by SCALE 903

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 25 of 969

Command Error Codes 906

Decoding the Error 906

Finding the Error Source 907

Glossary 908

Math Operators 915

Moment of Inertia 916

Matching Motor to Load 916

Improving the Moment of Inertia Ratio 916

RCAN, RCHN and RMODE Status 917

RCAN Status Decoder 917

RCHN Status Decoder 917

Clearing Serial Port Errors 918

RMODE Status Decoder 918

Mode Status Example 918

Scale Factor Calculation 919

Sample Rates 919

PID Sample Rate Command 919

Encoder Resolution and the RES Parameter 919

Native Velocity and Acceleration Units 920

Velocity Calculations 920

Acceleration Calculations 920

Status Words - SmartMotor 921

Status Word 0: Primary Fault/Status Indicator 921

Status Word 1: Index Registration and Software Travel Limits 922

Status Word 2: Communications, Program and Memory 922

Status Word 3: PID State, Brake, Move Generation Indicators 923

Status Word 4: Interrupt Timers 923

Status Word 5: Interrupt Status Indicators 924

Status Word 6: Drive Modes 924

Status Word 7: Multiple Trajectory Support 925

Status Word 8: Cam Support 926

Status Word 9: No Bits Defined (Class 5 Only) 926

Status Word 9: SD Card and DMX Information (Class 6 Only) 926

Status Word 10: RxPDO Arrival Notification 927

Status Word 12: DMX Information (Class 5 Only) 928

Status Word 12: User Bits Word 0 (Class 6 Only) 928

Status Word 13: User Bits Word 1 929

Status Word 16: On Board Local I/O Status: D-Style Motor 929

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 26 of 969

Status Word 16: On Board Local I/O Status: M-Style Class 5 Motor 930

Status Word 16: On Board Local I/O Status - Class 6 Motor 930

Status Word 17: Expanded I/O Status - D-Style AD1 Motor 931

Fault and Status Words - DS2020 Combitronic System 932

Fault Words 932

Fault Tables 932

Fault Word 0 933

Fault Word 1 933

Fault Word 2 934

Status Words 934

Status Word 0: Primary Fault/Status Indicator 934

Status Word 1: Current CiA DS402 State 935

Status Word 2: Control and Hardware Faults 935

Status Word 3: Position/Velocity sensor and Brake Feedback Faults 935

Status Word 4: Communication Faults 936

Status Word 5: Software and Memory Faults 936

Status Word 6: I/O States 937

Torque Curves 938

Understanding Torque Curves 938

Peak Torque 938

Continuous Torque 938

Ambient Temperature Effects on Torque Curves and Motor Response: 939

Supply Voltage Effects on Torque Curves and Motor Response: 939

Example 1: Rotary Application 940

Example 2: Linear Application 940

Dyno Test Data vs. the Derated Torque Curve 940

Proper Sizing and Loading of the SmartMotor 941

SmartMotor Troubleshooting 943

Troubleshooting - First Steps 943

Commands Listed Alphabetically 946

Commands Listed by Function 954
Communications Control 955

Data Conversion 956

EEPROM (Nonvolatile Memory) 956

I/O Control 956

Math Function 957

Motion Control 957

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 27 of 969

Program Access 960

Program Execution and Flow Control 960

Reset Commands 961

System 961

Variables 962

Commands for Combitronic 963

Commands for DS2020 Combitronic 967

In
t

r
o

d
u

c
t

io
n

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 28 of 969

Introduction
This chapter provides introductory reference material.

Overview 29

Combitronic Support 29

Communication Lockup Wizard 31

Safety Information 31

Additional Documents 35

Additional Resources 36

Introduction

In
t

r
o

d
u

c
t

io
n

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 29 of 969

Overview
The SmartMotor™ Developer's Guide is designed to be used by system developers and programmers
when developing applications for the SmartMotor. Before using the SmartMotor™ Developer's Guide, it
is strongly recommended that you first read the SmartMotor™ Installation & Startup Guide for your
SmartMotor, which describes how to install and start up the SmartMotor, and test initial
communications with the motor. After that, use this guide to learn about advanced SmartMotor
features, how to develop SmartMotor applications, and the details of each command.

Part One of this guide provides information on basic to advanced programming, along with related
information on key SMI software features, communications, motion control, program flow control, error
and fault handling, and more.

Part Two of this guide lists all the SmartMotor commands in alphabetical order. Each command is
described in detail. Code snippets and examples are provided where applicable. These are shown in a
Courier font. Comments are included and separated with a single quotation mark as they would be in
your own programs.

NOTE: The programs and code samples in this manual are provided for example purposes only. It is
the user's responsibility to decide if a particular code sample or program applies to the application
being developed and to adjust the values to fit that application.

Also, where appropriate, a Related Commands section is included, which is located at the end of the
command page. It is designed to guide you to other commands that offer similar functionality, and
ensure you are aware of every programming option the SmartMotor provides to address your specific
application requirements.

Part Three of this guide provides a library of useful example SmartMotor programs. These can be used
as "how to" examples for using a particular SmartMotor feature or solving a particular application
problem, or as starting points for your application.

NOTE: The programs and code samples in this manual are provided for example purposes only. It is
the user's responsibility to decide if a particular code sample or program applies to the application
being developed and to adjust the values to fit that application.

The Appendix of this guide contains additional topics such as an array map, ASCII character set,
command error codes, and other information that is useful to have handy during application
development.

A quick-reference command list is also included at the end of this guide.

Combitronic Support
NOTE: For the Class 5 D- and M-style SmartMotors, Combitronic communication is available on
models with the -CAN option. For the Class 6 D-style SmartMotor, Combitronic communication is a
standard feature on all models. For the Class 6 M-style SmartMotor, Combitronic communication is
currently available only on -EIP option motors. For details, see the Class 6 SmartMotor™
EtherNet/IP Guide.

A large number of the commands provide Combitronic™ support. Combitronic is a protocol that
operates over a standard "CAN" (Controller Area Network) interface. It may coexist with either
CANopen or DeviceNet protocols at the same time. Unlike these common protocols, however,
Combitronic requires no single dedicated controller1 to operate. Each Integrated Servo connected to
the same network communicates on an equal footing, sharing all information, and therefore, sharing all
processing resources. For more details on Combitronic features, see Combitronic Communications on
page 113, and also see the overview on the Moog Animatics website at:
https://www.animatics.com/support/combitronic.html.

Introduction: Overview

https://www.animatics.com/support/combitronic.html

In
t

r
o

d
u

c
t

io
n

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 30 of 969

For applicable commands, a table row titled "COMBITRONIC" provides the Combitronic command
syntax for addressing a specific SmartMotor in the network. Those commands also display the
Combitronic logo () at the top of their reference pages.

Combitronic Logo Location

COMBITRONIC: Table Row

Combitronic with the DS2020 Combitronic System
NOTE: DS2020 support requires: 5.0.4.55 (D), 5.98.4.55 (M); 6.4.2.x (D); ds2020_sa_1.0.0_combican
(DS2020).

The Moog Animatics DS2020 Combitronic system is a cabinet mount servo drive connected to a Moog
Compact Dynamic brushless servo motor. Compared to the smaller 17 to 34 frame SmartMotor
products, the DS2020 Combitronic system provides access to a higher torque motor-drive combination,
with torque range and power inputs to include AC mains voltages and motors above 1 KW. However,
similar to other SmartMotor products, the DS2020 Combitronic system has the capability of
responding to Combitronic commands.

The DS2020 Combitronic system is not fully programmable but is connected as a follower device to a
SmartMotor controller. The DS2020 Combitronic system has a CAN address, which you can set through
SMI along with baud rates as you would with any SmartMotor. It is then commanded by the SmartMotor
through Combitronic communications using standard Combitronic syntax, e.g., ADT:3=1234, where "3" is
the CAN address of the DS2020 Combitronic system.

The DS2020 Combitronic system supports a subset of the full AniBasic command set. Supported
commands are primarily Combitronic type, but there are a few others, also. The DS2020 Combitronic
system supported commands are flagged with "; supports the DS2020 Combitronic system" text on the
command's APPLICATION line or READ/REPORT line.

For a list of DS2020 Combitronic system supported commands, see Commands for DS2020
Combitronic on page 967

For details on the DS2020 Combitronic system installation and startup, see the DS2020 Combitronic
Installation and Startup Guide.

1. Moog Animatics has replaced the terms "master" and "slave" with "controller" and "follower",
respectively.

Introduction: Combitronic with the DS2020 Combitronic System

In
t

r
o

d
u

c
t

io
n

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 31 of 969

Communication Lockup Wizard
Improper use of some commands, like Z and OCHN, can lock you out of the motor and prevent further
communication. If you are unable to communicate with the SmartMotor, you may be able to recover
communications using the Communication Lockup Wizard, which is on the SMI software
Communications menu (see the next figure). This tool sends an "E" character to the motor at startup,
which prevents the motor from running its program. For more details on the Communication Lockup
Wizard, see the SMI software online help, which is accessed by pressing the F1 key or selecting Help
from the SMI software main menu.

Communication Menu - Communication Lockup Wizard

Safety Information
This section describes the safety symbols and other safety information.

Safety Symbols
The manual may use one or more of these safety symbols:

WARNING: This symbol indicates a potentially nonlethal mechanical hazard, where
failure to comply with the instructions could result in serious injury to the operator
or major damage to the equipment.

CAUTION: This symbol indicates a potentially minor hazard, where failure to
comply with the instructions could result in slight injury to the operator or minor
damage to the equipment.

NOTE: Notes are used to emphasize non-safety concepts or related information.

Other Safety Considerations
The Moog Animatics SmartMotors are supplied as components that are intended for use in an
automated machine or system. As such, it is beyond the scope of this manual to attempt to cover all
the safety standards and considerations that are part of the overall machine/system design and
manufacturing safety. Therefore, this information is intended to be used only as a general guideline for
the machine/system designer.

It is the responsibility of the machine/system designer to perform a thorough "Risk Assessment" and to
ensure that the machine/system and its safeguards comply with the safety standards specified by the
governing authority (for example, ISO, OSHA, UL, etc.) for the site where the machine is being installed
and operated. For more details, see Machine Safety on page 32.

Introduction: Communication Lockup Wizard

In
t

r
o

d
u

c
t

io
n

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 32 of 969

Motor Sizing

It is the responsibility of the machine/system designer to select SmartMotors that are properly sized
for the specific application. Undersized motors may: perform poorly, cause excessive downtime or
cause unsafe operating conditions by not being able to handle the loads placed on them. The System
Best Practices document, which is available on the Moog Animatics website, contains information and
equations that can be used for selecting the appropriate motor for the application.

Replacement motors must have the same specifications and firmware version used in the approved and
validated system. Specification changes or firmware upgrades require the approval of the system
designer and may require another Risk Assessment.

Environmental Considerations

It is the responsibility of the machine/system designer to evaluate the intended operating environment
for dust, high-humidity or presence of water (for example, a food-processing environment that requires
water or steam wash down of equipment), corrosives or chemicals that may come in contact with the
machine, etc. Moog Animatics manufactures specialized IP-rated motors for operating in extreme
conditions. For details, see the Moog Animatics Product Catalog.

Machine Safety

In order to protect personnel from any safety hazards in the machine or system, the machine/system
builder must perform a "Risk Assessment", which is often based on the ISO 13849 standard. The
design/implementation of barriers, emergency stop (E-stop) mechanisms and other safeguards will be
driven by the Risk Assessment and the safety standards specified by the governing authority (for
example, ISO, OSHA, UL, etc.) for the site where the machine is being installed and operated. The
methodology and details of such an assessment are beyond the scope of this manual. However, there
are various sources of Risk Assessment information available in print and on the internet.

NOTE: The next list is an example of items that would be evaluated when performing the Risk
Assessment. Additional items may be required. The safeguards must ensure the safety of all
personnel who may come in contact with or be in the vicinity of the machine.

In general, the machine/system safeguards must:
l Provide a barrier to prevent unauthorized entry or access to the machine or system. The barrier

must be designed so that personnel cannot reach into any identified danger zones.
l Position the control panel so that it is outside the barrier area but located for an unrestricted

view of the moving mechanism. The control panel must include an E-stop mechanism. Buttons
that start the machine must be protected from accidental activation.

l Provide E-stop mechanisms located at the control panel and at other points around the
perimeter of the barrier that will stop all machine movement when tripped.

l Provide appropriate sensors and interlocks on gates or other points of entry into the protected
zone that will stop all machine movement when tripped.

l Ensure that if a portable control/programming device is supplied (for example, a hand-held
operator/programmer pendant), the device is equipped with an E-stop mechanism.

NOTE: A portable operation/programming device requires many additional system design
considerations and safeguards beyond those listed in this section. For details, see the safety
standards specified by the governing authority (for example, ISO, OSHA, UL, etc.) for the site
where the machine is being installed and operated.

l Prevent contact with moving mechanisms (for example, arms, gears, belts, pulleys, tooling, etc.).

Introduction: Motor Sizing

In
t

r
o

d
u

c
t

io
n

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 33 of 969

l Prevent contact with a part that is thrown from the machine tooling or other part-handling
equipment.

l Prevent contact with any electrical, hydraulic, pneumatic, thermal, chemical or other hazards that
may be present at the machine.

l Prevent unauthorized access to wiring and power-supply cabinets, electrical boxes, etc.

l Provide a proper control system, program logic and error checking to ensure the safety of all
personnel and equipment (for example, to prevent a run-away condition). The control system
must be designed so that it does not automatically restart the machine/system after a power
failure.

l Prevent unauthorized access or changes to the control system or software.

Documentation and Training

It is the responsibility of the machine/system designer to provide documentation on safety, operation,
maintenance and programming, along with training for all machine operators, maintenance technicians,
programmers, and other personnel who may have access to the machine. This documentation must
include proper lockout/tagout procedures for maintenance and programming operations.

It is the responsibility of the operating company to ensure that:
l All operators, maintenance technicians, programmers and other personnel are tested and

qualified before acquiring access to the machine or system.
l The above personnel perform their assigned functions in a responsible and safe manner to

comply with the procedures in the supplied documentation and the company safety practices.
l The equipment is maintained as described in the documentation and training supplied by the

machine/system designer.

Additional Equipment and Considerations

The Risk Assessment and the operating company's standard safety policies will dictate the need for
additional equipment. In general, it is the responsibility of the operating company to ensure that:

l Unauthorized access to the machine is prevented at all times.

l The personnel are supplied with the proper equipment for the environment and their job
functions, which may include: safety glasses, hearing protection, safety footwear, smocks or
aprons, gloves, hard hats and other protective gear.

l The work area is equipped with proper safety equipment such as first aid equipment, fire
suppression equipment, emergency eye wash and full-body wash stations, etc.

l There are no modifications made to the machine or system without proper engineering
evaluation for design, safety, reliability, etc., and a Risk Assessment.

Safety Information Resources
Additional SmartMotor safety information can be found on the Moog Animatics website; open the topic
"Controls - Notes and Cautions" located at:

https://www.animatics.com/support/downloads/knowledgebase/controls---notes-and-cautions.html

OSHA standards information can be found at:

https://www.osha.gov/law-regs.html

Introduction: Documentation and Training

https://www.animatics.com/support/downloads/knowledgebase/controls---notes-and-cautions.html
https://www.osha.gov/law-regs.html

In
t

r
o

d
u

c
t

io
n

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 34 of 969

ANSI-RIA robotic safety information can be found at:

http://www.robotics.org/robotic-content.cfm/Robotics/Safety-Compliance/id/23

UL standards information can be found at:

http://ulstandards.ul.com/standards-catalog/

ISO standards information can be found at:

http://www.iso.org/iso/home/standards.htm

EU standards information can be found at:

http://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/index_en.htm

Introduction: Safety Information Resources

http://www.robotics.org/robotic-content.cfm/Robotics/Safety-Compliance/id/23
http://ulstandards.ul.com/standards-catalog/
http://www.iso.org/iso/home/standards.htm
http://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/index_en.htm

In
t

r
o

d
u

c
t

io
n

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 35 of 969

Additional Documents
The Moog Animatics website contains additional documents that are related to the information in this
manual. Please refer to these lists.

Related Guides
l Moog Animatics SmartMotor™ Installation and Startup Guides

http://www.animatics.com/install-guides

l SmartMotor™ Homing Procedures and Methods Application Note

http://www.animatics.com/homing-application-note

l SmartMotor™ System Best Practices Application Note

http://www.animatics.com/system-best-practices-application-note

In addition to the documents listed above, guides for fieldbus protocols and more can be found on the
website: https://www.animatics.com/support/downloads.manuals.html

Other Documents
l SmartMotor™ Certifications

https://www.animatics.com/certifications.html

l SmartMotor Developer's Worksheet
(interactive tools to assist developer: Scale Factor Calculator, Status Words, CAN Port Status,
Serial Port Status, RMODE Decoder and Syntax Error Codes)

https://www.animatics.com/support/downloads.knowledgebase.html

l Moog Animatics Product Catalog

http://www.animatics.com/support/moog-animatics-catalog.html

Introduction: Additional Documents

http://www.animatics.com/install-guides
http://www.animatics.com/homing-application-note
http://www.animatics.com/system-best-practices-application-note
https://www.animatics.com/support/downloads.manuals.html
https://www.animatics.com/certifications.html
https://www.animatics.com/support/downloads.knowledgebase.html
http://www.animatics.com/support/moog-animatics-catalog.html

In
t

r
o

d
u

c
t

io
n

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 36 of 969

Additional Resources
The Moog Animatics website contains useful resources such as product information, documentation,
product support and more. Please refer to these addresses:

l General company information:

http://www.animatics.com

l Product information:

http://www.animatics.com/products.html

l Product support (Downloads, How-to Videos, Forums and more):

http://www.animatics.com/support.html

l Contact information, distributor locator tool, inquiries:

https://www.animatics.com/contact-us.html

l Applications (Application Notes and Case Studies):

http://www.animatics.com/applications.html

Introduction: Additional Resources

http://www.animatics.com/
http://www.animatics.com/products.html
http://www.animatics.com/support.html
https://www.animatics.com/contact-us.html
http://www.animatics.com/applications.html

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 37 of 969

Part 1: Programming the SmartMotor

Part 1 of this guide provides information on programming, SMI software features, communications,
variables, error and fault handling, I/O control, and other details required for system and application
development.

Beginning Programming 47

Understanding Firmware Versions 48

Downloading and Installing the Latest Firmware 48

Understanding the FIRMWARE VERSION Field in the Command Descriptions 48

Class 5 Firmware for D- and M-Style Motors 48

Class 6 Firmware for M-Style (MT/MT2) Motors 49

Class 6 Firmware for D-Style Motors 49

DS2020 Combitronic System Firmware 49

Setting the Motor Firmware Version in SMI 50

Setting the Default Firmware Version 50

Checking the Default Firmware Version 51

Opening the SMI Window (Program Editor) 51

Understanding the Program Requirements 52

Creating a "Hello World" Program 54

Entering the Program in the SMI Editor 54

Adding Comments to the Code 54

Checking the Program Syntax 54

Saving the Program 55

Downloading a Program to the SmartMotor 55

Syntax Checking, Compiling and Downloading the Program 55

Additional Notes on Downloaded Programs 55

Running a Downloaded Program 56

Using the Program Download Window 57

Using the Terminal Window and Run Program Button 57

Using the RUN Command in the Terminal Window 57

Creating a Simple Motion Program 59

SMI Software Features 60

Introduction 61

Menu Bar 62

Toolbar 62

Configuration Window 64

Terminal Window 67

Initiating Motion from the Terminal Window 69

Part 1: Programming the SmartMotor

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 38 of 969

Information Window 69

Program Editor 70

Motor View 72

SMI Trace Functions 73

Monitor Window 76

Serial Data Analyzer 78

Chart View 79

Chart View Example 80

Macros (Keyboard Shortcuts or Hotkeys) 83

Tuner 85

SMI Options 89

SMI Help 90

Context-Sensitive Help Using F1 90

Context-Sensitive Help Using the Mouse 90

Help Buttons 90

Hover Help 90

Table of Contents 90

Projects 91

SmartMotor Playground 92

Opening the SmartMotor Playground 93

Moving the Motor 94

Communication Details 96

Introduction 98

Connecting to a Host 99

Daisy Chaining Multiple D-Style SmartMotors over RS-232 100

ADDR=formula 102

SLEEP, SLEEP1 102

WAKE, WAKE1 102

ECHO, ECHO1 103

ECHO_OFF, ECHO_OFF1 103

Serial Commands 104

OCHN(type,channel,parity,bit rate,stop bits,data bits,mode,timeout) 104

CCHN(type,channel) 105

BAUDrate, BAUD(channel)=formula 105

PRINT(), PRINT1() 105

SILENT, SILENT1 106

TALK, TALK1 106

a=CHN(channel) 106

a=ADDR 106

Part 1: Programming the SmartMotor

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 39 of 969

Communicating over RS-485 107

Using Data Mode 107

CAN Communications 110

CADDR=formula 110

CBAUD=formula 110

=CAN, =CAN(arg) 110

CANCTL(function,value) 110

SDORD(...) 111

SDOWR(...) 111

NMT 112

RB(2,4), x=B(2,4) 112

Exceptions to NMT, SDORD and SDOWR Commands 112

I/O Device CAN Bus Controller 113

Combitronic Communications 113

Combitronic Features 114

Other Combitronic Benefits 114

Program Loops with Combitronic 115

Global Combitronic Transmissions 115

Simplify Machine Support 116

Combitronic with RS-232 Interface 116

Combitronic with the DS2020 Combitronic System 117

Other CAN Protocols 118

CANopen - CAN Bus Protocol 118

DeviceNet - CAN Bus Protocol 118

I²C Communications (Class 5 D-Style Motors) 118

OCHN(IIC,1,N,baud,1,8,D) 120

CCHN(IIC,1) 120

PRINT1(arg1,arg2, … ,arg_n) 120

RGETCHR1, Var=GETCHR1 120

RLEN1, Var=LEN1 120

Motion Details 121

Introduction 122

Motion Command Quick Reference 123

Basic Motion Commands 124

Target Commands 124

PT=formula 124

PRT=formula 125

ADT=formula 125

AT=formula 125

Part 1: Programming the SmartMotor

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 40 of 969

DT=formula 125

VT=formula 125

Motion Mode Commands 126

MP 126

MV 126

MT 126

Torque Commands 127

TS=formula 127

T=formula 127

Brake Commands 127

BRKRLS 127

BRKENG 127

BRKSRV 128

BRKTRJ 128

Brake Command Examples 128

EOBK(IO) 129

MTB 130

Index Capture Commands 130

DS2020 Combitronic System Index Capture 131

Other Motion Commands 132

G 132

S 132

X 132

O=formula 133

OSH=formula 133

OFF 133

SCALEA(m,d), SCALEP(m,d), SCALEV(m,d) 133

Commutation Modes 134

MDT 134

MDE 134

MDS 134

MDC 135

MDB 135

MINV(0), MINV(1) 135

Modes of Operation 136

Torque Mode 136

Torque Mode Example 136

Dynamically Change from Velocity Mode to Torque Mode 136

Velocity Mode 137

Constant Velocity Example 137

Part 1: Programming the SmartMotor

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 41 of 969

Change Commanded Speed and Acceleration 137

Absolute (Position) Mode 138

Absolute Move Example 138

Two Moves with Delay Example 138

Change Speed and Acceleration Example 138

Shift Point of Origin Example 139

Relative Position Mode 139

Relative Mode Example 139

Follow Mode with Ratio (Electronic Gearing) 140

Electronic Gearing and Camming over CANopen 140

Electronic Gearing Commands 140

SRC(enc_src) 141

MFR 141

MSR 141

MF0 141

MS0 141

MFMUL=formula, MFDIV=formula 141

MFA(distance[,m/s]) 142

MFD(distance[,m/s]) 142

MFSLEW(distance[,m/s]) 142

Follow Internal Clock Source Example 142

Follow Incoming Encoder Signal With Ramps Example 143

Electronic Line Shaft 145

ENCD(in_out) 145

Spooling and Winding Overview 146

Relative Position, Auto-Traverse Spool Winding 146

MFSDC(distance,mode) 147

Dedicated, Absolute Position, Winding Traverse Commands 149

MFSDC(distance,2) 150

MFLTP=formula 150

MFHTP=formula 150

MFCTP(arg1,arg2) 150

MFL(distance[,m/s]) 151

MFH(distance[,m/s]) 151

ECS(counts) 151

Single Trajectory Example Program 152

Chevron Wrap Example 153

Other Traverse Mode Notes 155

Traverse Mode Status Bits 156

Cam Mode (Electronic Camming) 156

Part 1: Programming the SmartMotor

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 42 of 969

Electronic Camming Details 158

Understanding the Inputs 158

Should I choose Source Counts or Intermediate Counts? 160

Should I choose Variable or Fixed cam? 160

Electronic Camming Notes and Best Practices 162

Examples 164

Electronic Gearing and Camming over CANopen 164

Electronic Camming Commands 165

CTE(table) 165

CTA(points,seglen[,location]) 165

CTW(pos[,seglen][,user]) 165

MCE(arg) 166

MCW(table,point) 166

RCP 166

RCTT 167

MC 167

MCMUL=formula 167

MCDIV=formula 167

O(arg)=formula 167

OSH(arg)=formula 167

Cam Example Program 168

Mode Switch Example 171

Position Counters 173

Modulo Position 174

Modulo Position Commands 174

Dual Trajectories 175

Commands That Read Trajectory Information 177

Dual Trajectory Example Program 178

Using Mixed Mode Operations After Homing 179

Synchronized Motion 179

Synchronized-Target Commands 179

PTS(), PRTS() 179

VTS=formula 180

ADTS=formula, ATS=formula, DTS=formula 180

PTSS(), PRTSS() 180

A Note About PTS and PRTS 181

Other Synchronized-Motion Commands 183

GS 183

TSWAIT 183

Part 1: Programming the SmartMotor

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 43 of 969

Program Flow Details 185

Introduction 186

Flow Commands 186

RUN 186

RUN? 187

GOTO#, GOTO(label), C# 187

GOSUB#, GOSUB(label), RETURN 188

IF, ENDIF 188

ELSE, ELSEIF 188

WHILE, LOOP 189

SWITCH, CASE, DEFAULT, BREAK, ENDS 190

TWAIT 190

WAIT=formula 191

STACK 191

END 191

Program Flow Examples 192

IF, ELSEIF, ELSE, ENDIF Examples 192

WHILE, LOOP Examples 192

GOTO(), GOSUB() Examples 193

SWITCH, CASE, BREAK, ENDS Examples 194

Interrupt Programming 195

ITR(), ITRE, ITRD, EITR(), DITR(), RETURNI 195

TMR(timer,time) 197

Variables and Math 198

Introduction 199

Variable Commands 199

EPTR=formula 199

VST(variable,number) 199

VLD(variable,number) 200

Math Expressions 200

Math Operations 200

Logical Operations 200

Integer Operations 200

Floating Point Functions 200

Math Operation Details and Examples 201

Array Variables 201

Array Variable Examples 202

Part 1: Programming the SmartMotor

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 44 of 969

Error and Fault Handling Details 203

Motion and Motor Faults 204

Overview 204

Drive Stage Indications and Faults 204

Fault Bits 204

Error Handling 205

Example Fault-Handler Code 205

PAUSE 206

RESUME 206

Limits and Fault Handling 207

Position Error Limits 207

dE/dt Limits 207

Velocity Limits 208

Hardware Limits 208

Software Limits 208

Fault Handling 209

Monitoring the SmartMotor Status 210

System Status 213

Introduction 214

Retrieving and Manipulating Status Words/Bits 214

System and Motor Status Bits 214

Reset Error Flags 217

System Status Examples 217

Timer Status Bits 218

Interrupt Status Bits 218

I/O Status 219

User Status Bits 219

Multiple Trajectory Support Status Bits 220

Cam Status Bits 221

Interpolation Status Bits 222

Motion Mode Status 222

RMODE, RMODE(arg) 222

I/O Control Details 223

I/O Port Hardware 224

I/O Connections Example (Class 5 D-Style Motors) 225

I/O Voltage Protection 225

Discrete Input and Output Commands 225

Discrete Input Commands 226

Part 1: Programming the SmartMotor

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 45 of 969

Discrete Output Commands 226

Output Condition and Fault Status Commands 227

Output Condition Commands 227

Output Fault Status Reports 227

General-Use Input Configuration 228

Multiple I/O Functions Example 228

Analog Functions of I/O Ports 230

5 Volt Push-Pull I/O Analog Functions (Class 5 D-Style Motors) 230

24 Volt I/O Analog Functions (Class 5 D-Style AD1 Option Motors, Class 5 M-Style Motors) 230

24 Volt I/O Analog Functions (Class 6 M-Style Motors) 230

24 Volt I/O Analog Functions (Class 6 D-Style Motors) 231

Special Functions of I/O Ports 232

Class 5 D-Style Motors: Special Functions of I/O Ports 233

I/O Ports 0 and 1 – External Encoder Function Commands 233

I/O Ports 2 and 3 – Travel Limit Inputs 233

I/O Ports 4 and 5 – Communications 233

I/O Port 6 – Go Command, Encoder Index Capture Input 234

Class 5 M-Style Motors: Special Functions of I/O Ports 235

COM Port Pins 4, 5, 6, and 8 – A-quad-B or Step-and-Direction Modes 235

I/O Ports 2 and 3 – Travel Limit Inputs 235

I/O Port 5 – Encoder Index Capture Input 235

I/O Port 6 – Go Command 236

Class 6 Motors: Special Functions of I/O Ports 237

A-quad-B or Step-and-Direction Modes 237

I/O Ports 2 and 3 – Travel Limit Inputs 238

I/O Port 4 and 5 – Encoder Index Capture Input 238

I/O Port 6 – Go Command 238

I/O Brake Output Commands 238

I²C Expansion (D-Style Motors) 239

Tuning and PID Control 240

Introduction 241

Tuning and PID Control on the DS2020 Combitronic System 241

Understanding the PID Control 241

Tuning the PID Control 242

Using F 243

Setting KP 243

Setting KD 243

Setting KI and KL 244

Setting EL=formula 244

Part 1: Programming the SmartMotor

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 46 of 969

Other PID Tuning Parameters 244

KG=formula 245

KV=formula 245

KA=formula 245

Current Limit Control 246

AMPS=formula 246

Part 1: Programming the SmartMotor

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 47 of 969

Beginning Programming
This chapter provides information on beginning programming with the SmartMotor. It introduces you to
using the SMI™ Program Editor, understanding program requirements, creating a program, downloading
the program and then running it in the SmartMotor. It concludes with a sample for creating your first
motion program.

Understanding Firmware Versions 48

Downloading and Installing the Latest Firmware 48

Understanding the FIRMWARE VERSION Field in the Command Descriptions 48

Class 5 Firmware for D- and M-Style Motors 48

Class 6 Firmware for M-Style (MT/MT2) Motors 49

Class 6 Firmware for D-Style Motors 49

DS2020 Combitronic System Firmware 49

Setting the Motor Firmware Version in SMI 50

Setting the Default Firmware Version 50

Checking the Default Firmware Version 51

Opening the SMI Window (Program Editor) 51

Understanding the Program Requirements 52

Creating a "Hello World" Program 54

Entering the Program in the SMI Editor 54

Adding Comments to the Code 54

Checking the Program Syntax 54

Saving the Program 55

Downloading a Program to the SmartMotor 55

Syntax Checking, Compiling and Downloading the Program 55

Additional Notes on Downloaded Programs 55

Running a Downloaded Program 56

Using the Program Download Window 57

Using the Terminal Window and Run Program Button 57

Using the RUN Command in the Terminal Window 57

Creating a Simple Motion Program 59

Part 1: Programming: Beginning Programming

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 48 of 969

Understanding Firmware Versions
Before programming the SmartMotor, it is important that the correct firmware version is installed in
the connected SmartMotor. This topic is intended to help you understand the differences between the
firmware versions.

Downloading and Installing the Latest Firmware

It is recommended that you download and install the latest firmware for your motor. The firmware can
be downloaded from the Moog Animatics website:

https://www.animatics.com/products/smartmotor.resources.html

The firmware files are located in the CAD File and Firmware Downloads section. In addition to the
firmware files, the firmware release notes are available—these provide a succinct description of
changes and enhancements for the corresponding firmware version.

When accessing the firmware downloads, note that firmware files vary depending on your motor's
options (e.g., CAN, PROFIBUS, etc.). Therefore, it is important to check your motor model AND options
before selecting the corresponding file.

To install the downloaded firmware in your SmartMotor, see the instructions in the SMI software online
help.

Understanding the FIRMWARE VERSION Field in the Command Descriptions

The FIRMWARE VERSION field in the command description provides information about the firmware
version(s) that support the command. For example, if the FIRMWARE VERSION field shows "5.x (D/M)",
then the command supports any D- or M-style motor running firmware version 5 and later; if the
FIRMWARE VERSION field shows "6.x (D/M)", then the command supports any D- or M-style motor
running firmware version 6 and later.

In some cases, the FIRMWARE VERSION field shows a specific firmware number, for example,
5.0.4.55/5.98.4.55 (D/M), which means Class 5 D-style version 5.0.4.55 and later, or Class 5 M-style
version 5.98.4.55 and later, are supported.

The next table provides more examples of FIRMWARE VERSION entries and the supported motors.

Firmware Version Examples Supports

5.x (D/M); 6.x (D/M) Class 5 and Class 6 D/M-style motors1

5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican
(DS2020)

Class 5 and Class 6 D/M-style motors, and DS2020 Combitronic

5.x (D/M); no Class 6 Class 5 D/M-style motors only, Class 6 not supported

5.x (D/M) requires CAN option; 6.4.2.x (D) Class 5 D/M-style motors with CAN bus, and Class 6 D-style motors2

6.x (D/M); no Class 5 Class 6 D/M-style motors only2 , Class 5 not supported

6.x (D/M) requires EPN option; no Class 5 Class 6 D/M-style motors only2 with EPN option, Class 5 not supported

1. Class 6 D-style requires ver 6.4.2.x
2. Class 6 D-style includes CAN bus as a standard feature

Class 5 Firmware for D- and M-Style Motors

For Class 5 SmartMotor servos, both D- and M-style, the Class 5 firmware supports most of the
commands described in this guide, except those specific to only Class 6 and/or the DS2020
Combitronic system. Those exceptions are noted on the command description pages.

Class 5 firmware can be identified by the first digit "5" in the firmware version, for example, 5.0.3.2.

Understanding Firmware Versions

https://www.animatics.com/products/smartmotor.resources.html

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 49 of 969

Noteworthy Class 5 Firmware Versions:
l 5.x.4.x - current public release series of this firmware

l 5.0.4.x series - supports D-style standard and CANopen options models

l 5.16.4.x series - supports D-style DeviceNet option models

l 5.32.4.x series - supports D-style PROFIBUS option models

l 5.97.4.x series - supports M-style DeviceNet option models

l 5.98.4.x series - supports M-style CANopen option models

For additional details, see the Class 5 D-Style Firmware Release Notes and the Class 5 M-Style
Firmware Release Notes.

Class 6 Firmware for M-Style (MT/MT2) Motors

For Class 6 M-style SmartMotor servos, both MT and MT2, the Class 6 MT/MT2 firmware supports
many of the commands described in this guide, except those specific to only Class 5 and/or the
DS2020 Combitronic system. Additionally, there are some commands that are unique to the Class 6
motors. Those exceptions are noted on the command description pages. For more information, see the
topic "Other Class 6 D-Style Changes" in the Class 6 SmartMotor™ Installation and Startup Guide.

Class 6 firmware can be identified by the first digit "6" in the firmware version, for example, 6.0.2.35.

Noteworthy Class 6 MT- and MT2-Series Firmware Versions:
l 6.0.2.x - current public release series of this firmware, provides support for SM23216MH,

SM23166MT, SM23166MT2 and SM34166MT2 motors

For additional details, see the Class 6 – EIP/EEC/EPN Firmware Release Notes.

Class 6 Firmware for D-Style Motors

For Class 6 D-style SmartMotor servos, the firmware supports almost all of the commands described in
this guide, except those specific to DeviceNet, PROFIBUS and I²C (IIC) communications. Those
exceptions are noted on the command description pages. For more information on Class 6 D-style
command and feature limitations, see the topic "Other Class 6 D-Style Changes" in the Class 6 D-Style
SmartMotor™ Installation and Startup Guide.

Class 6 D-style firmware can be identified by the first digit "6" in the firmware version, for example,
6.4.2.1.

Noteworthy Class 6 D-Style Firmware Versions:
l 6.4.2.x - current public release series of this firmware

For additional details, see the Class 6 D-Style Firmware Release Notes.

DS2020 Combitronic System Firmware

For DS2020 Combitronic system, the firmware supports a limited set of SmartMotor commands. The
supported commands are noted on the corresponding command description pages. Also, for a complete
list of supported commands, see Commands for DS2020 Combitronic on page 967.

DS2020 Combitronic system support requires: Class 5 ver. 5.0.4.55 (D-style) or 5.98.4.55 (M-style), or
Class 6 ver. 6.4.2.x (D-style only).

NOTE: The DS2020 Combitronic system is not supported on Class 6 MT/MT2 motors.

Class 6 Firmware for M-Style (MT/MT2) Motors

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 50 of 969

DS2020 Combitronic system firmware can be identified by the terms "ds2020" and "combican" in the
firmware version, for example, ds2020_sa_1.0.0_combican.

Noteworthy DS2020 Combitronic System Firmware Versions:
l ds2020_sa_1.0.0_combican - current public release of this firmware

Setting the Motor Firmware Version in SMI
NOTE: In addition to the software information in this section, there is context-sensitive help
available within the SMI software interface, which is accessed by pressing the F1 key or selecting
Help from the SMI software main menu.

When programming the SmartMotor, it is important that the SMI software compiler's firmware version
setting matches the firmware version of the connected SmartMotor.

CAUTION: The compiler's firmware version must match the firmware version of
the connected motor. If it does not match, the SMI software may not catch syntax
errors and may download incompatible code to the SmartMotor.

This procedure assumes that:
l The SmartMotor is connected to the computer. For details, see Connecting the System in the

SmartMotor Installation & Startup Guide for your motor.
l The SmartMotor is connected to a power source. (Certain models of SmartMotors require

separate control and drive power.) For details, see Understanding the Power Requirements in the
SmartMotor Installation & Startup Guide for your motor.

l The SMI software has been installed and is running on the computer. For details, see Installing
the SMI Software in the SmartMotor Installation & Startup Guide for your motor.

Setting the Default Firmware Version

To set the default firmware version, from the SMI software main menu, select:

Compile > Compiler default firmware version

Setting the Motor Firmware Version in SMI

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 51 of 969

Setting the Compiler’s Default Firmware Version

From the list, select the firmware version that most closely matches the firmware version of the
connected SmartMotor, as shown in the previous figure. After the default firmware version has been
selected, the list closes.

Checking the Default Firmware Version

To check the default firmware version, from the SMI software main menu, select:

Compile > Compiler default firmware version

On the list, locate the blue dot to the left of the firmware version number. The dot indicates the
currently-selected default firmware version.

Opening the SMI Window (Program Editor)
NOTE: In addition to the software information in this section, there is context-sensitive help
available within the SMI software interface, which is accessed by pressing the F1 key or selecting
Help from the SMI software main menu.

In addition to taking commands over the serial interface, the SmartMotor can run programs. The SMI
window is used to write and edit user programs for the SmartMotor(s). After the program has been
written, it can be checked and then downloaded to the desired SmartMotor(s).

The SMI window is typically closed (default setting) when the SMI software is opened. To open the
window, click the New button () on the toolbar, or select:

File > New

Checking the Default Firmware Version

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 52 of 969

SMI Window

After the SMI window opens, you can type your program directly into the editor, or you can copy and
paste existing code from any text-based software such as Windows Notepad.

NOTE: Some word-processing software, such as Microsoft Word, has an option for "smart quotes",
which use angled single (ˊ) and double (˝) quotation marks . The angled quotation marks are not
recognized by the SMI editor. Therefore, any "smart quotes" option must be disabled before copying
and pasting the program code.

Understanding the Program Requirements
SmartMotors use a simple form of code called "AniBasic", which is similar to the BASIC programming
language. Various commands include means to create continuous loops, jump to different locations on
given conditions and perform general math functions.

Note these AniBasic program requirements:
l The code is case sensitive:

l All commands begin with or use all UPPER CASE letters.

l All variables are preassigned and must use lower case.

l Command names are reserved and cannot be used as variables.

l A space is a programming element.

Understanding the Program Requirements

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 53 of 969

l Comments require an apostrophe or ASCII character 39 (') between the commands and the
comment text.

NOTE: When copying and pasting code from another text editor, make sure that your text
editor is not inserting "smart quotes" (angled single or double quotation marks). These are
not the same as ASCII characters 39 (') and 34 ("), and the SMI program editor doesn't
recognize them.

l Each program must contain at least one occurrence of the END statement.

l Each subroutine call must have a label with a RETURN statement somewhere below it.

l Each Interrupt subroutine must end with the RETURNI statement.

l The default syntax colors for the SMI editor are: commands (blue), program flow controls (pink),
and comments (green). All other program text is shown in black. You can change the syntax
colors through the Editor tab in the Options window. For details on the Options window, see
SMI Options on page 89.

l There is no syntax checking performed until you do one of these:
l From the main menu, select Compile > Scan file for errors

l Select the Scan File for Errors button on the toolbar

l Press Ctrl+F7

l As in BASIC, you can use the PRINT command to print to the screen, as shown in the "Hello
World" example. For details, see Creating a "Hello World" Program on page 54.

l When the SmartMotor power is turned on, there is a 500 ms "pause" before any program or
command is processed:

l For all industrial networks, every node (or motor) must immediately send out a "Who am
I?" info data packet when power is turned on, which tells the network host who it's talking
to. This is a requirement for all industrial communications protocols (like CANopen,
DeviceNet and PROFIBUS).

l The stored program does not execute until the 500 ms pause expires. Any serial
commands sent during that time are buffered and then accepted after that pause expires.
Because incoming commands take priority over the internal program, any buffered
commands are executed before the internal program begins.

l Commands coming in over the network have priority over the program running within the
SmartMotor. For example, while a program is running, you could issue a GOSUB command from
the terminal and send the program off to run the specified subroutine. When the subroutine is
done, the program would resume at the point where the GOSUB command was issued.

l The RUN? command can be used at the beginning of a program to prevent it from automatically
running when the SmartMotor power is turned on, as shown in the "Hello World" example. For
details, see Creating a "Hello World" Program on page 54.

l The SmartMotor will not execute any code past the RUN? line until it receives a RUN
command through the serial port.

l Using the serial port, the motor can be commanded to run subroutines even if the stored
program is not running.

Understanding the Program Requirements

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 54 of 969

l User programs are stored in the SmartMotor's EEPROM memory. The maximum program size
depends on the motor class you are using:

l For Class 5 motors, the maximum program size is 32767 bytes.

l For Class 6 motors, the maximum program size is 64150 bytes.

For details on downloading user programs to the SmartMotor, see Downloading a Program
to the SmartMotor on page 55 and LOAD on page 548.

Creating a "Hello World" Program
This procedure describes how to create and save a simple "Hello World" program.

NOTE: When copying and pasting code from another text editor, make sure that your text editor is
not inserting "smart quotes" (angled single or double quotation marks). These are not the same as
ASCII characters 39 (') and 34 ("), and the SMI program editor doesn't recognize them.

Entering the Program in the SMI Editor

To create the program, type this code into the SMI software program editor:

RUN?
PRINT("Hello World",#13)
END

NOTE: The program will not run when the SmartMotor power is turned on (because of the RUN?
command on the first line).

When you run this program, it outputs this text to the Terminal window:

Hello World

To run this program, you must download it to the SmartMotor and then enter the RUN command in the
Terminal window. For more details on downloading the program, see Downloading a Program to the
SmartMotor on page 55. For more details on running the downloaded program, see Running a
Downloaded Program on page 56.

Adding Comments to the Code

You can add comments to the code by inserting a single quotation mark (') between the commands and
your comment text.

NOTE: Comments do not get sent to the SmartMotor.

RUN? 'The program stops here until it receives a RUN command
PRINT("Hello World",#13) '#13 is a carriage return
END 'The required END command

Checking the Program Syntax

You can syntax check the program by doing one of these:
l From the main menu, select Compile > Scan file for errors
l Select the Scan File for Errors button on the toolbar
l Press Ctrl+F7

Creating a "Hello World" Program

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 55 of 969

If errors are found, correct them and re-check the syntax.

The program will also be syntax checked as part of the download procedure. For details, see
Downloading a Program to the SmartMotor on page 55.

Saving the Program

After entering the program, use these steps to save it:

1. From the main menu, select: File > Save As, or click the Save button () on the toolbar. The Save
As window opens.

2. Select a drive/folder on your PC or use the default location.

3. Assign a name, such as "HelloWorld.sms".

4. Click Save to write the program to the specified location and close the window.

If you attempt to syntax check or compile and download an unsaved program, the SMI software
automatically opens the Save As window, which requires you to save the program before continuing.

Downloading a Program to the SmartMotor
NOTE: In addition to the software information in this section, there is context-sensitive help
available within the SMI software interface, which is accessed by pressing the F1 key or selecting
Help from the SMI software main menu.

After you've created a program, it must be downloaded to the SmartMotor. This section explains how
to syntax check and download the program.

NOTE: Comments do not get sent to the SmartMotor.

Syntax Checking, Compiling and Downloading the Program

The program can be syntax checked, compiled and transmitted to the SmartMotor in one operation.

To compile the program and then transmit it to the SmartMotor:

NOTE: SMI transmits the compiled version of the program to the SmartMotor.

1. Click the Compile and Download Program button () on the toolbar or press the F5 key. The
Select Motor window opens, which is used to specify which motor(s) will receive the program.

2. Select the desired motor(s) from the list. The SMI software compiles the program during this
step and also checks for errors. If errors are found, make the necessary corrections and try
again.

3. Click OK to close the window and transmit the program. A progress bar shows the status of the
transmission.

Because the SmartMotor's EEPROM (long-term memory) is slow to write, the terminal software uses
two-way communications to regulate the download of a new program.

Additional Notes on Downloaded Programs

Keep these items in mind regarding programs that have been downloaded to the SmartMotor:

Saving the Program

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 56 of 969

l After the program has been downloaded into the SmartMotor, it remains there until replaced.

l The downloaded program executes every time power is applied to the motor.
l There is a 500 ms timeout before the motor will accept commands on the serial port. Any

commands sent during that time are buffered and then accepted once the 500 ms timeout
expires. Because incoming commands take priority over the internal program, buffered
commands run before the internal program begins.

l If you do not want the program to execute every time power is applied, you must add a
RUN? command as the first line/command of the program. For an example, see Creating a
"Hello World" Program on page 54.

l To get a program to operate continuously, write a loop. For details, see Program Flow
Details on page 185.

l A program cannot be erased; it can only be replaced. To effectively replace a program with
nothing, download a program with only one command: END.

Remember that all programs, even "empty" ones, must contain at least one END command. For
more details on program requirements, see Understanding the Program Requirements on page
52.

Running a Downloaded Program

WARNING: The larger SmartMotors can shake, move quickly and exert great force.
Therefore, proper motor restraints must be used, and safety precautions must be
considered in the workcell design (see Other Safety Considerations on page 31).

NOTE: In addition to the software information in this section, there is context-sensitive help
available within the SMI software interface, which is accessed by pressing the F1 key or selecting
Help from the SMI software main menu.

After the program has downloaded to the SmartMotor, the Program Download window opens, which
contains options relating to running the program.

Program Download Window

Running a Downloaded Program

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 57 of 969

Run will run the program immediately. Reset will clear all user variables and run the program as if it
were power cycled. Close will close the window without running the newly-downloaded program.

"Check to disable this message" will prevent the window from being shown after a program is
downloaded to the SmartMotor. Select that option if you always want to run the program using the
Terminal window and the Run Program in Selected Motor button (), which is on the SMI software
toolbar.

Using the Program Download Window

(Refer to the previous figure.)

To run the program on all motors:

1. Select the All Motors on this channel option.

2. Click Run.

To run the program on just the selected motor:

1. Deselect the All Motors on this channel option.

2. Click Run.

Using the Terminal Window and Run Program Button

To run the program using the Terminal window and the Run Program button:

1. Use the motor selector in the Terminal window (see the next figure) to select the motor—it must
be the same motor that received the program.

2. Click the Run Program in Selected Motor button () to run the program in the selected motor.

Selected Motor and Run Program Button

Using the RUN Command in the Terminal Window

To run the program using commands in the Terminal window, do one of these:
l Type RUN in the text box and click Send or press Enter

l Type RUN directly on the terminal screen (blue) area and click Send or press Enter.

Using the Program Download Window

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 58 of 969

RUN Command in the Terminal Window

Using the RUN Command in the Terminal Window

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 59 of 969

Creating a Simple Motion Program

WARNING: The larger SmartMotors can shake, move quickly and exert great force.
Therefore, proper motor restraints must be used, and safety precautions must be
considered in the workcell design (see Other Safety Considerations on page 31).

Enter this motion program (see below) in the SMI editing window. Pay close attention to spaces and
capitalization.

As described previously, it’s only necessary to enter text on the left side of the single quote, as the
text from the single quotation mark to the right end of the line is a comment and for information only.
That said, it is always good programming practice to create well-commented code. Nothing is more
frustrating than trying to debug or decipher code that is sparsely commented.

NOTE: Comments do not get sent to the SmartMotor.

EIGN(2) 'Disable left limit
EIGN(3) 'Disable right limit
ZS 'Reset errors
ADT=100 'Set target accel/decel
VT=1000000 'Set target velocity
PT=100000 'Set target position
G 'Go, starts the move
TWAIT 'Wait for move to complete
PT=0 'Set buffered move back to home
G 'Start motion
END 'End program

After entering the program code, you can download it to the motor and then run it. For details on
downloading the program, see Downloading a Program to the SmartMotor on page 55. For details on
running the downloaded program, see Running a Downloaded Program on page 56.

Part 1: Programming: Creating a Simple Motion Program

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 60 of 969

SMI Software Features
This chapter provides information on SMI software features.

Introduction 61

Menu Bar 62

Toolbar 62

Configuration Window 64

Terminal Window 67

Initiating Motion from the Terminal Window 69

Information Window 69

Program Editor 70

Motor View 72

SMI Trace Functions 73

Monitor Window 76

Serial Data Analyzer 78

Chart View 79

Chart View Example 80

Macros (Keyboard Shortcuts or Hotkeys) 83

Tuner 85

SMI Options 89

SMI Help 90

Context-Sensitive Help Using F1 90

Context-Sensitive Help Using the Mouse 90

Help Buttons 90

Hover Help 90

Table of Contents 90

Projects 91

SmartMotor Playground 92

Opening the SmartMotor Playground 93

Moving the Motor 94

Part 1: Programming: SMI Software Features

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 61 of 969

Introduction
NOTE: In addition to the software information in this section, there is context-sensitive help
available within the SMI software interface, which is accessed by pressing the F1 key or selecting
Help from the SMI software main menu.

The SMI software interface provides access to a variety of tools that are used to communicate with,
program and monitor the SmartMotor.

The SMI software also provides limited support for the DS2020 Combitronic system. These
tools/features are supported:

l Tools menu items:
l Macro

l Motor View

l Chart View

l Configuration tree right-click menu items:
l Motor View

l Set Motor Address

l Configure DS2020

The SMI software interface can be accessed from the Windows Desktop icon or from the Windows
Start menu. For details, see Accessing the SMI Software Interface in the SmartMotor Installation &
Startup Guide for your motor.

Menu bar

Toolbar

Con!guration
window

Terminal
window

Information
window

Program
editor

Main Features of the SMI Software

Part 1: Programming: Introduction

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 62 of 969

NOTE: Depending on your version of SMI software, your screens may look slightly different than
those shown.

The primary software features are briefly described in the next sections. In addition to this information,
there are detailed descriptions of all SMI software features in the software's online help, which can be
accessed from the software's Help menu or by pressing the F1 key.

Menu Bar
NOTE: In addition to the software information in this section, there is context-sensitive help
available within the SMI software interface, which is accessed by pressing the F1 key or selecting
Help from the SMI software main menu.

The SMI software menu bar provides access to all SMI software features, which are grouped by
functional area.

The Menu Bar

NOTE: Frequently-used features are also available from the SMI software's Toolbar. For details, see
Toolbar on page 62.

Each functional area is described in the next table.

Menu Description
File Access standard file commands (New, Open, Close, etc.).

Edit Edit an SMI program (Cut, Copy, Paste, etc.). Note that an SMI Program Editor
window must be open to use these features.

View Show or hide windows or items in the SMI software interface (Toolbar, Status
bar, Terminal window, etc.).

Communication Control communications with motors (Settings, Detect Motors, Upload Program,
Communication Setup Wizard, etc.).

Compile
Scan a program for errors and compile SMX or project files (Scan for errors,
Compile Downloadable SMX file, Compile and Transmit SMX file, Compile Pro-
ject, etc.).

Tools Access SmartMotor tools, monitoring features and options (Macro, Tuner, Motor
View, Monitor View, Options, etc.)

Window Control the appearance of the SMI software windows (Cascade, Tile Hori-
zontally/Vertically, Arrange Icons, etc.).

Help Access online help features of the SMI software (Contents, Index, SmartMotor
Programmer's Guide, etc.).

Each menu item is described in detail in the SMI software's online help file, which can be accessed from
the Help menu or by pressing the F1 key.

Toolbar
NOTE: In addition to the software information in this section, there is context-sensitive help
available within the SMI software interface, which is accessed by pressing the F1 key or selecting
Help from the SMI software main menu.

Part 1: Programming: Menu Bar

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 63 of 969

The SMI software toolbar provides quick access to the SMI software's frequently-used features. Each
item is represented by an icon, as shown in the next figure.

The Toolbar

NOTE: The entire set of SMI software features can be accessed from the menu bar. For details, see
Menu Bar on page 62.

Each icon is described in the next table.

Icon Menu
Command Description

New Create a new document.

Open Open an existing document.

Save Save the active document.

Save All Save the Project and all open documents.

Cut Cut the selection and put it on the Clipboard.

Copy Copy the selection and put it on the Clipboard.

Paste Insert Clipboard contents.

Configuration Show or hide the Configuration window.

Terminal Show or hide the Terminal window.

Information Show or hide the Information window.
Serial Data Ana-
lyzer Show or hide the Serial Data Analyzer ("sniffer").

Find Motors Detect all available motors connected to the defined serial ports of
the computer.

Detect Motors Detect motors connected to the currently-selected port in the Ter-
minal window.

Compile and Down-
load Project

Compile and download all user programs defined in the project to
their associated motors.

Compile and Trans-
mit SMX File

Compile and download the program in the active view to its asso-
ciated motor.

Scan for errors Scan the program in the active view.

Upload Program Upload the program in a motor to an SMI file.

Run Program Send a RUN command to the selected motor in the Terminal window.

Stop Running Pro-
gram Send an END command to the selected motor in the Terminal window.

Part 1: Programming: Toolbar

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 64 of 969

Icon Menu
Command Description

Stop all Motors Send an END and then an S command to all motors.

Decelerate all
Motors to a Stop Send an END and then an X command to all motors.

SmartMotor Play-
ground

Opens the SmartMotor Playground, where you can monitor and jog a
single motor in Position, Velocity and Torque modes.

Context Help Opens the context help for the selected item.

Each item is described in detail in the SMI software's online help file, which can be accessed from the
Help menu or by pressing the F1 key.

Configuration Window
NOTE: In addition to the software information in this section, there is context-sensitive help
available within the SMI software interface, which is accessed by pressing the F1 key or selecting
Help from the SMI software main menu.

The Configuration window shows the current configuration and allows access to specific ports and
motors. The Configuration window is essential to keeping multiple SmartMotor systems organized,
especially in the context of developing multiple programs and debugging their operation.

The Configuration window is typically visible when the SMI software opens. If the window has been
closed, you can open it from the SMI software main menu by selecting:

View > Configuration

NOTE: When the window is visible, the menu item will have a check mark next to it.

Part 1: Programming: Configuration Window

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 65 of 969

Configuration Window

The Configuration window is essential to keeping multiple SmartMotor systems organized.

To use the Configuration window:
l Click Find Motors to analyze your system, or

Right-click on an available port to display a menu, and select either "detect motors" or "address
motors" to find motors attached to that port.

Part 1: Programming: Configuration Window

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 66 of 969

l You can double-click on any port to view its properties, as shown in the next figure.

Port Properties Window

l You can also double-click on any motor to open the Motor View tool for that motor, as shown in
the next figure.

Motor View Window

Part 1: Programming: Configuration Window

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 67 of 969

l By right-clicking the motor, you can access its properties along with other tools, as shown in the
next figure.

Motor Tools Menu

Terminal Window
NOTE: In addition to the software information in this section, there is context-sensitive help
available within the SMI software interface, which is accessed by pressing the F1 key or selecting
Help from the SMI software main menu.

The Terminal window acts as a real-time portal between you and the SmartMotor. By typing commands
in the Terminal window, you can set up and execute trajectories, execute subroutines of downloaded
programs and report data and status information to the window.

The Terminal window is typically shown (default setting) when the SMI software is opened. However, if
the Terminal window is closed, select:

View > Terminal

NOTE: When the window is visible, the menu item will have a check mark next to it.

Terminal Window

To use the Terminal window:

Part 1: Programming: Terminal Window

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 68 of 969

l Specific communication ports can be selected using the tabs.

l Commands can be entered in the white text box or directly on the blue screen. If data is flooding
back from the motor, then the white text box will be more convenient, as the incoming data may
cause the text to scroll out of view.

l When motor power is activated, there is a 500 ms timeout before the motor will accept
commands on the serial port. Any commands sent during that time are buffered and then
accepted once the 500 ms timeout expires. Because incoming commands take priority over the
internal program, buffered commands run before the internal program begins.

l Because multiple SmartMotors are on a single communication port are individually addressed,
commands can be routed to any or all of them by making the appropriate selection from the
drop-down list, which is located just below the tabs. The SMI program automatically sends the
appropriate codes to the network to route the data to the specified motor(s).

l You can double-click a previous command to resend the command (see the next figure). However,
l If that command has a motor address in it (for example, 1RPA, where "1" = serial bus

Motor 1), the command will resend to that motor.
l If that command does not have an address, the command will be sent to the last-

addressed motor. For example, if you previously sent the command 2RPA, which
addresses serial bus Motor 2, an unaddressed command that you double-click (or issue)
will go to serial bus Motor 2, even if it's on the list before the point where you started
addressing Motor 2.

An example of commands sent to
the last-addressed motor. Notice
that double-clicking the first RPA
command reports the position of
motor 3 because it was the last-
addressed motor.

l PRINT commands containing data can be sprinkled in programs to send data to the Terminal
window as an aid in debugging.

l What is typed on the screen is not what goes to the motor. For example, 1RPA does not send a
"1" to the motor — it is sending an Extended ASCII code for "1"(Hex 0x81). Then it sends ASCII
"R", 'P" and "A", and a SPACE (Hex 20) as the delimiter (not a carriage return). Note that the
terminal window uses a space as the delimiter; the motor uses a carriage return (Hex 0x0D) as
the delimiter.

l Data that has associated report commands, such as Position, which is retrieved using the RPA
command, can be easily reported by simply including the report command directly in the program
code.

NOTE: Be careful when using report commands within tight loops because they can bombard the
Terminal window with too much data.

Part 1: Programming: Terminal Window

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 69 of 969

l If a program is sending too much data to the Terminal window, try adding a WAIT=50 command
to the program, which will slow down the flow.

l Use the right-hand scroll bar to review the Terminal window history.

Initiating Motion from the Terminal Window

WARNING: The larger SmartMotors can shake, move quickly and exert great force.
Therefore, proper motor restraints must be used, and safety precautions must be
considered in the workcell design (see Other Safety Considerations on page 31).

To initiate motion from the terminal window, enter these commands (do not enter the comments, which
are the right-hand portion of each line).

MP 'Initialize Position mode
ADT=100 'Set target accel/decel
VT=1000000 'Set target velocity
PT=300000 'Set target position
G 'Go, starts the move

NOTE: Acceleration, velocity and position fully describe a trapezoidal-motion profile.

After the final G command has been entered, the SmartMotor accelerates to speed, slows and then
decelerates to a stop at the absolute target position. The progress can be seen in the Motor View
window. For details on the Motor View window, see Monitoring the SmartMotor Status on page 210.

Information Window
NOTE: In addition to the software information in this section, there is context-sensitive help
available within the SMI software interface, which is accessed by pressing the F1 key or selecting
Help from the SMI software main menu.

The Information window shows the program status. When a program is scanned and errors are found,
they are listed in the Information window preceded by a red "E" along with the program path and line
number where the error was found, as shown in the next figure.

Example Error Message

The Information window is typically visible when the SMI software opens. If the window has been
closed, you can open it from the SMI software main menu by selecting:

View > Information

NOTE: When the window is visible, the menu item will have a check mark next to it.

To use the Information window:

Part 1: Programming: Initiating Motion from the Terminal Window

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 70 of 969

l Double-click on the error in the Information window—the specific error will be located in the
Program Editor.

In the next example, the scanner does not recognize the command TWAITS. The correct
command is TWAIT.

TWAITS Error

Correct the error and scan the program again. After all errors are corrected, the program can be
downloaded to the SmartMotor.

l Warnings may appear in the Information window to alert you to potential problems. However,
warnings will not prevent the program from being downloaded to the SmartMotor. It is the
programmer’s responsibility to determine the importance of addressing the warnings.

Program Editor
NOTE: In addition to the software information in this section, there is context-sensitive help
available within the SMI software interface, which is accessed by pressing the F1 key or selecting
Help from the SMI software main menu.

SmartMotor programs are written in the SMI software Program Editor before being scanned for errors
and downloaded to the motor.

To open the Program Editor, from the SMI software main menu, select:

File > New

Or click the New button () on the toolbar. The Program Editor opens, as shown in the next figure.

Part 1: Programming: Program Editor

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 71 of 969

Program Editor

To use the Program Editor:
l Type the program code directly into the Program Editor. As you write the program, the editor

applies syntax highlighting to the code, which makes it easier to read and debug.
l Every program requires an END command, even if the program is designed to run indefinitely and

the END is never reached. For more details on program requirements, see Understanding the
Program Requirements on page 52.

l The first time you write a program, you must save it before you can download it to the motor.

l Every time a program is downloaded, it is automatically saved to that file name. This point is
important to note, as most Windows applications require a "save" action. If you want to set aside
a certain revision of the program, it should be copied and renamed, or you should simply save the
continued work under a new name.

l Once a program is complete, you can scan it for errors by pressing the Scan File button () on
the toolbar, or scan and download it in one operation by pressing the Compile and Download
Program button (), which is also located on the toolbar.

If errors are found, the download will be aborted and the problems will be identified in the
Information window located at the bottom of the screen.

l Programs are scanned using a language file that is related to different motor firmware versions.
If Compile and Download Program is selected, the language file will be chosen based on the
version read from the motor. If Scan File is selected, the default language file will be used. To
change the default language file, from the SMI software main menu, select

Compile > Compiler default firmware version > [select the desired version]

For more details, see Setting the Motor Firmware Version in SMI on page 50.

Part 1: Programming: Program Editor

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 72 of 969

Motor View
This feature is supports the DS2020 Combitronic system.

NOTE: In addition to the software information in this section, there is context-sensitive help
available within the SMI software interface, which is accessed by pressing the F1 key or selecting
Help from the SMI software main menu.

The SMI Motor View window allows you to view multiple parameters related to the motor.

To open the Motor View window, from the SMI software main menu, select:

Tools > Motor View

and select the motor you want to view. Or, in the Configuration window, double-click the motor you
want to view.

Motor View Window

NOTE: The Motor View window provides a real-time view into the inner workings of a SmartMotor.

Part 1: Programming: Motor View

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 73 of 969

To use the Motor View window:
l Click Poll to initiate real-time scanning of motor parameters.

l A program can be running in the motor while the Motor View window is polling. The program
must not print text to the serial channel being used for polling.

l In addition to the standard items displayed, two fields allow you to select from a list of
additional parameters to display.

For example, in the previous figure, Voltage and Current are being polled. This information can
be useful when setting up a system for the first time, or debugging a system in the field.
Temperature is also useful to monitor in applications with demanding loads.

l All seven of the user-configurable onboard I/O points are shown. Any onboard I/O that is
configured as an output can be toggled by clicking on the dot below the designating number.

l The SmartMotor has built-in provisions allowing it to be identified by the SMI software. When a
motor is identified, a picture of it appears in the lower left corner of the Motor View window.

l Tabs across the top of the window provide access to additional information.

SMI Trace Functions

The Trace tab provides a set of functions that are useful for debugging a SmartMotor program. To
access Trace functions, open the Motor View window and click the Trace tab.

Motor View Trace Functions

Part 1: Programming: SMI Trace Functions

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 74 of 969

To use Trace functions:

1. Open the Trace window. When first opened with no program loaded, this message appears:

2. Right-click the SmartMotor in the Configuration window and select Upload Program. The
program is uploaded to the SMI Editor.

3. Double-click anywhere in the program to load it into the Trace window.

4. Select the desired Mode.

5. Double-click on desired line in the Editor window, if needed.

6. Press the desired button in the Trace/Step box. The program must run before anything will
happen.

Part 1: Programming: SMI Trace Functions

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 75 of 969

The next table describes the items in the Trace window:

Item Description
Status box Shows the current state of the Trace program and Motor Program. This

becomes active after a command is executed on the Trace tab and
remains active until the Motor View is closed. Possible Status messages
are:

Not Connected – Not connected to motor

Program Running or Program Stopped – If at a breakpoint or the
program is stopped.

Trace Active or Trace Inactive – If a trace is currently in progress or
waiting to hit a breakpoint in progress. If a trace is active it must be
canceled before selecting a new Mode.

At Break Point – Program execution halted because a breakpoint was
reached or a step was completed.

Motor Program box Shows the name of the program contained in the motor.
Trace Program box Shows the name of the program that was doubled-clicked.
Clear Display button Clears the highlighted text in the editor window and removes any

information in the Trace List window.
Program group End Program – Stops program execution by writing the END command

Run from Beginning – Issues a RUN command.

Run Continue – Release firmware from the current breakpoint. (Only
available when at a breakpoint.)

Mode group: For any trace information to be retrieved from the motor, a mode must be selected and
the program must run.
 Current Captures the first 20 points encountered.
 About, Before, After Requires the user to select a line from the program in the Editor window

by double-clicking on it. The program trace responds based on the
option selected in the Trace/Step group (see below).

About – Captures 9 points before and 10 points after desired line.

Before – captures 20 points before the desired line.

After – Captures 20 points after the desired line.
 Continuous Polls the motor for commands that are executing. Because of bandwidth,

not all executed lines are shown in the Trace view or highlighted in the
program.

 Step Enables step mode. The program trace responds based on the option
selected in the Trace/Step group (see below).

 Break at Command Requires the user to select a line in the program by double-clicking on it
in the Editor window. The program trace responds based on the option
selected in the Trace/Step group (see descriptions after this table).

Trace/Step group Various options are available based on other selections (see descrip-
tions after this table).

Part 1: Programming: SMI Trace Functions

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 76 of 969

Trace/Step group – Options for trace selections (when Step mode is not selected):
l Start Trace and Run from Beginning button – Sets trace information in the motor and issues a

RUN command.
l Start Trace button – Sets trace information in the motor.

l Start Trace and Run from Current button – Available when at a break point. The trace
information is set in the motor and the program continues from the current break point.

l Cancel Trace button – Available when a trace is active to cancel the current trace.

Trace/Step group – Options for Step (when Step mode is selected):
l Step from Beginning button – Sets a breakpoint in the motor and issues a RUN command. The

program executes the first line of code and then stops.
l Step from Current button – Sets a breakpoint in the motor. If the program is running, the motor

stops at the next command. If the program is at a breakpoint, the motor executes the next
command and then stops.

Trace/Step group – Options for Break (when Break at command mode is selected):
l Set Breakpoint and Run from Beginning button – Sets the breakpoint and runs the program from

the beginning.
l Set Breakpoint button – Sets a breakpoint in the motor.

l Set Breakpoint and Run from Current button – If at a breakpoint, this sets the new breakpoint
and runs the program from the current location.

l Remove Breakpoint button – Removes a breakpoint that was set and not reached.

Monitor Window
NOTE: In addition to the software information in this section, there is context-sensitive help
available within the SMI software interface, which is accessed by pressing the F1 key or selecting
Help from the SMI software main menu.

The Monitor window allows you to create your own fully-customized monitor. Because it is polling a
limited set of items, it provides a more efficient monitoring method. To open the Monitor window, from
the SMI software main menu, select:

Tools > Monitor View

Monitor Window

Part 1: Programming: Monitor Window

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 77 of 969

To use the Monitor window:
l Polling items can be added or removed by pressing the + and – buttons. When adding a new item,

the Add New Monitor Item window opens and provides tools for setting up the monitoring
function, as shown in the next figure.

Add New Monitor Item Window

l Custom items, which do not have explicit report commands, can be added by entering the
specific commands appropriate to getting the data reported (for example, make a variable equal
to the desired parameter and then report that variable).

Part 1: Programming: Monitor Window

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 78 of 969

Serial Data Analyzer
NOTE: In addition to the software information in this section, there is context-sensitive help
available within the SMI software interface, which is accessed by pressing the F1 key or selecting
Help from the SMI software main menu.

The SMI Terminal window formats text and performs other housekeeping functions that are invisible to
the user. For an exact picture of the data being traded between the PC and the SmartMotor™, use the
Serial Data Analyzer (also known as the "sniffer"). To open the Serial Data Analyzer, from the SMI
software main menu, select:

View > Serial Data Analyzer

Or press the Serial Data Analyzer button () on the toolbar. The Serial Data Analyzer window opens,
as shown in the next figure.

Serial Data Analyzer

The Serial Data Analyzer window can display serial data in a variety of formats, and it can be a useful
tool for debugging communications. For example, you can:

l View data transfer between computer and SmartMotor(s).

l View data in hexadecimal, decimal, or ASCII format in up to three columns.

l Send commands and binary data to SmartMotor(s).

l View sent and received data in different definable colors.

l Capture data transfer in different ports at the same time, and view each port using its dedicated
page.

NOTE: SMI can display the precise data being sent between the host and the SmartMotor in multiple
formats.

Part 1: Programming: Serial Data Analyzer

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 79 of 969

Chart View
NOTE: In addition to the software information in this section, there is context-sensitive help
available within the SMI software interface, which is accessed by pressing the F1 key or selecting
Help from the SMI software main menu.

In some cases, the best way to understand a data trend is by seeing it graphically. The SMI Chart View
provides graphical access to any readable SmartMotor parameter.

To open the Chart View window, from the SMI software main menu, select:

Tools > Chart View

The Chart View window opens, as shown in the next figure.

Chart View Window

To use the Chart View tool:
l Polling items are added or removed by pressing the + and – buttons.

l The fields and options are identical to those in the Monitor tool. For details on the Monitor tool,
see Monitor Window on page 76.

l Adjustable upper and lower limits for each polled parameter allow them to be scaled to fit the
space.

Part 1: Programming: Chart View

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 80 of 969

l The toolbar across the top provides additional functions such as chart editing, start/stop
sampling, manual update and more.

l The Start Sampling button () starts the charting action.

l While the Chart View does not include a print function, Window’s standard Print Screen key can
capture the chart to the clipboard, and from there, it can be pasted into other applications (like
Microsoft Excel, Microsoft Word, etc.). This graphical data can be a useful addition to written
system reports.

Additionally, a context menu is available by right-clicking on the Chart View window, which has
selections for:

l Copying the chart data as a tab-delimited table in text format, which can then be imported
into a spreadsheet, such as Microsoft® Excel®, or any text editor.

l Copying the current image of the chart to the clipboard in bitmap format, which can then
be pasted in any graphic application.

Chart View Example

The SMI Chart View provides graphical access to any readable SmartMotor parameter. The next
example shows how to use the Chart View tool to graphically track torque changes on the SmartMotor.

This procedure assumes that:
l The SmartMotor is connected to the computer. For details, see Connecting the System in the

SmartMotor Installation & Startup Guide for your motor.
l The SmartMotor is connected to a power source. (Certain models of SmartMotors require

separate control and drive power.) For details, see Understanding the Power Requirements in the
SmartMotor Installation & Startup Guide for your motor.

l The SMI software has been installed and is running on the computer. For details, see Installing
the SMI Software in the SmartMotor Installation & Startup Guide for your motor.

l You've completed the first-time motion example. For details, see Moving the SmartMotor in the
SmartMotor Installation & Startup Guide for your motor.

To open the Chart View window, from the SMI software main menu, select:

Tools > Chart View

The Chart View window opens. For details, see Chart View on page 79.

Part 1: Programming: Chart View Example

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 81 of 969

To create the example:

1. Click the Add icon (+). The Add New Chart Item window opens.

2. Click Custom Parameter to enter a nonstandard parameter for charting.

3. Fill in the text boxes as shown in the next figure.

Custom Parameter Button and Related Entries

NOTE: Be sure the Maximum and Minimum values are set to 10000 and -10000, respectively, as
shown in the previous figure. They default to ten times more than those values.

Part 1: Programming: Chart View Example

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 82 of 969

4. After you've completed the entries, click Add and the custom parameter will be added to the
Chart View window.

5. Click the green Play icon (); the chart recorder plots the RTRQ value.

6. In the SMI software Terminal window, enter these commands:

MT
T=0
G

T=8000
G

T=0
G

T=-8000
G

T=0
G

The Chart View tool plots a line similar to the one shown in the next figure.

Plotted RTRQ Values

Part 1: Programming: Chart View Example

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 83 of 969

7. In the SMI software Terminal window, enter TS=65536. This causes a one-second ramp time
when T is commanded from or to zero.

8. Repeat the previous command sequence. Note the addition of "ramps" to the plot, which are
caused by the TS command.

Plotted RTRQ Values With Ramps

Macros (Keyboard Shortcuts or Hotkeys)
NOTE: In addition to the software information in this section, there is context-sensitive help
available within the SMI software interface, which is accessed by pressing the F1 key or selecting
Help from the SMI software main menu.

The SMI software contains a Macros tool, which is useful for creating keyboard shortcuts (sometimes
referred to as "hotkeys") for one command or a series of commands for use in the Terminal window.
The tool allows you to optionally associate a command or series of commands with these key
combinations:

l Ctrl+0 to Ctrl+9

l Ctrl+Shift+1 to Ctrl+Shift+9

NOTE: These key combinations can provide shortcuts for up to 19 macros; there is a maximum limit
of 50 macros.

With the Macros tool, you can create multiple macros for a more efficient development process.

Part 1: Programming: Macros (Keyboard Shortcuts or Hotkeys)

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 84 of 969

NOTE: In addition to these "shortcuts", SMI also provides a #define preprocessor extension
command that is used to define substitutions for an SMI program. Those substitutions can then be
used within that SMI program. For more details, see the topic "#define (Substitutions)" in the SMI
software online help.

To open the Macros window, from the SMI software main menu, select:

Tools > Macro

The Macros window opens, as shown in the next figure.

Macros Window

To use the Macros window:
l Add or remove macros with the Add and Delete buttons.

l Use the Properties button to view and edit the properties of an existing macro.

l The Run button allows you to test the selected macro.

l When you have finished, use the Close button to close the Macros window.

To create a macro:

In this example, you will create a macro for clearing the status bits. For details on clearing the status
bits, see Checking and Clearing Status Bits in the SmartMotor Installation & Startup Guide for your
motor.

1. Open the Macros window.

2. Click Add to open the Add New Macro window (see the next figure).

3. Fill in the information so it looks like the next figure, and then click OK to save the new macro.

Part 1: Programming: Macros (Keyboard Shortcuts or Hotkeys)

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 85 of 969

Add New Macro

The Ctrl+2 shortcut key combination has now been assigned to the macro Disable Limits. When you
press Ctrl+2, the SMI software issues EIGN(W,0) and ZS to the terminal screen.

Tuner
NOTE: In addition to the software information in this section, there is context-sensitive help
available within the SMI software interface, which is accessed by pressing the F1 key or selecting
Help from the SMI software main menu.

Tuning a SmartMotor is simpler than tuning traditional servos. However, it can be even easier when
using the SMI Tuner tool to see the results of different tuning parameters.

For most applications, the default SmartMotor tuning parameters are sufficient. Viewing the position
error on the Motor View tool and feeling the stiffness of the motor shaft will determine if the motor
requires additional tuning.

Position Error

There is a related section on tuning the PID filter later in this manual. If further tuning is required, see
Tuning the PID Control on page 242.

Part 1: Programming: Tuner

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 86 of 969

The Tools menu has a GUI-based Tuner tool that can also be used to adjust the tuning parameters. To
open the Tuner tool, from the SMI software main menu, select:

Tools > Tuner

The Tuning window opens, as shown in the next figure.

Tuning Window

The Tuner graphically shows the step response of the SmartMotor. The step response is the
SmartMotor’s actual reaction to a request for a small but instantaneous change in position. (Rotor
inertia prevents the SmartMotor from changing its position in zero time.) The magnitude of the step
response shows how well tuned the motor is.

The Tuner downloads a program that uses variables a, b, p, t, w and z. The program that was in the
motor before tuning and the user variables will be restored after tuning.

Before running the Tuner:
l Be sure the motor and anything it is connected to are free to move about 1000 encoder counts

or more, which is about one-quarter turn of the motor shaft.
l Be sure the device is able to safely withstand an abrupt jolt.

Click the Run Tuning button at the bottom of the Tuner window (see the previous figure).

Part 1: Programming: Tuner

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 87 of 969

If the SmartMotor is connected, is on and is still, you should see results similar to those in the next
figure.

Sample Step Response

The upper curve with the legend on the left is the SmartMotor’s actual position over time. Notice that it
overshot its target position before settling in. Adjusting the PID Tuning will stiffen the motor up and
create less overshoot. For details, see Tuning and PID Control on page 240. In a real-world application,
there will be an acceleration profile, not a demand for instantaneous displacement, so significant
overshoot will not exist. Nevertheless, it is useful to look at the worst-case scenario of a step
response.

To try a different set of tuning parameters, select the Tuning Values tab to the left of the graph area.
As shown in the next figure, you will see a list of tuning parameters with two columns: the left column
lists what is currently in the SmartMotor; the right column provides an area to make changes.

Part 1: Programming: Tuner

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 88 of 969

Apply New Values Button

To make adjustments to the tuning:

1. Change the values to those shown in the New column of the previous figure.

2. Click the "Apply New Values" button, which stores the new values in the SmartMotor.

3. Click the Run Tuning button at the bottom of the Tuning window.

The motor will jolt again and the results of the step response will overwrite the previous graph.
Normally, this process involves repeated trials using the procedure outlined in the section on the PID
Filter. For details, see Tuning the PID Control on page 242.

When you are satisfied with the results, the parameters producing the best results can be added to the
top of your program in the SmartMotor, or in applications where there are no programs in the motors,
sent by a host after each power-up. For example, the previous example's tuning parameters would be
set using these tuning commands:

KP=3000

KI=30

KD=10000

KL=32767

F

Part 1: Programming: Tuner

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 89 of 969

SMI Options
NOTE: In addition to the software information in this section, there is context-sensitive help
available within the SMI software interface, which is accessed by pressing the F1 key or selecting
Help from the SMI software main menu.

The SMI software has a variety of options that can be customized through the Options window. It
contains tabs and selections for customizing the Scanner, Editor, Terminal and more.

To open the Options window, select:

Tools > Options

The Options window opens, as shown in the next figure.

Options Window

To use the Options window:

l Click a tab to select the options you wish to edit.
l Consider the default firmware version. Because different SmartMotor firmware versions have

subtle differences, the program scanner needs to know which firmware is being used to
distinguish between supported and unsupported commands.

l Other options, such as Editor syntax colors, deal with user preferences.

l After you have finished editing options, click OK to close the window and save your changes.

Part 1: Programming: SMI Options

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 90 of 969

SMI Help
The most complete and current information available for the SMI software is available within the
program’s extensive Help tool. For details, see the SMI software help.

Context-Sensitive Help Using F1
l Dialog and Message box: Just press the F1 key while the box is displayed.

l Information View: Select the line and press the F1 key. The software shows a description of the
selected error. For more details, see Information Window on page 69.

l Menu command: Select the menu item and press the F1 key.

l Keyword Information: In the Program Editor, select the keyword and press F1. The software
shows a full description of the selected keyword.

Context-Sensitive Help Using the Mouse

There is a "context help" button on the tool bar. When you click the button (or press Shift+F1 on
keyboard) the program enters the Help Mode and the cursor shape changes to context-sensitive help
cursor (). In Help Mode you can use the mouse or keyboard to select a menu command, a toolbar
button, an error message in the Information View, or other items within SMI, and help on the item is
displayed.

Help Buttons

You can click the Help button, available on many dialog boxes, to get help about that dialog box.

Hover Help

You can place (hover) the mouse pointer over an SMI software button or a Program Editor keyword to
see a short description of that button or keyword.

Table of Contents

To see the list of topics within SMI software Help, use the Contents command in the Help menu.

Part 1: Programming: SMI Help

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 91 of 969

Sample Help Page

Projects
NOTE: In addition to the software information in this section, there is context-sensitive help
available within the SMI software interface, which is accessed by pressing the F1 key or selecting
Help from the SMI software main menu.

In applications with more than one SmartMotor, and possibly more than one program or
communications port, it is helpful to organize all of the elements as a Project rather than deal with
individual files.

NOTE: When working with multiple motors, programs or ports, a Project provides a convenient way
of organizing and using all of the individual elements.

To create a project, from the SMI software main menu, select:

File > New Project

The New Project window opens.

Part 1: Programming: Projects

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 92 of 969

New Project Window

To use the New Project window:
l Enter a name and location in the Project Name and Location fields to title the project and

specify the location where it will be saved.
l Click OK to save the information. At this point, you have the option of letting the SMI software

explore the network of motors and set up the project automatically, or of doing it manually by
double-clicking on the specific communication ports or motors listed in the Information window.
Unless you are you are a system expert and know exactly what the port and motor settings are,
you should let the software detect the motors for you.

l From here, you can open one or more programs for editing in the SMI Editor.

l After the project is set up, select File > Save Project to save it. Projects are saved as .SPJ files.

l To open a project, select File > Open Project, and then select the desired project (.SPJ) file. When
a project file is opened, all motor communication information, program editor windows and other
elements are restored.

l Use the File > Recent Projects menu to view and select from the projects you've most recently
edited.

SmartMotor Playground
NOTE: In addition to the software information in this section, there is context-sensitive help
available within the SMI software interface, which is accessed by pressing the F1 key or selecting
Help from the SMI software main menu.

If you are a first-time user, the SmartMotor Playground contains some simple controls to help you get
started with moving the motor. The SmartMotor Playground allows you to immediately move the motor
without any programming.

Part 1: Programming: SmartMotor Playground

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 93 of 969

Opening the SmartMotor Playground

There are two ways to access the SmartMotor Playground:
l From within the SMI software interface

l From the Windows Start menu as a stand-alone application.

To access the SmartMotor Playground from the SMI software, in the Configuration window, right-click
the motor you want to move and select SmartMotor Playground from the menu.

SmartMotor Playground (Not Connected)

Click Connect (upper-left area of the window) to connect to the SmartMotor.

Part 1: Programming: Opening the SmartMotor Playground

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 94 of 969

SmartMotor Playground (Connected)

Moving the Motor

This procedure assumes that:
l The SmartMotor is connected to the computer. For details, see Connecting the System in the

SmartMotor Installation & Startup Guide for your motor.
l The SmartMotor is connected to a power source. (Certain models of SmartMotors require

separate control and drive power.) For details, see Understanding the Power Requirements in the
SmartMotor Installation & Startup Guide for your motor.

l The SMI software has been installed and is running on the computer. For details, see Installing
the SMI Software in the SmartMotor Installation & Startup Guide for your motor.

l The SmartMotor has been detected and addressed. For details, see Detecting and Addressing
the SmartMotors in the SmartMotor Installation & Startup Guide for your motor.

In addition to the above items:
l Verify that all status bits are off, except for the Drive ready bit, as shown in the previous figure.

If needed, use the Clear Flags button to clear any bits that are on.

l The Drive Enable input on the M-series motor must be connected and activated.
l Verify that Disable Software Limits and Disable Hardware Limits options are set as shown in the

previous figure.

NOTE: The SmartMotor's hardware limits must be grounded or disabled for motion to occur.
Therefore, if your SmartMotor doesn't move when moving the slider or issuing a motion command,
verify that you've either grounded the limits or selected both Disable Hardware Limits check boxes
(located at the lower-right corner of the screen), as shown in the previous figure.

Part 1: Programming: Moving the Motor

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 95 of 969

Within the SmartMotor Playground, you can experiment with the many different modes of operation.
Try these methods (see the previous figure for the locations of these items):

l Click the left and right Jog controls and watch the motor respond.

l Move the position bar to the left or right and watch the motor respond.

l Enter a value (negative = counterclockwise; positive = clockwise) in the Destination box and click
Go. Watch the motor shaft move until the position counter (yellow box) reaches that destination.

While the SmartMotor Playground is useful for moving the motor and learning about its capabilities, to
develop a useful application, you will need to create a program. To learn about programming the
SmartMotor, see Beginning Programming on page 47.

Part 1: Programming: Moving the Motor

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 96 of 969

Communication Details
This chapter provides information on the communications functionality that has been designed into the
SmartMotor.

Introduction 98

Connecting to a Host 99

Daisy Chaining Multiple D-Style SmartMotors over RS-232 100

ADDR=formula 102

SLEEP, SLEEP1 102

WAKE, WAKE1 102

ECHO, ECHO1 103

ECHO_OFF, ECHO_OFF1 103

Serial Commands 104

OCHN(type,channel,parity,bit rate,stop bits,data bits,mode,timeout) 104

CCHN(type,channel) 105

BAUDrate, BAUD(channel)=formula 105

PRINT(), PRINT1() 105

SILENT, SILENT1 106

TALK, TALK1 106

a=CHN(channel) 106

a=ADDR 106

Communicating over RS-485 107

Using Data Mode 107

CAN Communications 110

CADDR=formula 110

CBAUD=formula 110

=CAN, =CAN(arg) 110

CANCTL(function,value) 110

SDORD(...) 111

SDOWR(...) 111

NMT 112

RB(2,4), x=B(2,4) 112

Exceptions to NMT, SDORD and SDOWR Commands 112

I/O Device CAN Bus Controller 113

Combitronic Communications 113

Combitronic Features 114

Other Combitronic Benefits 114

Part 1: Programming: Communication Details

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 97 of 969

Program Loops with Combitronic 115

Global Combitronic Transmissions 115

Simplify Machine Support 116

Combitronic with RS-232 Interface 116

Combitronic with the DS2020 Combitronic System 117

Other CAN Protocols 118

CANopen - CAN Bus Protocol 118

DeviceNet - CAN Bus Protocol 118

I²C Communications (Class 5 D-Style Motors) 118

OCHN(IIC,1,N,baud,1,8,D) 120

CCHN(IIC,1) 120

PRINT1(arg1,arg2, … ,arg_n) 120

RGETCHR1, Var=GETCHR1 120

RLEN1, Var=LEN1 120

Part 1: Programming: Communication Details

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 98 of 969

Introduction
There are various ways to communicate with a SmartMotor:

l Direct-command serial over RS-232 or RS-485 (depending on the motor)

l Data mode

l Combitronic, CANopen, DeviceNet, etc.

l I²C communications

NOTE: When using I²C, the SmartMotor is always the bus controller. You cannot communicate
between SmartMotors through I²C.

These communications methods are described in the next sections.

In applications using more than one SmartMotor, the best choice for communications is to link the
SmartMotors together over their optional CAN ports, and then communicate with the group through
any of the RS-232 or RS-485 ports of any of the motors on the chain. The SmartMotor's CAN-based
Combitronic communications unifies all SmartMotor data and functions in a group, which makes any
single motor look like a multi-axis controller from the perspective of the RS-232 or RS-485 ports.
Additionally, this allows all the motors to share resources as though they were a large multi-axis
controller.

Moog Animatics offers adapters for
converting RS-232 to RS-485, and for
converting either to USB.

NOTE: If you are unable to communicate with the SmartMotor, you may be able to recover
communications using the Communication Lockup Wizard, which is on the SMI software
Communications menu. For details, see the SMI software online help, which is accessed by pressing
the F1 key or selecting Help from the SMI software main menu.

Communication Menu - Communication Lockup Wizard

Part 1: Programming: Introduction

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 99 of 969

Connecting to a Host
The default mode for communicating with a Class 5 or Class 6 D-style SmartMotor is serial RS-232;
Class 5 and Class 6 M-style SmartMotors use serial RS-485.

NOTE: The M-style motors have one RS-485 port; they do not have an RS-232 port.

For D-style motors, the most common and cost-effective solution is through RS-232 serial
communications. Under this structure, each motor is placed in an electrical serial connection such that
the transmit line of one motor is connected to the receive line of the next. Each motor is set to echo
incoming data to the next motor down with approximately 1 millisecond propagation delay. There is no
signal integrity loss from one motor to the next, which results in highly-reliable communications.

NOTE: To maximize the flexibility of the SmartMotor, all serial ports are fully programmable with
regard to bit rate and protocol.

There is a 31-byte input buffer for the RS-232 port and another for the RS-485 port. These buffers
ensure that no arriving information is ever lost. However, when either port is in data mode, it is the
responsibility of the user program within the SmartMotor to keep up with the incoming data.

Connection Between a Class 5 or Class 6 D-style SmartMotor and Host PC

The CBLSM1-3M cable
makes quick work of con-
necting to your first
RS-232-based SmartMotor.
It combines the connections
for communications and
power into one cable
assembly.

Part 1: Programming: Connecting to a Host

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 100 of 969

By default, the primary channel, which shares a connector with the incoming power in some versions, is
set up as a command port with these characteristics:

Default Other
Options

Type: RS-232 RS-485
Parity: None Odd or Even

Bit Rate: 9600 2400 to 115200
Stop Bits: 1 0 or 2
Data Bits: 8 7

Mode: Command Data
Echo: Off On

Also, note that:
l If the cable used is not provided by Moog Animatics, make sure the SmartMotor's power and

RS-232 connections are correct.

CAUTION: Be sure to use shielded cable to connect RS-232 ports, with the shield
ground connected to pin 5 (ground) of the PC end only.

l Buffers on both sides mean there is no need for any handshaking protocol when commanding the
SmartMotor.

l Most commands execute in less time than it takes to receive the next one. Therefore, be careful
to allow processes time to complete, particularly for slower processes like printing to an LCD
display or executing a full subroutine.

Daisy Chaining Multiple D-Style SmartMotors over RS-232
This section describes how to daisy chain multiple D-style SmartMotors to a single RS-232 port as
shown in the next figure. Other SmartMotors can be connected together in a daisy-chain or multi-drop
fashion. For details, see Connecting the System in the SmartMotor Installation & Startup Guide for
your motor.

For low-power motors (size SM23165D and smaller), as many as 100 motors could be cascaded using
the daisy-chaining technique for RS-232. To operate independently, each motor must be programmed
with a unique address. In a multiple-motor system, the programmer has the choice of putting a host
computer in control or having the first motor in the chain be in control of the rest.

Part 1: Programming: Daisy Chaining Multiple D-Style SmartMotors over RS-232

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 101 of 969

1 1 1 1

2

3

4

5

A1

A2

2

3

4

5

2

3

4

5

2

3

4

5

A1

A2

RS-232 Tx

RS-232 Rx

RS-232 GND

Servo Power (+)

Power GND

RS-232 Tx

RS-232 Rx

RS-232 GND

Servo Power (+)

Power GND

DE9 Female POWER

Attach shield at PC end

Motor: 1 2 3 4

A1A1

A2A2

5 1

9 6

Daisy-Chain Connection between D-Style SmartMotors and Host PC

NOTE: You can build your own RS-232 daisy-chain cable or purchase Add-A-Motor cables from
Moog Animatics.

Fully-molded Add-A-Motor cables
make quick work of daisy-chaining
multiple motors over an RS-232 net-
work.

CAUTION: Large (size 23 or size 34) SmartMotors draw so much power that
they often require isolated communications for reliability. For such applications,
consider using a DIN Rail RS-232 communication breakout device. For
assistance, contact Moog Animatics.

The next sections describe related commands. For more details on these commands, see Part 2:
SmartMotor Command Reference on page 247.

Part 1: Programming: Daisy Chaining Multiple D-Style SmartMotors over RS-232

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 102 of 969

ADDR=formula
Set Motor to New Address
The ADDR= command causes a SmartMotor to respond exclusively to serial commands addressed to it.
It is separate and independent of the motor's CAN address. The address number range is from 1 to
120.

When each motor in a chain has a unique address, an individual motor communicates normally after its
address is sent over the chain one time. To send an address, add 128 to its value and output the binary
result over the communication link. This puts the value above the ASCII character set, which
differentiates it from all other commands or data. The address needs to be sent only once until the
host computer, or motor, wants to change it to something else.

Sending out an address zero (128) causes all motors to listen and is an efficient way to send global
data such as a G for starting simultaneous motion in a chain. Once set, the address features work the
same for RS-232 and RS-485 communications.

RS-232 Daisy-Chained SmartMotors

Unlike the RS-485 star topology, the consecutive nature of the RS-232 daisy chain creates the
opportunity for the chain to be independently addressed entirely from the host, rather than by having a
uniquely-addressed program in each motor. Setting up a system this way adds simplicity because the
program in each motor can be exactly the same. If the RUN? command is the first in each of the motor’s
programs, the programs will not start when the SmartMotor power is turned on. Addressing can then be
worked out by the host before the programs are later initiated through a global RUN command.

SLEEP, SLEEP1
Assert sleep mode

WAKE, WAKE1
Deassert SLEEP
The SLEEP command causes the motor to ignore all commands except the WAKE command. This
feature can often be useful, particularly when establishing unique addresses in a chain of motors. The 1
at the end of commands specifies the AniLink RS-485 port.

NOTE: The SmartMotor can be made to automatically ECHO received characters to the next
SmartMotor in a daisy chain

Part 1: Programming: ADDR=formula

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 103 of 969

ECHO, ECHO1
ECHO input

ECHO_OFF, ECHO_OFF1
Deassert ECHO
The ECHO and ECHO_OFF commands toggle (turn on/off) the echoing of data input. Because the motors
do not echo character input by default, consecutive commands can be presented, configuring them with
unique addresses, one at a time. If the host computer or controller sent out the next command
sequence, each motor would have a unique and consecutive address.

If a daisy chain of SmartMotors has been powered off and back on, the next commands can be entered
into the SmartMotor Interface to address the motors (0 equals 128, 1 equals 129, etc.). Some delay
should be inserted between commands when sending them from a host computer.

0SADDR1

1ECHO

1SLEEP

0SADDR2

2ECHO

2SLEEP

0SADDR3

3ECHO

0WAKE

Commanded by a user program in the first motor instead of a host, the same daisy chain could be
addressed with this sequence:

SADDR1 'Address the first motor
ECHO 'Echo for host data
PRINT(#128,"SADDR2",#13) '0SADDR2
WAIT=10 'Allow time
PRINT(#130,"ECHO",#13) '2ECHO
WAIT=10
PRINT(#130,"SLEEP",#13) '2SLEEP
WAIT=10
PRINT(#128,"SADDR3",#13) '0SADDR3
WAIT=10
PRINT(#131,"ECHO",#13) '3ECHO
WAIT=10
PRINT(#128,"WAKE",#13) '0WAKE
WAIT=10

Part 1: Programming: ECHO, ECHO1

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 104 of 969

Serial Commands
The SmartMotor allows you to communicate over the available RS-232 and/or RS-485 serial ports
(depending on the style of SmartMotor you're using). There are specific serial commands used for
configuring the serial communications, baud rate, printing, etc., as described below.

NOTE: D-style SmartMotors use primarily RS-232 communications, whereas all other SmartMotor
use primarily RS-485 communications.

The next sections describe related commands. For more details on these commands, see Part 2:
SmartMotor Command Reference on page 247.

OCHN(type,channel,parity,bit rate,stop bits,data bits,mode,timeout)

Option Description
type: RS2 (D-style

only), RS4,
MB4, DMX

RS2=RS-232, RS4=RS-485, MB4=Modbus pro-
tocol over RS-485*, DMX=DMX protocol*

channel: D-style: 0, 1
M-style: 0

0=Main, 1=Secondary

parity N, O, or E None, Odd or Even
bit rate: 2400, 4800, 9600, 19200, 38400, 57600, 115200 baud

stop bits: 1 or 2
data bits: 8

mode: C or D Command or Data
timeout: (Optional) Timeout in milliseconds between issuing a command and

detecting a delimiter, e.g., RPA(space) where space is the delimiter.
*For more details, see the documentation for the specified protocol.

NOTE: Changing the default value of any parameter other than baud rate will prevent proper
command data from being received by the SmartMotor. If you are unable to communicate with the
SmartMotor, you may be able to recover communications using the Communication Lockup Wizard,
which is on the SMI software Communication menu. For details, see the SMI software online help,
which is accessed by pressing the F1 key or selecting Help from the SMI software main menu.

Placing a communications port in Data mode will completely prevent the SmartMotor from receiving
any commands and require the user program code to parse out all incoming data. Therefore, if the
intent is to be able to send standard commands at any time and allow the SMI software to detect the
motors, then the OCHN command could be used to change only the baud rate or the communications
error timeout values — do not use it to change any other settings. The BAUD command can also be
used to change the baud rate. For details, see BAUDrate, BAUD(channel)=formula on page 105.

This is an example of the OCHN command:

OCHN(RS4,0,N,38400,1,8,D)

For a D-style motor, if the primary communication channel (0) is opened as an RS-485 port, then it
assumes the Moog Animatics RS485-ISO adapter is connected to it. If so, then I/O 6 is used to direct
the adapter to be in transmit or receive mode according to the motor’s communication activity, and I/O
6 will no longer be used as an I/O communications port. M-style motors are supplied with RS-485 on
COM 0; D-style motors require an adapter for RS-485 on COM 0, but they have built-in RS-485
available on COM 1.

Part 1: Programming: Serial Commands

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 105 of 969

CCHN(type,channel)
Close a communications channel
Use the CCHN command to close a communications port when desired.

NOTE: If you are unable to communicate with the SmartMotor, you may be able to recover
communications using the Communication Lockup Wizard, which is on the SMI software
Communication menu. For details, see the SMI software online help, which is accessed by pressing
the F1 key or selecting Help from the SMI software main menu.

BAUDrate, BAUD(channel)=formula
Set BAUD rate (RS-232 and RS-485)
The BAUD command sets the speed or baud rate of the specified serial channel. To do this, use:

l BAUDrate: sets the baud rate of the main channel

l BAUD(channel)=formula: sets the baud rate of the specified serial channel

where rate and formula are the desired baud rate, and (channel) is 0 or 1 for channel 0 or channel 1,
respectively. Valid values for rate and formula are: 2400, 4800, 9600, 19200, 38400, 57600, or
115200. For additional motor-specific details, see Product-Specific Table on page 303.

PRINT(), PRINT1()
Print to RS-232 or AniLink channel
A variety of data formats can exist within the parentheses of the PRINT() command.

l A text string is marked as such by enclosing it between double quotation marks.

l Variables can be placed between the parentheses as well as two variables separated by one
operator.

l To send out a specific byte value, prefix the value with the # sign and represent the value with as
many as three decimal digits ranging from 0 to 255.

l Multiple types of data can be sent in a single PRINT() statement by separating the entries with
commas.

NOTE: Do not use spaces outside of text strings because the SmartMotor uses spaces,
carriage returns and line feeds as delimiters.

These are all valid print statements that transmit data through the main RS-232 channel:

PRINT("Hello World") 'text
PRINT(a*b) 'exp.
PRINT(#32) 'data
PRINT("A",a,a*b,#13) 'all

PRINT1 prints to the AniLink port with RS-485 protocol.

Part 1: Programming: CCHN(type,channel)

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 106 of 969

SILENT, SILENT1
Suppress PRINT() outputs

TALK, TALK1
Deassert Silent Mode
The SILENT mode causes all PRINT() output to be suppressed. This is useful when talking to a chain of
motors from a host, when the chain would otherwise be talking within itself because of programs
executing that contain PRINT() commands. The TALK and TALK1 commands restore print messaging.

a=CHN(channel)
Communication Error Flags
Where channel can be 0 or 1 for COM Channel 0 or 1. It holds binary coded information about historical
errors on the two communications channels.

The command gives the 5-bit status of either serial port channel 0 or 1, as described in the next table.

Bit Value Meaning
0 1 Buffer overflow
1 2 Framing error
2 4 N/A
3 8 Parity error
4 16 Timeout occurred

The next example subroutine prints errors to an LCD display.

C9
 IF CHN(0) 'If CHN0 != 0

IF CHN(0)&1
PRINT("BUFFER OVERFLOW")

ENDIF
IF CHN(0)&2

PRINT("FRAMING ERROR")
ENDIF
IF CHN(0)&8

PRINT("PARITY ERROR")
ENDIF
IF CHN(0)&16

PRINT("TIMEOUT OCCURRED")
ENDIF
Z(2,0) 'Reset CHN0 errors

ENDIF
RETURN

a=ADDR
Motor’s Self Address
If the motor’s address (ADDR) is set by an external source, it may still be useful for the program in the
motor to know to what address it is set. When a motor is set to an address, the ADDR variable reflects
that address — the range is from 1 to 120.

Part 1: Programming: SILENT, SILENT1

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 107 of 969

Communicating over RS-485

Multiple SmartMotors can be connected to a single host port by connecting their RS-485 A signals
together and B signals together, and then connecting them to an RS-485 port or to an RS-232 or USB
adapter.

Adapters provided by Moog Animatics have built-in biasing resistors. However, extensive networks
should add bias at the very last motor in the chain. The RS-485 signals of the SmartMotor share I/O
functions and are not properly biased for more than just a few SmartMotors. Additionally, proper
cabling would include a shielded twisted pair for transmission.

The main RS-232 ports of the D-style
SmartMotors can be converted to
RS-485 and isolated using Moog
Animatics adapters.

The RS-232 and RS-485 ports have many configuration possibilities. To set the configuration options,
use the OCHN command, which is described in the next section.

Using Data Mode
Data mode is used to retrieve data from the RS-232/RS-485 port.

If a communications port is in Command mode, then the motor responds to arriving commands it
recognizes. However, if the port is opened in Data mode, then incoming data fills the 16-byte buffer
until it is retrieved with the GETCHR command.

For D-style motors:

a=LEN Number of characters in RS-232 buffer
a=LEN1 Number of characters in RS-485 buffer
a=GETCHR Get character from RS-232 buffer
a=GETCHR1 Get character from RS-485 buffer

For M-style motors:

a=LEN Number of characters in RS-485 buffer
a=GETCHR Get character from RS-485 buffer

The buffer is a standard FIFO (First In First Out) buffer. This means that if the letter A is the first
character the buffer receives, then it will be the first byte offered to the GETCHR command. The buffer
exists to make sure that no data is lost, even if the program is not retrieving the data at just the right
time.

The GETCHR buffer will stop accepting characters if the buffer overflows, and RLEN will stop
incrementing. Also, the overflow bit will be set for that serial channel. When the buffer is empty,
GETCHR will return a value of (negative 1.) If GETCHR is assigned to a byte ab[], then the value gets
cast from the range -1 to +255 to the signed range -128 to +127. This causes -1 (empty buffer) to have
the same value as char 255, since 255 gets cast to -1. It is recommended you assign GETCHR to a word
or long to perform comparisons.

The LEN variable holds the number of characters in the buffer. A program must see that the LEN is
greater than zero before issuing a command like a=GETCHR. Likewise, it is necessary to arrange the
application so that, overall, data will be pulled out of the buffer as fast as it comes in.

Part 1: Programming: Communicating over RS-485

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 108 of 969

The ability to configure the communication ports for any protocol as well as to both transmit and
receive data allows the SmartMotor to interface with a vast array of RS-232 and RS-485 devices.
Some of the typical devices that would interface with SmartMotors over the communication interface
are:

l Other SmartMotors
l Bar Code Readers
l Light Curtains
l Terminals
l Printers

The next example program repeatedly transmits a message to an external device (in this case another
SmartMotor) and then takes a number back from the device as a series of ASCII letter digits, each
ranging from 0 to 9. A carriage return character marks the end of the received data. The program uses
that data as a move position.

AT=500 'Preset acceleration.
VT=1000000 'Preset velocity
PT=0 'Zero out position.
O=0 'Declare origin
G 'Servo in place
OCHN(RS2,0,N,9600,1,8,D)
PRINT("RPA",#13)
C0
 IF LEN 'Check for chars

a=GETCHR 'Get char
 IF a==13 'If carriage return

 G 'Start motion
 PT=0 'Reset buffered P to zero
 PRINT("RP",#13) 'Next
 ELSE PT=PT*10 'Shift buffered P

a=a-48 'Adjust for ASCII
 PT=PT+a 'Build buffered P
 ENDIF
ENDIF
GOTO(0) 'Loop forever

The ASCII code for zero is 48. The other nine digits count up from there so the ASCII code can be
converted to a useful number by subtracting the value of 0 (ASCII 48). The example assumes that the
most significant digits will be returned first. Any time it sees a new digit, it multiplies the previous
quantity by 10 to shift it over and then adds the new digit as the least significant one. After a carriage
return is seen (ASCII 13), motion starts. After motion starts, P (Position) is reset to zero in preparation
for building up again. P is buffered, so it will not do anything until the G command is issued.

The SmartMotor has a wealth of data that can be retrieved over the Combitronic, RS-232 and RS-485
ports simply by asking. Data and status reporting commands can be tested by issuing these report
commands from any hosting application. Using SMI Terminal window as the host (see the next figure),
the command is shown on the left and the SmartMotor's response is shown in the middle.

Part 1: Programming: Using Data Mode

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 109 of 969

SmartMotor Command with Response

The SMI host software uses these commands to implement the Motor View window and Monitor View
tools. Data that does not have direct report commands can be retrieved either of two ways, by
embedding the variable in a PRINT command, or by setting a variable equal to the parameter and then
reporting the variable. For more details, see Part 2: SmartMotor Command Reference on page 247.

It is important to note that Combitronic reports only work if the CAN network is wired to each motor,
and the CAN addresses and baud rate are configured. Keep in mind:

l Unique addresses must be assigned to each motor with the CADDR command.

l All motors on the same CAN network must be configured to the same baud rate with the CBAUD
command.

Part 1: Programming: Using Data Mode

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 110 of 969

CAN Communications
NOTE: DeviceNet is currently not available on the Class 6 SmartMotor.

The SmartMotor supports different protocols over the CAN port if equipped. CANopen and DeviceNet
are popular industrial networks that use CAN. If a controller is communicating to a group of
SmartMotors as follower devices through either of these standard protocols, the Combitronic protocol
can still function without being seen by the CANopen or DeviceNet controller.

NOTE: The CAN network must have all devices set to the same baud rate to operate.

For more details about the CANopen implementation on the SmartMotor, see the CANopen fieldbus
guide for your SmartMotor.

The next sections describe related commands. For more details on these commands, see Part 2:
SmartMotor Command Reference on page 247.

CADDR=formula
Set CAN address
Where formula may be from 1 to 127. The setting is stored in the EEPROM. However, for it to take
effect, the user must cycle power to the motor.

CBAUD=formula
Set CAN baud rate
Where formula may be one of these: 1000000, 800000, 500000, 250000, 125000, 100000, 50000,
20000. The setting is stored in the EEPROM. However, for it to take effect, the user must cycle power
to the motor.

=CAN, =CAN(arg)
Get CAN error
The CAN command is used to get (read) an error or other status information about the CAN bus. For
example:

RCAN(0), x=CAN(0): Report/get status bits relating to CAN.

RCAN(1), x=CAN(1): Report/get the current NMT state of this motor.

RCAN(4), x=CAN(4): Report/get the result code of the most recent SDO read or write, or NMT
command as a controller.

For more details, see CAN, CAN(arg) on page 357.

Specific features are based on the fieldbus network being used. See the corresponding SmartMotor
fieldbus guide for more details.

CANCTL(function,value)
Control network features
Commands execute based on the function argument to control CAN functions. For example:

function = 1: Reset the CAN MAC and all errors. Resets the CANopen stack, PROFIBUS stack or
DeviceNet stack depending on firmware type. Value is ignored.

function = 5: Set timeout for Combitronic. Value is in milliseconds; the default is 30.

Part 1: Programming: CAN Communications

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 111 of 969

function = 16: Set the SDO command timeout period. In milliseconds. Range is 10 to 1000. Default is
500 (1/2 second).

function = 17: Enables the controller commands: NMT, SDORD and SDOWR. Enable simple controller: x
is the value 3; disable controller: x is the value -1.

For more details, see CANCTL(function,value) on page 359.

Specific features are based on the fieldbus network being used. See the corresponding SmartMotor
fieldbus guide for more details.

SDORD(...)
Read value from SDO
The SDORD command gets (reads) the value from the specified SDO on a specified device.

EXAMPLE: Read an SDO

x=SDORD(1, 24592,0,2) ' Read 2 bytes from address 1,
' object 0x6010, sub-index 0.

e=CAN(4) ' Get any error information

y=SDORD(1, 24608,0,2) ' Read 2 bytes from address 1,
' object 0x6020, sub-index 0.

ee=CAN(4) ' Get any error information

IF (e|ee)==0 ' Confirm the status of both SDO operations.
' Success

b=x ' Set some example variable according
c=y ' to the data received.
GOSUB(3) ' Some routine to take action when this data is valid.

ELSE
GOSUB(8) ' Go do something to deal with error when read fails.

ENDIF

For more details, see SDORD(...) on page 730.

SDOWR(...)
Write value to SDO
The SDOWR command writes a value to the specified SDO on a specified device.

EXAMPLE: Write an SDO

a=1234
SDOWR(1,9029,0,4,a) ' Write 4 bytes to address 1,
IF CAN(4)==0 ' Confirm the status of the most recent SDO operation.

' Success
GOSUB(4) ' Some routine to take action when the write succeeds.

ELSE
GOSUB(9) ' Go do something to deal with error when write fails.

ENDIF

For more details, see SDOWR(...) on page 732.

Part 1: Programming: SDORD(...)

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 112 of 969

NMT
Transmit NMT message to network
The NMT command transmits an NMT message to the network; it can command either a specific or all
follower devices to enter the commanded state. The command uses the form:

NMT(target address, desired state)

NMT(0,1) 'Tell everyone to go operational.
NMT(2,128) 'Tell motor 2 to go pre-operational.
x=CAN(4)
IF x!=0

' NMT command failed.
ENDIF

For more details, see NMT on page 626.

RB(2,4), x=B(2,4)
Determine if CAN error has occurred
Report/get if an error state has occurred over CAN, CANopen or Combitronic. Further investigation
through RCAN(0) will give more details. This can be cleared using the Z(2,4) or ZS command.

For more details, see B(word,bit) on page 297.

Exceptions to NMT, SDORD and SDOWR Commands

Note these exceptions when using the NMT, SDORD, SDOWR commands:
l No Combitronic version of these commands, i.e., there is no ":" operator form of the command,

for example:
 x=SDORD(…):3
is not allowed. Refer to each command's description in Part 2 of this guide.

l No monitoring the heartbeat of other network nodes.

l No special commands for sending or receiving PDOs. PDOs must be mapped to existing objects
to send or receive data as a follower device. Even the SmartMotor designated as a controller
must configure its own PDO mappings.

NOTE: SmartMotors currently have 5 transmit and 5 receive PDOs.
l No capability to read EDS files. The user is responsible for writing a program with the relevant

object index, sub-index and data type.
l No LSS host behavior is provided from the SmartMotor. Each follower device is expected to

have the properly configured address and baud rate. Each device must have a unique address; all
devices must use the same baud rate. Any need to set the baud rate or address is not the
responsibility of Moog Animatics.

l Only one SmartMotor may fill the controller role. No other SmartMotors on the network may
issue these commands, because this implementation does not support a multi-CANopen-
controller functionality.

l No support for controller read/write of segmented or block SDO protocol. Only Expedited (32-
bit or smaller) data transmission are supported by the controller functionality.

Part 1: Programming: NMT

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 113 of 969

I/O Device CAN Bus Controller

Many Moog Animatics SmartMotor servos, with appropriate firmware, can interface with standard CiA
301 CANopen devices, such as CANopen valve blocks, CANopen I/O blocks, CANopen encoders, and
many other devices. This means through CAN and Combitronic communications, you now have full
machine control with just a SmartMotor as the bus controller—no other external bus controller is
required. This capability is enabled by the CAN communications commands (NMT, SDORD and SDOWR)
described previously in this section, and new/modified objects.

NOTE: This capability is not available on all SmartMotor servos — for availability, see the
SmartMotor Installation & Startup Guide for your motor or contact Moog Animatics.

Basic control allows 8, 16, or 32-bit sized data objects with support for both PDO and SDO protocols.
The supported profiles include but are not limited to I/O profile, encoder profile, and DS4xx profile.
This provides the ability to:

l Dynamically map SmartMotor PDOs, map another device’s PDOs, start the NMT state

l A SmartMotor can send/receive up to 5 PDOs each or Rx (receive) and Tx (transmit)

l Read/write SDOs in expedited mode only, which works for up to 32-bit data

Multiple SmartMotors and multiple I/O devices may be on the same CAN bus. This combined with
Combitronic motor-to-motor communications allows for complex, multi-axis, multi-I/O-device network
control. Refer to the next figure.

CANopen

ABS Encoder
SmartMotor

CANopen

Valve Block

CANopen

Remote I/O

Be sure to comply with the guidelines for CAN bus cabling and termination.

SmartMotor SmartMotor SmartMotor

Without data collision!
TM

Motor to MotorMotor to I/O®

120 ohm
terminator

120 ohm
terminator

SmartMotor as I/O Device CAN Bus Controller

Related CANopen objects are: 2220h, 2221h and 2204h. For more details, refer to the object
descriptions in the Object Reference chapter of the SmartMotor CANopen Guide.

Related commands are: NMT, SDORD, SDOWR, CANCTL, and B/RB. For details, see the brief
descriptions in this section and the detailed descriptions in Part 2 of this guide.
Example user programs are shown in the Part 3 of this guide:

l CAN Bus - Timed SDO Poll on page 879

l CAN Bus - I/O Block with PDO Poll on page 880

Combitronic Communications
NOTE: For the Class 5 D- and M-style SmartMotors, Combitronic communication is available on
models with the -CAN option. For the Class 6 D-style SmartMotor, Combitronic communication is a
standard feature on all models. For the Class 6 M-style SmartMotor, Combitronic communication is
currently available only on -EIP option motors. For details, see the Class 6 SmartMotor™
EtherNet/IP Guide.

Part 1: Programming: I/O Device CAN Bus Controller

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 114 of 969

The most unique feature of the SmartMotor is its ability to communicate with other SmartMotors and
share resources using Moog Animatics’ Combitronic™ technology. Combitronic is a protocol that
operates over a standard "CAN" (Controller Area Network) interface. It may coexist with either
CANopen or DeviceNet protocols at the same time. It requires no single dedicated controller to
operate. Each SmartMotor connected to the same network communicates on an equal footing, sharing
all information, and therefore, sharing all processing resources.

The optional Combitronic technology allows any motor's program to read from, write to or control any
other motor simply by tagging a local variable or command with the other motor's CAN address. To do
this, take any Combitronic-supported SmartMotor command, add a colon and then a number
representing the address of another SmartMotor on the same CAN bus, and that parameter belongs to
that SmartMotor.

For example, imagine you have three SmartMotors linked together and set with addresses 1, 2 and 3.
These examples show how Combitronic communications works:

l This typical line of code, written in SmartMotor number 2, sets a target position in that same
SmartMotor:

PT=4000 'Set Target Position in local motor

l This line of code, written in SmartMotor number 2, or any of the three motors, sets a target
position in SmartMotor number 3:

PT:3=4000 'Set Target Position in motor 3

l The Combitronic global address for all SmartMotors is zero, so the next line of code, written in
any SmartMotor, sets the target position in all SmartMotors at the same time:

PT:0=4000 'Set Target Position in all motors

l This line of code could be written in motor number 1 and set variable "a" in motor number 2
equal to an I/O of motor number 3:

a:2=IN(0):3 'Set variable in 2 to I/O of 3

For a complete list of Combitronic commands, see Commands for Combitronic on page 963.

Combitronic Features
l 127 addressable nodes

l 1 Mbps over the CAN bus

l No controller required

l No scan list or node list set up required

l All nodes have full read/write access to all other nodes

Other Combitronic Benefits

Combitronic technology provides a simple way to create a true parallel-processing environment.

Part 1: Programming: Combitronic Features

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 115 of 969

l PLCs (Programmable Logic Controllers) can be eliminated, due to the speed of program
execution within the SmartMotor, combined with the speed of the Combitronic communications
and the power of the SmartMotor's programming language.

l Sensors and valves can be connected to the closest SmartMotor in the machine and be available
to the program of any SmartMotor on the network.

l An HMI (Human Machine Interface) can connect to any one or more of the SmartMotor's RS-232
or RS-485 ports and provide visibility into the entire network.

l The size and complexity of the machine collapses to the point where, in many cases, there is no
longer even a cabinet.

As a result, the machine builder is spared the traditional bulk, failure modes, wiring time and
complexity, and costs of separate servo controllers, servo amplifiers and PLCs.

Program Loops with Combitronic

Keep in mind that while Combitronic communications are very fast, program execution is also very fast.
Therefore, if a tight loop is written with a Combitronic transaction inside, you will flood the CAN bus
with data, which can slow the operations of all SmartMotors on the chain.

CAUTION: Tight loops with Combitronic commands can flood the CAN bus with
data and impair the function of a SmartMotor network. For the best performance,
structure programs to minimize disturbance of the CAN infrastructure.

This problem can be avoided. For example, if motor 1 needs to poll the state of an input on motor 2,
then instead of writing a tight loop with a Combitronic command in it:

1. Write a tight loop in motor 2 that executes a Combitronic transmission only when that input
changes state.

2. Issue a Combitronic command in motor 2 that sets a variable in motor 1 in the event of the input
state change.

3. Program motor 1 to poll its own internal variable.

This way, the actual polling activity is not occupying the CAN bus.

NOTE: A key to powerful programing in SmartMotors is to exploit parallel processing for throughput
without unnecessary polling over the Combitronic interface, which needlessly wastes throughput.

Global Combitronic Transmissions

Global Combitronic transmissions are especially fast because they do not involve node responses at
the protocol level. This fact can be leveraged to speed applications by having certain motors globally
broadcast infrequent but relevant state changes. For example, if a machine had a "door" and that door
could be opened or closed, the motor performing that function could set every motor's variable "d"
equal to 1 when the door is opened and 0 when the door is closed, like this:

d:0=1
d:0=0

The program in each motor can simply check its own variable "d" for the status of the door. Through
this technique, the programmer has created a new type of "global" variable.

A clever way to program a network of SmartMotors is to write one program and download that same
program to all motors. Then have the program first look to the motor's CAN address and execute only
the portion of the controller program that pertains to that motor address. This makes supporting a

Part 1: Programming: Program Loops with Combitronic

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 116 of 969

large network much easier because there is only one program. Make sure "global" variables, as created
in the previous example, are all unique.

Simplify Machine Support

Combitronic features can also be used to simplify the support of a SmartMotor-based machine. To do
this:

1. Allocate a small group of I/O, or the analog value of an input, to be unique in each motor position
through the wiring leading to that motor.

2. Have the program set its CAN address in accordance with that unique input status.

With this technique, a spare SmartMotor containing the controller program could quickly replace any
failed motor in the system without any special configuration. Even its own address would be
automatically set.

Combitronic with RS-232 Interface

Any SmartMotor may be used as a controller access through RS-232 to all SmartMotors on its network.
The next figure demonstrates 12 motors in a network where four SmartMotors are in a serial daisy
chain over RS-232. Each of those four banks may have up to 119 motors on its Combitronic network.

RS-232

Combitronic

Controller

Combitronic

Controller

Combitronic

Controller

Combitronic

Controller

Bank 1 Bank 2 Bank 3 Bank 4

Combitronic

Follower

Combitronic

Follower

Combitronic

Follower

Combitronic

Follower

Combitronic

Follower

Combitronic

Follower

Combitronic

Follower

Combitronic

Follower

Controlling
PC

RX

TX

Motor 2 Motor 2 Motor 2 Motor 2

Motor 3 Motor 3 Motor 3 Motor 3

TX RX TX RX TX RX TX RX

RS-232 and Combitronic Networks

Example SMI software commands from the host PC RS-232 port for the system layout in the previous
figure:

Part 1: Programming: Simplify Machine Support

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 117 of 969

2PT:3=1234 Motor 2 sets target position of Motor 3 in its group to 1234

3PT:0=0 Motor 3 sets target position of all motors in its group to zero

4PT=345 Motor 4, only, gets its own target position set to 345

0G Motor 1, 2, 3 and 4 receive Go command

0G:0 All motors on RS-232 and all network Combitronic motors receive Go command

Combitronic with the DS2020 Combitronic System

NOTE: DS2020 support requires: 5.0.4.55 (D), 5.98.4.55 (M); 6.4.2.x (D); ds2020_sa_1.0.0_combican
(DS2020).

The Moog Animatics DS2020 Combitronic system is a cabinet mount servo drive connected to a Moog
Compact Dynamic brushless servo motor. Compared to the smaller 17 to 34 frame SmartMotor
products, the DS2020 Combitronic system provides access to a higher torque motor-drive combination,
with torque range and power inputs to include AC mains voltages and motors above 1 KW. However,
similar to other SmartMotor products, the DS2020 Combitronic system has the capability of
responding to Combitronic commands.

The DS2020 Combitronic system is not fully programmable but is connected as a follower device to a
SmartMotor controller. The DS2020 Combitronic system has a CAN address, which you can set through
SMI along with baud rates as you would with any SmartMotor. It is then commanded by the SmartMotor
through Combitronic communications using standard Combitronic syntax, e.g., ADT:3=1234, where "3" is
the CAN address of the DS2020 Combitronic system.

The DS2020 Combitronic system supports a subset of the full AniBasic command set. Supported
commands are primarily Combitronic type, but there are a few others, also. The DS2020 Combitronic
system supported commands are flagged with "; supports the DS2020 Combitronic system" text on the
command's APPLICATION line or READ/REPORT line.

For a list of DS2020 Combitronic system supported commands, see Commands for DS2020
Combitronic on page 967

For details on the DS2020 Combitronic system installation and startup, see the DS2020 Combitronic
Installation and Startup Guide.

Part 1: Programming: Combitronic with the DS2020 Combitronic System

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 118 of 969

Other CAN Protocols
This section briefly describes two other supported CAN protocols: CANopen and DeviceNet.

NOTE: DeviceNet is currently not available on the Class 6 SmartMotor.

CANopen - CAN Bus Protocol

CANopen is an industrial CAN bus protocol supported on SmartMotors ordered with the CANopen
option. The protocol supports the CiA 402 profile for drives and motion devices. The hosting controller
can use an EDS file supplied by Moog Animatics that provides control of the SmartMotor over the
CANopen network.

One of the more powerful features of the CIA 402 profile is Interpolation mode, which is supported by
both the CANopen-enabled SmartMotor and Moog Animatics’ own coordinated-motion software, SMNC
and Integrated Motion DLL. By itself, the Integrated Motion DLL offers the host-application developer
the means to control SmartMotors using CANopen.

DeviceNet - CAN Bus Protocol

NOTE: DeviceNet is currently not available on the Class 6 SmartMotor.

DeviceNet is an industrial CAN bus protocol supported in the SmartMotor with optional firmware. The
protocol supports the Common Industrial Protocol (CIP) profile for a position controller. The hosting
controller can use an Electronic Data Sheet (EDS) file supplied by Moog Animatics that allows the
SmartMotor to be controlled through DeviceNet.

I²C Communications (Class 5 D-Style Motors)
The Class 5 D-style SmartMotors provide open I²C (IIC) communications capabilities, which expand the
capabilities of that SmartMotor.

NOTE: I²C communications is not currently available on the Class 5 M-style or any Class 6
SmartMotor.

The I²C capability is comprised of two signals, SDA and SCL, on ports 4 and 5 of the 15-pin D-sub
connector, respectively. These ports are most often shared with the SmartMotor's RS-485 ports.
Therefore, to set up I²C communications, a choice must be made between I²C and RS-485
communications.

There are I²C devices that perform dozens of functions, such as nonvolatile memory, high resolution A-
to-D and D-to-A conversion, analog and digital I/O expansion and more.

The next program example shows how to use I²C communications with a small EEPROM memory device
known as the 24FC512. Only the initialization part runs at power-up. Thereafter, subroutines 100 and
200 can be called to write or read data into the EEPROM.

Part 1: Programming: Other CAN Protocols

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 119 of 969

'''
' Class 5 I2C EEPROM Test 00
' Sept 10, 2009
' I2C test for 24FC512 EEPROM on Personality Module
' Address 1010 001 x
'''
SADDR1
ECHO
C0
OFF 'Turn off drive stage power
OCHN(IIC,1,N,200000,1,8,D) 'Initialize I/Os 4 and 5 as IIC port
PRINT(#13,"IIC Port Initialized",#13)
PRINT(#13)
END

C100 'Write variable a at pointer p
al[0]=a
al[1]=p
PRINT(#13)
PRINT("Load ",al[0]," at pos ",p,#13)
PRINT1(IIS,#160,#ab[5],#ab[4],#ab[3],#ab[2],#ab[1],#ab[0],IIP)
PRINT("Load bytes: ",ab[3],", ",ab[2],", ",ab[1],", ",ab[0],#13)
PRINT(#13)
RETURN

C200 'Read into variable a at pointer p
al[1]=p
PRINT1(IIS,#160,#ab[5],#ab[4],IIP) 'Write memory pointer
WAIT=1 'Must have small wait to give the write time it needs
PRINT1(IIS,#161,IIG4,IIP) 'Setup to read four bytes
WAIT=1 'Must have small wait to give the write time it needs
ab[3]=GETCHR1
ab[2]=GETCHR1
ab[1]=GETCHR1
ab[0]=GETCHR1
a=al[0]
PRINT(#13)
PRINT("Read bytes: ",ab[3],", ",ab[2],", ",ab[1],", ",ab[0],#13)
PRINT("Read ",a," at pos ",p,#13)
PRINT(#13)
RETURN

The next sections describe related commands. For more details on these commands, see Part 2:
SmartMotor Command Reference on page 247.

Part 1: Programming: I²C Communications (Class 5 D-Style Motors)

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 120 of 969

OCHN(IIC,1,N,baud,1,8,D)

The OCHN command is used to set the I²C communication parameters:

IIC Literal syntax IIC to tell what kind of communication this is
1 Literal value 1, since this is the location of that port
N Literal, not relevant to IIC
baud Bit rate for communication with the IIC device
1 Literal, not relevant to IIC
8 Literal, not relevant to IIC
D Literal, always in data mode for IIC communication

CCHN(IIC,1)

The CCHN(IIC,1) command is simply used to close the I²C communications channel.

PRINT1(arg1,arg2, … ,arg_n)

Where arg is:

IIS Start or restart an IIC command. For IIC devices that require a restart, simply
call the IIS command a second time within a PRINT command.

IIP Stop an IIC command.
IIGn Get n bytes from the IIC channel (requires the previous commands to have

provided whatever addressing or command is required for the device to start
sending). The G argument provides the right number of clock intervals to
acquire the data from the IIC device.

RGETCHR1, Var=GETCHR1

Returns data from the IIC device (if available). The data is always in unsigned byte values, so assign the
data to a 16 or 32-bit register first in order to test for special cases.

For example, the value is 0-255 for normal data, which represents all possible values for the byte. If
the value from the GETCHR1 command is -1, it means the buffer is empty.

RLEN1, Var=LEN1

Gets the number of bytes in the receive buffer.

Part 1: Programming: OCHN(IIC,1,N,baud,1,8,D)

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 121 of 969

Motion Details
This chapter provides details on making motion with the SmartMotor.

Introduction 122

Motion Command Quick Reference 123

Basic Motion Commands 124

Target Commands 124

Motion Mode Commands 126

Torque Commands 127

Brake Commands 127

Index Capture Commands 130

Other Motion Commands 132

Commutation Modes 134

MDT 134

MDE 134

MDS 134

MDC 135

MDB 135

MINV(0), MINV(1) 135

Modes of Operation 136

Torque Mode 136

Velocity Mode 137

Absolute (Position) Mode 138

Relative Position Mode 139

Follow Mode with Ratio (Electronic Gearing) 140

Cam Mode (Electronic Camming) 156

Mode Switch Example 171

Position Counters 173

Modulo Position 174

Modulo Position Commands 174

Dual Trajectories 175

Commands That Read Trajectory Information 177

Dual Trajectory Example Program 178

Using Mixed Mode Operations After Homing 179

Synchronized Motion 179

Synchronized-Target Commands 179

Other Synchronized-Motion Commands 183

Part 1: Programming: Motion Details

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 122 of 969

Introduction
All SmartMotor™ commands are grouped by function with these notations:

Numerical integer value, constrained by command. For example, 0,
1,..22.

formula (or frm) Formula or number. For example, 123 or a=1 or a=(2*3)-1.
expression (or exp) Simple expression or number. For example, a+3 or al[1] or 5.
W (Capital W letter by itself.) Refers to "Word", or 16 bits of inform-

ation. Option for addressing I/O 16-bit status words.
mask (or msk) The mask value of the bits that will be affected when working with

integers can typically be passed into a command as an expression.
Mainly used for I/O and status word bit manipulations. For details on
binary data, see Binary Data on page 900.

NOTE: In the command syntax, when optional bracketed arguments are shown, the comma within the
brackets is only used with the optional argument. For example, the comma is used with the optional
"m/s" argument in the command MFSLEW(distance[,m/s]).

Enter these commands in the Terminal window to move the SmartMotor:

EIGN(2) 'Disable left limit
EIGN(3) 'Disable right limit
ZS 'Reset errors
ADT=100 'Set target accel/decel
VT=100000 'Set target velocity
PT=300000 'Set target position
G 'Go, starts the move

NOTE: As shown in the example, a complete move requires: a position, a velocity and an
acceleration, and then a G (Go) command to start the move.

On power-up the motor defaults to position mode. Once Acceleration-Deceleration Target (ADT) and
Velocity Target (VT) are set, simply issue new Position Target (PT) commands, and then a Go (G)
command to execute moves to new absolute locations. The motor does not instantly go to the
programmed position but uses a trajectory to get there. The trajectory is bound by the maximum target
velocity and target acceleration parameters. The result is a trapezoidal velocity profile, or a triangular
profile if the maximum velocity is never met.

NOTE: Position, velocity and acceleration can be changed at any time during or between moves.
However, the new parameters only apply when a new G command is sent.

NOTE: Many motion commands and related report commands are affected by the scaling commands
(SCALEA, SCALEP and SCALEV). For details, see SCALEA(m,d) on page 724, SCALEP(m,d) on page
726, and SCALEV(m,d) on page 728. For the list of SCALE-affected commands, see Commands
Affected by SCALE on page 903.

Part 1: Programming: Introduction

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 123 of 969

Motion Command Quick Reference
The next table provides a quick reference for the primary Class 5 motion commands. For the complete
list of motion control commands and links to their descriptions, see Motion Control on page 957.

Absolute
Position

Relative
Position Velocity

Accel and
Decel

Together
Accel Decel Following

Error
DE/Dt

Derivative
Error Limit

Over
Speed
Limit

Report Actual RPA RPRA RVA N/A N/A REA RDEA

Report End Target RPT RPRT RVT RAT RAT RDT REL RDEL RVL

Report Commanded RPC RPRC RVC RAC RAC

Assign End Target PT= PRT= VT= ADT= AT= DT=

Assign Command N/A N/A N/A N/A N/A N/A EL= DEL= VL=

In the chart above, you will notice Actual, End Target, and Commanded:
l Actual: The value of the parameter as the processor sees it in real time at the shaft, regardless

of anything commanded by the trajectory generator
l Target: The requested trajectory target to reach and/or maintain at any given time

l Commanded: The compensated value of the trajectory generator at any time in its attempt to
reach the target

For example, in terms of the position commands:
l Position Target (PT): The desired target position you are shooting for; what you have specified

as a target position value
l Position Actual (PA): The current position in real time (right now), regardless of target or where

it is being told to go
l Position Commanded (PC): The position the controller processor is actually commanding it to go

to at the time

NOTE: Any difference between Position Commanded (PC) and Position Actual (PA) is due to position
error.

There are two position types:
l Absolute: The finite position value in reference to position zero

l Relative: A relative distance from the present position at the time

All commands shown above are associated with both Mode Position (MP) and Mode Velocity (MV). They
may also be used in dual trajectory mode when running either of those modes on top of gearing or
camming.

All distance parameters are in encoder counts. Encoder resolution may be obtained and used in a
program through the RES command. The RRES command will report encoder resolution. You can also
use the RES command directly in math formulas.

EXAMPLE:

If you want it the axis to move to location 1234, then you would issue:

PT=1234

Part 1: Programming: Motion Command Quick Reference

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 124 of 969

While moving there:
l RPC would report the commanded position from the processor.

l RPA would report actual position of the encoder or motor shaft.

l x=PC-PA would calculate position error at that moment.

l REA would report actual position error at that moment.

l RBt would report a 1 (while moving) because the trajectory is active.

After the move has completed, RBt would report a 0 (to indicate the trajectory is no longer active).

Basic Motion Commands
The basic motion commands described in this section are used to set the operating mode, control
acceleration/deceleration, velocity, torque, origin and position, and to start and stop the motion. Use
the Motion Command Quick Reference on page 895 to understand the relationship between basic
motion commands and the terms Actual, Commanded and Target.

Target Commands

The section describes target-related commands. For more details on these commands, see Part 2:
SmartMotor Command Reference on page 247.

PT=formula

Set Target Position (Absolute)
The PT command sets an absolute end position to move to when the motor is in Position mode. The
units are encoder counts and can be positive or negative in the range -2147483648 to +2147483647.
It is not advisable to attempt to use absolute moves that would cross the rollover point of the most
positive and most negative values. Also, absolute moves should not attempt to specify a move with a
relative distance of more than 2147483647. The end position can be set or changed at any time during
or at the end of previous moves. SmartMotor™ sizes 17 and 23 resolve 4000 increments per revolution,
while SmartMotor size 34 resolves 8000 increments per revolution.

The next program illustrates how variables can be used to set motion values to real-world units and
have the working values scaled in motor units for a size 17 or 23 SmartMotor.

a=100 'Acceleration in rev/sec*sec
v=1 'Velocity in rev/sec
p=100 'Position in revs
GOSUB(10) 'Initiate motion
END 'End program
C10 'Motion routine

ADT=a*4.096 'Set target accel/decel
VT=v*32768 'Set target velocity
PT=p*4000 'Set target position
G 'Start move

RETURN 'Return to call

NOTE: If any errors exist, they must be cleared before the G command will work. All errors can be
cleared with the ZS command.

Part 1: Programming: Basic Motion Commands

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 125 of 969

PRT=formula

Set Relative Target Position
The PRT command allows a relative-distance move to be specified when the motor is in position mode.
The value indicates the encoder counts to travel; it must be within the range of -2147483648 to
+2147483647. This relative distance is added to the current trajectory position and not the actual
position either during or after a move. If a previous move is still in progress, then the current trajectory
position is added to when G is commanded. If the total distance traveled needs to directly correspond
to the number of moves made, make sure a move has finished before issuing another G command.

ADT=formula

Set Target Acceleration/Deceleration
Target Acceleration/Deceleration must be a positive integer within the range of 0 to 2147483647. The
default is zero, so a nonzero number must be entered to initiate motion. A typical value is 100. This
command sets acceleration and deceleration of the motion profile to the value specified. This value can
be changed at any time. The value set does not take effect until the next G command is executed.
Native acceleration units are
(counts/sample/sample)*65536. The default sample rate for Class 5 is 8.0 kHz; the default sample rate
for Class 6 is 16.0 kHz.

AT=formula

Set Target Acceleration Only

DT=formula

Set Target Deceleration Only
The AT and DT commands allow setting different values for the acceleration and deceleration of the
motion profile, respectively. Standard practice should be to use the ADT command instead unless
separate values are needed. There is an override that automatically sets DT equal to AT if the motor
power is turned on and only AT is set. However, this should be avoided by using the ADT command
when DT is not used.

To convert acceleration in revolutions per second2 to units of ADT, AT or DT, use this formula:

ADT = Acceleration * ((enc. counts per rev.)/(sample rate2)) * 65536

If the motor has a 4000 count encoder (sizes 17 and 23), multiply the desired acceleration, in rev/sec2,
by 4.096 to arrive at the appropriate setting for ADT. With an 8000 count encoder (size 34), the
multiplier is 8.192. These factors assume a PID rate of 8.0 kHz, which is the default.

Note that ADT, AT and DT allow only even numbers. When odd numbers are used, they are rounded up.
The default values are zero.

VT=formula

Set Target Velocity
The VT command specifies a target velocity (speed and direction) for velocity moves, or a slew speed
for position moves. The value must be in the range -2147483647 to 2147483647. Note that in position
moves, this value is the unsigned speed of the move and does not imply direction. The value set by the
VT command only governs the calculated trajectory of MP and MV modes (position and velocity). In
either of these modes, the PID compensator may need to "catch up" if the actual position falls behind
the trajectory position. In this case, the actual speed exceeds the target speed. The value defaults to

Part 1: Programming: PRT=formula

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 126 of 969

zero, so it must be set before any motion can take place. The new value does not take effect until the
next G command is issued.

To convert velocity in revolutions per second to units of VT, use this formula:

VT = Velocity * ((enc. counts per rev.)/(sample rate)) * 65536

If the motor has a 4000 count encoder (sizes 17 and 23), multiply the desired velocity in rev/sec by
32768 to arrive at the setting for VT. With an 8000 count encoder (size 34), the multiplier is 65536.
These factors assume a PID rate of 8.0 kHz, which is the default.

Motion Mode Commands

The section describes motion-mode commands. For more details on these commands, see Part 2:
SmartMotor Command Reference on page 247.

MP

Position Mode
Issuing the Mode Position (MP) command puts the SmartMotor in Position mode. Position mode is the
default mode of operation for the SmartMotor on power-up. In Position mode, the PT, PRT, VT, ADT, AT
and DT commands can be used to govern motion. At a minimum, ADT, VT and (PT or PRT) must be
issued.

MV

Velocity Mode
The Mode Velocity (MV) command allows continuous rotation of the motor shaft. In Velocity mode, the
programmed position using the PT or the PRT commands is ignored. Acceleration and velocity need to
be specified using the ADT and the VT commands. After a G command is issued, the motor accelerates
up to the programmed velocity and continues at that velocity indefinitely. Similar to Position mode, in
Velocity mode, velocity and acceleration are changeable on the fly, at any time — simply specify new
values and enter another G command to trigger the change. In Velocity mode, the velocity can be
entered as a negative number, unlike in Position mode where the location of the target position
determines velocity direction or sign. If the 32-bit register that holds position rolls over in Velocity
mode, it will have no effect on the motion.

Velocity mode calculates its trajectory as an ideal position over time and corrects the resulting
measured position error instead of measuring velocity error. This is significant in that this mode will
"catch up" lost position, just as Position mode will if a disturbance causes a lagging position error.

MT

Torque Mode
The Mode Torque (MT) command puts the SmartMotor in Torque mode. In Torque mode, the motor
applies a PWM commutation effort to the motor proportional to the T command and independent of
position. If the motor model has a current-control commutation mode, then torque is controlled in
proportion to the T command. Otherwise, torque depends on the actual motor speed and bus voltage,
eventually reaching an equilibrium speed. Nevertheless, for a locked rotor, the torque will be largely
proportional to the T value and bus voltage.

To run the motor in Torque mode, use the T command and issue a G command for the new torque value
to take effect.

NOTE: You must issue a G command for a new torque value to take effect in Torque mode.

Part 1: Programming: Motion Mode Commands

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 127 of 969

Internal encoder tracking still takes place and can be read by a host or program. However, the value will
be ignored for motion because the PID loop is inactive.

Torque Commands

These commands set the torque slope and value. For more details on these commands, see Part 2:
SmartMotor Command Reference on page 247.

TS=formula

Set Torque Slope
The TS= command causes new torque settings to be reached gradually, rather than instantly. Values
may be from -1 to +2147483647. -1 disables the slope feature and causes new torque values to be
reached immediately. A TS setting of 65536 increases the output torque by one unit per PID sample
period.

T=formula

Set Torque Value, -32767 to 32767
In Torque mode, activated by the MT command, the drive duty cycle can be set with the T= command.
The value (number or variable) must fall in the range from-32767 to 32767. The full-scale value relates
to full-scale or maximum-duty cycle. At a given speed, there will be reasonable correlation between
drive duty cycle and torque. With nothing loading the shaft, the T= command will dictate open-loop
speed. A G command must be entered after the T= command for the new value to take effect.

The next example increases torque, one unit every PID sample period, up to 8000 units.

MT 'Select torque mode.
T=8000 'Final torque after the TS ramp that we want.
TS=65536 'Increase the torque by 1 unit of T per PID sample.
G 'Begin move

Brake Commands

These commands control the brake functions for the motion. For more details on these commands, see
Part 2: SmartMotor Command Reference on page 247.

BRKRLS

Brake Release - manual override command
Mechanically disengages brake (regardless of the brake operational mode)

BRKENG

Brake Engage - manual override command
Mechanically engages brake (regardless of the brake operational mode)

NOTE: When BRKSRV or BRKTRJ is issued after a manual override command has been issued, the
brake will respond to the state of automatic control of the mode chosen.

Part 1: Programming: Torque Commands

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 128 of 969

BRKSRV

Automatically Release Brake Only When Servo Active
(Default mode of operation) causes brake to mechanically engage when: the motor faults (for any
reason), OFF is issued, or the drive is already in OFF state.

BRKTRJ

Automatically Release Brake Only When in Trajectory
(Optional mode of operation) causes brake to mechanically engage any time the Trajectory bit is off
and brake to release any time the trajectory bit turns on.

The SmartMotor is available with power-loss brakes. These brakes apply a force to keep the shaft from
rotating should the SmartMotor lose power. Issuing the BRKRLS command releases the brake and
BRKENG engages it. There are two other commands that initiate automated operating modes for the
brake. The command BRKSRV engages the brake automatically, should the motor stop servoing and no
longer hold position for any reason. This event might be due to loss of power or just a position error,
limit fault or overtemperature fault.

Finally, the BRKTRJ command engages the brake in response to all of the previously-mentioned events,
including any time the motor is not performing a trajectory. In this mode the motor is off and the brake
holds it in position rather than the motor servoing when it is at rest. As soon as another trajectory is
started, the brake releases. The time it takes for the brake to engage and release is only a few
milliseconds.

The brakes used in the SmartMotor are zero-backlash devices with extremely long life spans. It is well
within their capabilities to operate interactively within an application. However, take care to avoid a
situation where the brake sets repeatedly during motion, which will reduce the brake life.

Where a SmartMotor is not equipped with a physical brake, it simulates braking with its Mode Torque
Brake (MTB) feature, which causes a faulted motor to still experience strong resistance to shaft
motion. Note that MTB only works when power is applied to the SmartMotor. Therefore, it is not a
substitute for an actual brake when safety is an issue.

WARNING: The MTB feature only works when power is applied to the SmartMotor.
Therefore, DO NOT use it as a substitute for a physical brake when operator or
equipment safety is an issue.

Brake Command Examples

Example 1
Motor drive is in the ON state and not moving — it may be in Position mode and holding position, or in
Velocity mode with zero velocity (same as holding position):

l If BRKENG is issued, the brake will engage (even if not already engaged for whatever reason) and
you then issue BRKTRJ, the brake will STAY engaged

l If BRKRLS is issued, the brake will release (even if not already released for whatever reason),
and then you then issue BRKTRJ, the brake will engage.

Example 2
The motor is faulted due to any typical fault, such as travel limits, overcurrent, overtemp, etc. The
brake should already be mechanically engaged regardless of the mode (BRKTRJ or BRKSRV), and

Part 1: Programming: BRKSRV

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 129 of 969

provided no manual override commands were issued since the fault occurred.
l If BRKENG is issued, the brake will stay engaged; then issue BRKTRJ, the brake will stay

engaged.
l If BRKRLS is issued, the brake will release (even though the motor is faulted because a manual

override command was just issued); you then issue BRKTRJ, the brake will engage because the
trajectory bit is off due to the fact that the motor is faulted.

l If the motor was in BRKTRJ and BRKSRV is issued, the brake will remain mechanically engaged.

l If the motor was in BRKSRV and BRKTRJ is issued, the brake will remain mechanically engaged.

Example 3:
If the motor is moving or holding position, and the Trajectory bit is ON, and no manual override
commands have been issued — regardless of modes BRKSRV or BRKTRJ, the brake will be mechanically
disengaged.

l If BRKENG is issued and the motor is NOT moving, the brake will engage.

l If BRKENG is issued and the motor IS moving, the brake will engage causing the motor to
mechanically be loaded to the point of stopping and faulting out.

Example 4:
Because BRKSRV requires 3 to 5 milliseconds to fully engage, there may be certain cases where it isn’t
fast enough to hold the position, e.g., a vertical load where the user wants to put the machine to bed for
the night without any position slippage.

Use this procedure:

1. The program / host checks for zero motion and it knows there are no further motion commands
2. Then issue BRKENG
3. Wait for mechanical brake engage time (3 to 5 milliseconds)
4. Turn motor OFF
5. Remove power from the machine

EOBK(IO)

Reroute Brake Signal to I/O
NOTE: When using the EOBK and MFR commands in the same program, there is interaction that
must be considered in the code. For details, see the Programming Note in EOBK(IO) on page 445 or
MFR on page 600.

When the automated brake functions are desired for an external brake, this command can be used to
choose a specified I/O port. This corresponds to the same I/O pin numbering used by other I/O
commands. These commands re-route the internal brake signal to the respective I/O pins. The brake
signal is active high to engage the brake to the shaft on the pulled-up 5 Volt I/O. On the 24 Volt I/O, the
default state is off (0 Volts), so the brake engages the shaft when the 24 Volt signal is low. The EOBK(-
1) command removes the brake function from any external I/O. Only one pin can be used as the brake
pin at any one time. Therefore, each command supersedes the other.

For the M-style SmartMotor, only output 8 works for that motor. Therefore, the values are:
l EOBK(8) to enable

l EOBK(-1) to disable

Part 1: Programming: EOBK(IO)

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 130 of 969

MTB

Mode Torque Brake
Mode Torque Brake is the default state on power-up. It causes the motor control circuits to tie the
three phases of the motor together as a form of dynamic braking. For a fault or the OFF command,
instead of the motor coasting to a stop, it abruptly stops. This is not done by servoing the motor to a
stop, but by simply shorting all of the coils to ground. If there is a constant torque on the motor, it
allows only very slow movement of the shaft.

WARNING: The MTB feature only works when power is applied to the SmartMotor.
Therefore, DO NOT use it as a substitute for a physical brake when operator or
equipment safety is an issue.

The MTB command immediately activates dynamic braking independently of the Brake mode. Issuing
MTB while the motor is running turns off the motor drive and enables dynamic braking, even if BRKRLS
has been issued.

To remove the effect of the MTB command, either issue a motion command, or manually "freewheel"
the motor by issuing a BRKRLS command and then an OFF command. Those two commands do not need
to be in immediate sequence—i.e., other commands, except MTB, can be between them.

BRKENG can engage dynamic braking unconditionally, as well. (The opposite of that command is
BRKRLS.) Note that OFF will not remove the effect of BRKENG.

To ensure that the MTB command is not active, command BRKRLS and the dynamic braking will release.
Finally, because faults can also activate dynamic braking, clear the faults or choose a fault action of
freewheel (refer to the next NOTE).

NOTE: The FSA command's default cause/action enables MTB on all faults, even if previously
disabled as described in the previous paragraphs. Therefore, to prevent that action, you must issue
FSA(cause,action), where "cause" is the fault type 0, 1 or 2, and the "action" is 1, which specifies
servo off (freewheel). For more details, see FSA(cause,action) on page 465.

Status Word 6, Bit 11 reports if dynamic braking is active or not, including as a result of the MTB
command, the BRKENG command or a fault action.

Index Capture Commands

The SmartMotor's encoder capture mechanism has many capabilities. Both the internal and external
encoders can be triggered by certain events to capture their positions.

The DS2020 Combitronic system also provides index capture capability; for details, see DS2020
Combitronic System Index Capture on page 131.

For a capture to occur, one of the arming commands must be issued (see the next list). These
commands allow you to select a rising or falling edge of the source event and specify the encoder to be
armed.

Ai(arg) Arm the rising edge only; encoder selected by arg

Aj(arg) Arm the falling edge only; encoder selected by arg

Aij(arg) Arm the rising edge, wait for that event, then arm the falling edge; encoder
selected by arg

Aji(arg) Arm the falling edge, wait for that event, then arm the rising edge; encoder
selected by arg

Part 1: Programming: MTB

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 131 of 969

Arg is 0 to arm the event currently assigned to the internal encoder; arg is 1 to arm the event currently
assigned to the external encoder.

Status Word 1 contains bits (Bi, Bj, etc.) that indicate when a particular arming sequence is active and
when the capture has taken place. For details, see Motor Index/Capture Directly-Addressed Status Bits
on page 216. Also, see Status Word 1: Index Registration and Software Travel Limits on page 922.

After the capture has occurred, the corresponding rising or falling edge can be read using the
commands I(arg) and J(arg), respectively. That allows the rising and falling edges to be recorded
separately. Again, arg is 0 for the internal encoder’s position at the time of the event; arg is 1 for the
external encoder’s position at the time of the event.

Arm with Ai*

Bi flag set

I reads encoder position

Arm with Aj*

Bj flag set

J reads encoder position

*Or, use Aij to
arm both

Rising and Falling Edge Index Capture

By default, the internal encoder will be triggered by the internal encoder’s index mark. However, it can
be reconfigured to use an external signal to trigger the internal encoder capture. Refer to the next
commands.

EIRE (Default) Use the internal encoder’s index to capture that encoder's position.
The I/O signal is used to capture the external encoder.

EIRI Use a predefined I/O signal to capture the internal encoder. This displaces
that I/O from being used to capture the external encoder. Class 5 D-style
motors use I/O logical input 6 (pin 7 on the DA-15 connector); Class 5 M-style
motors use I/O logical input 5 (pin 4 of the 12-pin I/O connector). Class 6
D-style motors use I/O logical input 5 (pin 6 of the HD26-pin connector).

DS2020 Combitronic System Index Capture

DS2020 with resolver motors: Reading position value and physical position

In resolver motors, the physical angular position always corresponds to the read position on a single
turn. This is different from SmartMotors with incremental encoder — its "absolute" position is unknown
until the index impulse (i.e., the zero mark on the encoder) is found. This means that a DS2020
Combitronic system with resolver motor behaves in this manner:

l Assume feed FD=65536;

l At the startup, a position value in the range [-32768 32767] is always returned by RPA, and this
corresponds to the physical angle of the motor shaft, read by resolver;

Part 1: Programming: DS2020 Combitronic System Index Capture

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 132 of 969

l For example, RPA 16384 (that is ¼ of feed) means that shaft angle is 90° with respect to the
zero position; this is always true, even if the system is restarted with a different initial position
of the shaft;

l If many complete turns have been done (position is outside the range [-32768 32767]), when the
system is restarted, the read position will be reported in the range [-32768 32767] and its value
corresponds to the angular position of the shaft.

DS2020 with resolver motors: Index Capture function

The index capture procedure uses the commands Ai(0) , RBi(0) and RI(0). When the procedure is started
with Ai(0), the closest position that corresponds to a zero-angle of motor shaft is captured. RBi(0)
initially returns 0 (meaning the procedure has not completed). After the zero-angle position is reached,
it is sampled: RBi(0) returns 1 and RI(0) returns the corresponding value. RBi(0) remains 1 until a new Ai
(0) command is issued (this resets RBi(0) to 0 and restarts the procedure). Here are some examples:

1. Assume FD=8000, initial position RPA 1000, Ai(0) command issued and motor moved in the
negative direction; when zero-angle is reached, RBi(0) returns 1 and RI(0) returns 0.

2. Assume FD=8000, initial position RPA 1000, Ai(0) command issued and motor moved in the
positive direction; when zero-angle is reached, RBi(0) returns 1 and RI(0) returns 8000.

3. Assume FD=8000, initial position RPA 9000, Ai(0) command issued and motor moved in the
positive direction; when zero-angle is reached, RBi(0) returns 1 and RI(0) returns 16000.

Other Motion Commands

These commands are used to start, stop or decelerate motion, reset or shift the origin, and turn the
motor servo off. For more details on these commands, see Part 2: SmartMotor Command Reference on
page 247.

G

Go, Start Motion
The G command does more than just start motion. It can be used dynamically during motion to create
elaborate profiles. Because the SmartMotor allows position, velocity and acceleration to change during
motion, the G command can be used to replace the current move with a new one. All faults must be
cleared before the G command will work, as indicated by the "drive ready" status bit. Faults can be
cleared by correcting the fault situation and then issuing the ZS command.

S

Abruptly Stop Motion in Progress
If the S command is issued while a move is in progress, it causes an immediate and abrupt stop with all
the force the motor has to offer. After the stop, assuming there is no position error, the motor will still
be servoing. The S command works in all modes.

X

Decelerate to Stop
If the X command is issued while a move is in progress, it causes the motor to decelerate to a stop at
the last entered deceleration value according to the ADT, DT and AT commands. When the motor comes
to rest, it will servo in place until commanded to move again. The X command works in Position,
Velocity and Torque modes. It also applies to Follow and Cam modes.

Part 1: Programming: Other Motion Commands

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 133 of 969

O=formula

Set/Reset Origin to Any Position
The O= command (using the letter O, not the number zero) allows the host or program to declare the
current position to a specific value, positive or negative, or 0 in the range -2147483648 to
+2147483647. This command sets the commanded trajectory position to the value specified at that
point in time and the actual position is adjusted similarly. The O= command directly changes the motor’s
position register and can be used as a tool to avoid ±31-bit rollover Position mode problems. If the
SmartMotor runs in one direction for a very long time, it will reach position -2147483648 or
+2147483647, which causes the position counter to change sign. While that is not an issue with
Velocity mode, it can create problems in absolute position moves or create confusing results when
reading position.

OSH=formula

Shift the Origin by Any Distance
The OSH= command shifts the origin by the amount described, which may be from -2147483648 to
+2147483647. This command is similar to O=, except that it specifies a relative shift. This can be
useful in applications where the origin needs to be shifted during motion without losing any position
counts.

OFF

Turn Motor Servo Off
The OFF command turns off the motor’s drive. When the drive is turned off, the PWR/SERVO status
LEDs revert to flashing green. The motor will not freewheel by default in the OFF state because each
SmartMotor has a safety feature that engages dynamic braking equivalent to the MTB command. This
has the effect of causing a resistance to motion. To make a SmartMotor truly freewheel when off, issue
BRKRLS and be sure any faults are cleared.

SCALEA(m,d), SCALEP(m,d), SCALEV(m,d)

Scale (Acceleration/Deceleration, Position, Velocity)
The SCALE commands are used to scale the values of various acceleration/deceleration, position and
velocity commands, and related reporting commands. This is done by issuing SCALEA, SCALEP and
SCALEV, respectively. For example, SCALEA affects the ADT command; issuing SCALEA(10,1) applies a
factor of 10x to any set, or 1/10x to any reported, acceleration/deceleration. Once set, the
SCALE commands are in effect for all subsequent applicable commands until they are deactivated (all
three commands are deactivated by default).

For more details, see SCALEA(m,d) on page 724, SCALEP(m,d) on page 726, and SCALEV(m,d) on page
728. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903. Also,
see the Motor Scaling tool in the SMI software help.

Part 1: Programming: O=formula

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 134 of 969

Commutation Modes
Because the SmartMotor uses a brushless motor, it does not have the mechanical commutator that a
brushed motor has to switch the current to the next optimal coil as the rotor swings around. To cause
shaft rotation in a brushless motor, the control electronics have to see where the shaft is, and then
decide which coils to deliver the current to next.

The most typical way to determine the orientation of the rotor is with small magnetic-sensing devices
called Hall sensors. The process of shifting the current to the proper coils based on shaft rotation is
called commutation. There are many methods for commutating a motor; the best commutation method
depends on the application. As a general rule, sine mode commutation provides very smooth low torque
ripple performance, and trapezoidal commutation provides the highest torque and fastest speeds.

These commands allow selection of different commutation modes. For more details, see Part 2:
SmartMotor Command Reference on page 247.

NOTE: MDE, MDS and MDC require angle match (the first sighting of the encoder index) before they
will take effect. This means the SmartMotor's factory calibration is valid and the index mark of the
internal encoder has been seen since startup. Until then, the SmartMotor will operate in default
MDT.

MDT
Mode Drive Trapezoidal
Trapezoidal commutation uses only the Hall sensors (default). It is the most simple commutation
method, and it is always ready on boot up. MDT is effective despite the minor inaccuracies typically
found in the mechanical placement of the sensors.

NOTE: M-style motors boot up in MDC mode (see MDC on page 135).

MDE
Mode Drive Enhanced
This driving method is exactly the same as basic trapezoidal commutation using Hall sensors, except
that it also uses the internal encoder to add accuracy to the commutation trigger points. This idealized
trapezoidal commutation mode offers the greatest motor torque and speed, but it can exhibit minor
ticking sounds at low rates because the current shifts abruptly from one coil to the next. Because MDE
uses the encoder, it requires angle match (the first sighting of the encoder index) before it will engage.

MDS
Mode Drive Sine
This is sinusoidal (sine) commutation, voltage mode. It provides smoother commutation compared to
trapezoidal modes by shifting current gradually from one coil to the next. Because MDS uses the
encoder, for motors with incremental encoders, it requires angle match (the first sighting of the
encoder index) before it will engage. MDS is not as efficient as a trap commutation mode and has less
torque available, especially at higher speeds (for more details, see MDS on page 574). However, for
applications that require extremely smooth and quiet low-speed operation, MDS is the best choice.

Part 1: Programming: Commutation Modes

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 135 of 969

MDC
Mode Drive Current
Available only for M-style Class 5 SmartMotors, this sinusoidal (sine) commutation method, augmented
with digital current control, offers the best possible performance without sacrificing quiet operation.

Status Word 6 contains bits that indicate what commutation mode is currently active. Note that a
command for a mode may not take effect until the angle match is indicated by bit 8 in status word 6.
The angle match may not take effect until the motor rotates past the index mark of the internal
encoder. Test for this using these status bits.

Status Word 6:
l Bit 0 Trap-Hall mode

l Bit 1 Trap-Encoder (enhanced) mode

l Bit 2 Sine Voltage mode

l Bit 3 Sine Current (vector) mode

MDB
Trajectory Overshoot Braking (TOB) Option
This command should be used after entering MDT or MDE to enable TOB action. This option reverts to
off when one of the previous commutation choices is made. This option is off by default. Status Word
6, Bit 9 indicates if this mode is active.

MINV(0), MINV(1)
Invert Motion Direction
The MINV(1) command inverts the direction convention of the SmartMotor.

The MINV(0) command restores the default.

Part 1: Programming: MDC

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 136 of 969

Modes of Operation
SmartMotors can be operated in several different modes. You can switch to and from almost any mode
freely at any time. The next sections provide details on each operation mode.

NOTE: For details on any command, see Part 2: SmartMotor Command Reference on page 247.

Torque Mode

NOTE: Torque mode is an immediate response mode.

In Torque mode, also referred to as Mode Torque (MT), the SmartMotor shaft applies a torque
independent of position. The internal encoder tracking still takes place, and can be read by a host or in
a program. However, the value is ignored for motion because the PID loop is inactive. A torque-mode
move does not mean the motor applies a constant torque regardless of speed; rather, the motor is
powered at a fixed duty cycle of PWM to the motor windings in a manner similar to increasing and
decreasing voltage to a traditional DC motor. To specify the value of the torque move, use the T=
command with a number between -32767 and 32767. Remember that:

l Positive numbers apply a clockwise torque

l Negative numbers apply a counter-clockwise torque

l The default value for T is zero

l Speed is proportional to counter-torque or load on the shaft when in torque mode

l The larger the load, the slower the motor turns for a given torque value

The next list details the minimum requirements for a move to occur in Torque mode:
l Initiate the mode with the MT command

l Issue G

Torque Mode Example

The next example shows a basic torque move. Note that T is set before MT and G, which provides a
known commanded torque before issuing an MT or G command.

T=2000 ' set torque to 2000
MT ' set motor to Torque mode
G ' start moving, open loop

Dynamically Change from Velocity Mode to Torque Mode

The next example dynamically changes from Velocity mode to Torque mode through torque transfer
(TRQ command). In the example, about two seconds after going into Velocity mode, the motor is
switched to Torque mode. Then, two seconds later, the motor is turned off.

Part 1: Programming: Modes of Operation

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 137 of 969

MV ' set motor to Velocity mode
VT=100000 ' set velocity to 100000
ADT=1000 ' set accel/decel to 1000
G ' Go (Start moving)
WAIT=2000 ' wait about 2 seconds
T=TRQ ' set torque to the value the PID filter was commanding in MV
MT G ' set motor to Torque mode
WAIT=2000 ' wait about 2 seconds
OFF ' turn the motor off

Velocity Mode

Velocity mode allows the SmartMotor to run at a constant commanded speed. SmartMotors close the
speed loop on position, not encoder counts per unit time. As a result, moving to and from Position mode
to Velocity mode is simple.

The next list details the minimum requirements for a move to occur in Velocity mode:

• Initiate Velocity mode MV command if not already in Velocity mode
• Nonzero value of Velocity VT=### set velocity equal to ###
• Nonzero value of Acceleration ADT=### set accel/decel equal to ###
• Go command to initiate move G start move immediately

Constant Velocity Example

The next example shows a basic constant-velocity move. In the example, the motor starts moving when
the G command is issued. It accelerates up to a velocity of 100000 at a rate or 1000 samples/sec/sec.
It then remains at that speed until told to do otherwise.

MV ' set motor to Velocity mode
VT=100000 ' set velocity to 100000
ADT=1000 ' set accel/decel to 1000
G ' Go (Start moving)

Change Commanded Speed and Acceleration

In this example, the command speed and acceleration are changed while the program is in progress. The
motor‘s move parameters are changed about two seconds after the initial commanded move begins.

O=0 ' set current position to zero
MV ' set motor to Velocity mode
VT=100000 ' set velocity to 100000
ADT=1000 ' set accel/decel to 1000
G ' Go (Start moving)
WAIT=2000 ' wait 2 seconds
VT=800000 ' set new velocity of 800000
ADT=500 ' set new accel/decel of 500
G ' initiate change in speed and acceleration

Part 1: Programming: Velocity Mode

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 138 of 969

Absolute (Position) Mode

Absolute (Position) mode is the default power-up mode of operation for the SmartMotor. In Position
mode, the SmartMotor operates on absolute position commands, which use encoder counts.

The next list details the minimum requirements for a move to occur in Position mode:

• Initiate Position mode MP command if not already in Position mode
• Nonzero value of Velocity VT=### set velocity equal to ###
• Nonzero value of Acceleration ADT=### set accel/decel equal to ###
• Absolute commanded position PT=### set target position to ###
• Go command to initiate move G start move immediately

NOTE: Commanded position must be different than present position to cause a move. If acceleration
or velocity are at zero, the motor will not move.

Absolute Move Example

In this example, the motor starts moving when the G (Go) command is received and stops at an absolute
position of 20000 encoder counts.

MP ' set to position mode (required if currently in another mode)
VT=100000 ' set velocity to 100000
ADT=1000 ' set accel/decel to 1000
PT=20000 ' set commanded absolute position to 20000
G ' Go (Start moving)

Two Moves with Delay Example

The next example shows two position moves with a delay in between.

O=0 ' set current position to zero
MP ' set to position mode (required if currently in another mode)
VT=100000 ' set velocity to 100000
ADT=1000 ' set accel/decel to 1000
PT=20000 ' set commanded absolute position to 20000
G ' Go (Start moving)
TWAIT ' wait here until the motor has reached 20000
WAIT=1000 ' wait 1 second
PT=-500 ' Set commanded position of –500
G ' start moving to new commanded position.

NOTE: The move is made at the previously-commanded speed and acceleration.

Change Speed and Acceleration Example

In this example, the commanded speed and acceleration are changed while the motor is executing the
absolute position move.

Part 1: Programming: Absolute (Position) Mode

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 139 of 969

O=0 ' set current position to zero
MP ' set to position mode (required if currently in another mode)
VT=100000 ' set velocity to 100000
ADT=1000 ' set accel/decel to 1000
PT=1000000 ' set commanded absolute position to 1000000
G ' Go (Start moving)
WAIT=8000 ' wait about 8 seconds
VT=800000 ' set new velocity of 800000
ADT=500 ' set new accel/decel of 500
G ' initiate change in speed and acceleration

Shift Point of Origin Example

The next example demonstrates how to change (shift) the point of origin between moves. This is
accomplished through the OSH command. The Origin command O={value} may also be used and can be
set to any absolute number.

O=0 ' set current position to zero
MP ' set to position mode (required if currently in another mode)
VT=100000 ' set velocity to 100000
ADT=1000 ' set accel/decel to 1000
PT=2000 ' set commanded absolute position to 2000
G ' Go (Start moving)
TWAIT ' wait until move is complete
OSH=-2000 ' shift current position back 2000 counts
WAIT=8000 ' wait 8 seconds
PT=2000 ' set commanded absolute position to 2000
G ' Go (Start moving)
TWAIT ' wait until move is complete

NOTE: The motor moved a total of 4000 counts, but its current position is only 2000 because it was
reset to zero between moves.

Relative Position Mode

In Relative Position mode the SmartMotor moves relative to its current position by the use of the PRT
(Position Relative Target) command.

The next list details the minimum requirements for a move to occur in Relative mode:

• Initiate Position mode MP command if not already in Position mode
• Nonzero value of Velocity VT=### set velocity equal to ###
• Nonzero value of Acceleration ADT=### set accel/decel equal to ###
• Relative commanded position PRT=### set relative position to ###
• Go command to initiate move G start move immediately

Relative Mode Example

The next example illustrates the use of Relative mode. The example moves the motor through three
2000-count moves or a total of 6000 counts.

Part 1: Programming: Shift Point of Origin Example

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 140 of 969

MP ' set to position mode (required if currently in another mode)
VT=100000 ' set velocity to 100000
ADT=1000 ' set accel/decel to 1000
PRT=2000 ' set commanded relative position move to 2000
G ' Go (Start moving 2000 counts)
TWAIT ' wait until move is complete
G ' Go (move 2000 counts again)
TWAIT ' wait until move is complete
G ' Go (One more time)

Follow Mode with Ratio (Electronic Gearing)

Follow Mode with Ratio (MFR) allows a motor to follow a standard TTL quadrature external encoder
input signal, or internal clock, at a user-defined ratio.

By default, Follow mode runs continuously at a ratio of 1:1 in terms of input counts to distance moved.

The user can freely select either the external encoder or fixed rate internal clock as the input source.
The fixed rate internal clock runs at 8000 counts per second by default, but can be influenced by the
PID commands. The SRC command defines whether to follow the internal counter or external encoder.

NOTE: Changed MFR values do not take effect until after the next G command.

The next list details the minimum requirements for a move to occur in Follow mode:

• Set Incoming counts multiplier MFMUL=### may be negative or positive

• Set Incoming counts divisor MFDIV=### may be negative or positive

• Calculate above ratio and mode MFR

• Go command to initiate the move G start following the encoder

NOTE: If the external encoder is not moving, no motion will occur. Commanded position must be
different than present position to cause a move.

CAUTION: Do not switch between gear modes while in operation. When a
transition is made, the profile must be stopped or the motor must be turned off.

Electronic Gearing and Camming over CANopen

Beginning with firmware 5.x.4.30 and later, the SmartMotor provides precise time synchronization over
CANopen between motors for electronic gearing and camming applications (for example, traverse and
take-up spooling). The CANopen objects related to this are: 1005h, 1006h, 2207h, 2208h, 2209h,
220Ah-220Dh. For details on these objects refer to the SmartMotor CANopen Guide. For a sample user
program, see CAN Bus - Time Sync Follow Encoder on page 883.

NOTE: This capability is currently available on Class 5 SmartMotors only.

Electronic Gearing Commands

The next sections describe related commands. For more details on these commands, see Part 2:
SmartMotor Command Reference on page 247.

Part 1: Programming: Follow Mode with Ratio (Electronic Gearing)

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 141 of 969

SRC(enc_src)

Select the input source used in Follow and Cam modes
The SRC() command can allow the SmartMotor to use the many advanced following and camming
functions even without an external encoder input. Values for enc_src:

0 Null (pauses controller)

1 External encoder (-1 inverts direction)

2 Time-base at PID rate (-2 inverts direction)

NOTE: SRC() can be updated while the motor is running. However, sudden speed changes may occur.

MFR

NOTE: When using the EOBK and MFR commands in the same program, there is interaction that
must be considered in the code. For details, see the Programming Note in EOBK(IO) on page 445 or
MFR on page 600.

Configure A & B inputs to Quadrature mode and select Follow mode
The Mode Follow Ratio (MFR) command configures the A and B inputs of the motor to be read as
standard quadrature inputs and puts the SmartMotor in Follow mode.

For a figure showing use examples of this command, see MFSDC Modes on page 148.

MSR

Configure A & B inputs to Step/Direction mode and select Follow mode
The Mode Step Ratio (MSR) command configures the A and B inputs of the motor to be read as
standard Step and Direction inputs and puts the SmartMotor in Follow mode.

MF0

Reset external quadrature encoder

MS0

Exit Step/Direction Follow mode
When using the ENC1 command, be careful that you do not inadvertently change the operation of the
encoder with the MF0 or MS0 command. If you must use an alternate encoder source for Follow mode
and at the same time use ENC1, then choose the version of the above commands to match your
encoder type for the ENC1 command.

MFMUL=formula, MFDIV=formula

Set Follow mode ratio
The internal mathematics work best by describing the Follow mode ratio in terms of a fraction of two
integers. Choose MFMUL and MFDIV to create the Follow mode ratio if it is not 1:1 (the default). Any
change to the ratio will be enabled by the G command.

MFMUL=formula 'Multiplier applied to Follow mode ratio
MFDIV=formula 'Divisor applied to Follow mode ratio

Part 1: Programming: SRC(enc_src)

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 142 of 969

MFA(distance[,m/s])

Ascend ramp to sync. ratio from ratio of 0

distance Setting from 0 to 2147483647. Set to 0 to disable. By default, it is disabled.

[,m/s] Is optional and specifies the meaning of distance. Values of [,m/s]: 0 for des-
ignating input units (controller units) and 1 for designating distance traveled (fol-
lower units).

For a figure showing use examples of this command, see MFSDC Modes on page 148.

MFD(distance[,m/s])

Descend ramp from ratio to ratio of 0

distance Setting from 0 to 2147483647. Set to 0 (default) to disable.

[,m/s] Is optional and specifies the meaning of distance. Values of [,m/s]: 0 for des-
ignating input units (controller units) and 1 for designating distance traveled (fol-
lower units).

For a figure showing use examples of this command, see MFSDC Modes on page 148.

MFSLEW(distance[,m/s])

Slew at ratio for a fixed distance

distance Setting from -1 to 2147483647. Set to -1 (default) to disable. When disabled,
Follow mode runs at ratio continuously.

[,m/s] Is optional and specifies the meaning of distance. Values of [,m/s]: 0 for des-
ignating input units (controller units) and 1 for designating distance traveled (fol-
lower units).

For a figure showing use examples of this command, see MFSDC Modes on page 148.

CAUTION: The next gearing examples are relative to the motor shaft position at
the time the G command is issued.

All distances are relative.

Follow Internal Clock Source Example

In this example, the motor follows the internal source at a 1:1 ratio and moves at a rate of 8000 counts
per second. For a NEMA 23 frame motor, that results in 2 RPS or 120 RPM motion.

NOTE: The trajectory and drive status LEDs will be continuously green. This is because the motor is
constantly calculating a trajectory from the gearing source signal.

SRC(-2) Results in inverting controller signal direction and changing motor direction.
Changing the sign of either MFMUL or MFDIV also inverts direction.

SRC(-1) Inverts the external encoder signal; provides the easiest way to correct for

Part 1: Programming: MFA(distance[,m/s])

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 143 of 969

inverted encoder signal direction.

SRC(0) Null (pauses controller counts).

SRC(1) (Default) Sets motor to follow the external encoder.

SRC(2) Use one count per PID cycle (default is 8.0 kHz).

CAUTION: MFMUL must not be set excessively higher than MFDIV. Doing so will
result in small changes in controller counts and large changes in follower-gearing
counts. This may cause motor harmonic distortion or following errors.

SRC(2) 'Set signal source to internal 8K counts/sec
MFMUL=100 'Default is 1
MFDIV=100 'Default is 1
MFR 'Enable Follow mode at specified ratio
G

Follow Incoming Encoder Signal With Ramps Example

This example shows a profile driven by an incoming encoder signal. In addition to following the incoming
encoder, the SmartMotor performs an acceleration (ascend or ramp up) into the following relationship
(slew), and after a prescribed distance, performs a deceleration (descend or ramp down) back to rest.
Refer to the next figures.

Part 1: Programming: Follow Incoming Encoder Signal With Ramps Example

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 144 of 969

Encoder Source Counts into TMP

M
FM

U
L/

M
FD

IV
Ra

tio
Area A

(ascend)
MFA(200,0)

Area S
(slew)

MFSLEW(200,0)

Area D
(descend)
MFD(400,0)

Trapezoidal Move Pro�le (TMP): MFMUL=300, MFDIV=100

0 100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

2

2.5

3

3.5

Ratio

Ramp

Ra
m

p
up

Ramp down

Encoder Source Counts into TMP

In
te

rm
ed

ia
te

 C
ou

nt
s

to
 O

ut
pu

t

TMP Output Position

0 100 200 300 400 500 600 700 800 900
0

200

400

600

800

1000

1200

1400

Output position

1600

600

600

300Ascend (Ramp up)

Slew

Descend (Ramp down)

Trapezoidal Move Profile (TMP) and Output Position Diagrams

In the first graph, the 'controller' (encoder source counts into TMP) is along the horizontal axis of the
graph, and the gear ratio (MFMUL/MFDIV) is along the vertical axis of the graph. This demonstrates
that "area under the curve" is the 'follower' position.

The second graphs shows the follower position as a function of controller encoder source counts to
intermediate counts (the TMP output). In this example, MFA, MFD and MFSLEW are commanded in
controller units (source counts). These three commands can accept either controller (source counts) or
follower units (intermediate counts) according to the second argument as a 0 or 1, respectively. The
firmware automatically calculates the move accordingly. The next example uses the command(x,0) form
to specify 'controller' or source counts.

MFMUL=300
MFDIV=100
MFA(200,0) 'Move 200 controller counts over ascend (area "A")
MFD(400,0) 'Move 400 controller counts over descend (area "D")
MFSLEW(200,0) 'Maintain sync ratio for 200 controller counts (area "S")
MFR 'Enable Follow mode at specified ratio
G

Each time a G (Go) is received, the motor follows the Trapezoidal Move Profile (TMP).

Part 1: Programming: Follow Incoming Encoder Signal With Ramps Example

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 145 of 969

For labeling applications, it may be beneficial to feed out over a preset distance profile, also known as
a "one-shot" gearing trapezoidal profile. This is where the MFSLEW() command comes in, as shown in
the code and figures.

Each parameter distance is subject to follower counts, not controller counts.

The total distance traveled by the follower will be MFA distance + MFD distance + MFSLEW distance.
In this case, 300+600+600 or 1500 total follower counts moved.

Electronic Line Shaft

NOTE: This section only applies to M-style motors.

For some applications, it is useful to create a controller/follower motor relationship known as an
"electronic line shaft" (see the next figure). This setup is used for machines such as printing presses,
where everything must run at proportional speeds to the main (controller) axis.

Electronic Line Shaft Diagram

On the M-style SmartMotors, there is a bidirectional Encoder Bus port. Using this port, along with
Moog Animatics encoder bus cables, you can daisy chain a series of M-style motors:

l One motor will have ENCD(1) issued; this will be the controller.

l All other motors will have ENCD(0) (default) issued; these will be the follower devices.

ENCD(in_out)

Sets the Encoder Bus port as an input or an output — only applies to motors with Encoder Bus
connecters, such as M-style SmartMotors.
The ENCD() command allows the M-style SmartMotor to use the Encoder Bus port as either an input or
an output. This allows the motor to operate as a controller (output) or follower (input) when daisy
chained to other M-series motors through the Encoder Bus ports. The value for
in_out can be hard-coded or a variable:

0 (Default) Encoder Bus port is an input.

1 Encoder Bus port is an output.

Part 1: Programming: Electronic Line Shaft

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 146 of 969

The ENCD() command can be used over the Combitronic network.

Spooling and Winding Overview

Spooling or winding provides a cost-effective way to package materials of very long length, such as
thread, film, labels, cable and thermoplastics. The material is fed from a large spool at a certain rate
onto another spool, with a traversing mechanism between the two spools to create the desired pattern
or evenly wind onto an flanged spool or cylindrical core despite the core shape. The integrity of the
spool is often based on precise patterns and proper tension control throughout the winding process.
The next figure provides examples of common spool-winding patterns:

There are various problems associated with winding and spooling applications, such as: material tension
control, setting proper dwell points, over/under-travel (which results in a "dog bone" shape) and tapered
patterns with low-friction materials or wound onto cylindrical cores.

The next sections provide commands and example programs designed to help you handle the challenges
of spooling/winding applications.

Relative Position, Auto-Traverse Spool Winding

The next figure provides a simple representation of an auto-traversing spool winding application.

Part 1: Programming: Spooling and Winding Overview

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 147 of 969

Auto-Traversing Spool Winding Mechanism

The MFSDC command is used to initiate the dwell and reverse direction (traverse) needed to perform
spooling/winding operations.

MFSDC(distance,mode)

Dwell at 0 ratio for input distance
distance Set from 0 to 2147483647 through a variable or hard-coded value to specify

the number of controller counts the follower dwells at zero ratio. Set to -1
(default) to disable (see the first row of the next table). When disabled, Follow
mode runs at ratio continuously.

mode Specifies the gearing profile application in firmware, as shown in the next table.
These follow a predefined trapezoidal profile (see the next figure).

For example, a setting of 0 for mode is typical for feeding labels in label
applications; a setting of 1 is typical for traverse-and-takeup spool winding
applications.

dist mode Motion Repeat Run state; Initiated by
-1 0 relative one cycle, no repeat once; a G or G(2) command

x 0 relative repeat, one direction continuous; after initial G or G(2)
x 1 relative traverse back/forth continuous; after initial G or G(2)
x 2 absolute traverse back/forth continuous; after initial G or G(2)

CAUTION: Any value other than -1 for the MFSDC distance command causes the
motion profile to continuously dwell and repeat. Reissue the command with
distance equal to -1 to stop the repetitive motion.

NOTE: The MFMUL and MFDIV commands do not have an effect on dwell time or distance. Dwell is
strictly based on raw controller encoder counts selected by the SRC() command specifying internal
virtual or external controller count source.

Part 1: Programming: MFSDC(distance,mode)

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 148 of 969

MFSDC(-1,0)

G issued

slew

ascend

MFSLEW

MFA MFD

descend

MFSDC(x,0)

G issued (just once)

slew

ascend

MFSLEW

MFA MFD

descend

x=dwell distance; motor repeats in one direction

MFSDC

dwell
No G required

MFSDC(x,1)

G issued (just once)

slew

ascend

MFSLEW

MFA MFD

descend

x=dwell distance; motor traverses

MFSDC

dwell

No G required

MFSDC(x,2)

G issued (just once)

MFLMFLTP MFH

x=dwell distance; motor traverses between abs. values of MFHTP & MFLTP

MFSDC

dwell

No G required

MFHTP MFHTP MFLTP MFLTP

one cycle (no repeat)

Can be used

with Camming

operation

DO NOT USE

with Camming

operation

NOTE: The examples above work when MFSLEW(x,y) has been set. By default, x is -1, which means “slew forever”

and prevents the repeating cycles shown above. Therefore, to disable any of these modes and go back to forev-

er-run at slew, set MFSLEW(-1,0); to get one of the cycles above, ensure that MFSLEW(x,y) where x >= 0.

No MFSDC command

G issued

slew forever unless

ascend

MFSLEW

MFA>0 MFD>0

descendMFR

X issued

or no MFD with OFF

for abrupt Stop. . .

G issued

slew forever unless
step

change

MFSLEW

MFA=0 MFD=0

MFR

. . .

step

change

X issued

MFSDC Modes

The next example demonstrates the use of the MFSDC command. It is a spool-winding program that
performs a following profile across the spool, a dwell at the end for a specific span of input distance
and then reverses the profile back to the original end of the spool for another dwell. The motion
repeats until another MFSDC command is issued with Exp1 equal to -1 and then a G command, or an X
or S command, is issued.

Part 1: Programming: MFSDC(distance,mode)

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 149 of 969

a=1000 'Ascend and descend distance in follower counts
b=200000 'Spool width in follower counts
c=4000 'One rev of spool in controller counts
s=b-(a*2) 'Calculate MFSLEW distance
m=1000 'Gear ratio multiplier
d=1000 'Gear ratio divisor
MFMUL=m 'Set ratios for gearing
MFDIV=d
MFA(a,1) 'Set ascend into ratio distance
MFD(a,1) 'Set descend out of ratio distance
MFSLEW(s,1) 'Set slew dis. between the accel and decel points
MFSDC(c,1) 'Set dwell for "c" counts, auto rev. after dwell
MFR 'Enable Follow mode at specified ratio
G 'Start following the external controller encoder

NOTE: The G command assumes the cycle starts at the same end of the spool each time.

A shift back and forth to the oscillation can be achieved by running in dual-trajectory mode. For more
information on dual-trajectory mode, see Dual Trajectories on page 175.

SRC(2) 'Set signal source to internal 8K counts/sec
MFMUL=100 'Default is 1
MFDIV=100 'Default is 1
MFA(500,1) 'Set ascend ratio distance of 500 follower counts
MFD(500,1) 'Set descend ratio distance of 500 follower counts
MFR(2) 'Enable Follow mode for SECOND TRAJECTORY at specified ratio
MFSLEW(8000,1) 'Stay at slew ratio for 8000 counts of the follower
MFSDC(100,1) 'Dwell for 100 counts, auto repeat in reverse direction
G(2) 'Begin to follow controller signal in SECOND trajectory
MP(1) 'Set FIRST TRAJECTORY mode to Position mode
VT=100000 'Set velocity to run over top of gearing
ADT=100 'Set accel/decel to run over gearing
PRT=1000 'Set relative move
G(1) 'Shift all motion 1000 counts in positive direction

CAUTION: In the above example, repeating G(1) continuously shifts oscillation in
the positive direction by 1000 counts or the value in PRT.

NOTE: A velocity MV(1) or position MP(1) mode may be used over gearing. All distances are relative
to gearing. The command X(2) stops gearing; the command X(1) stops position or velocity moves.

Dedicated, Absolute Position, Winding Traverse Commands

This section applies to absolute positioning in electronic gearing. It is specifically tailored to traverse
and take-up winders.

Refer to the next figure. The MFMUL and MFDIV commands, which were previously described in this
chapter, are used to set the ratio of controller to follower motion as a maximum when slew is reached.
The sign of MFMUL/MFDIV is ignored in this mode of operation — only the absolute value is used. The
initial direction of motion is not affected by the sign of MFMUL/MFDIV.

NOTE: If MFMUL=0, then the traverse process will end when the next endpoint is reached.

Part 1: Programming: Dedicated, Absolute Position, Winding Traverse Commands

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 150 of 969

Refer to the next figure. The MFSDC command enables the absolute traverse mode of operation. The
MFLTP and MFHTP commands are then used to set the low and high traverse points, respectively,
which control the spool width and position.

NOTE: The value of MFHTP must be greater than or equal to the value of MFLTP.

The next sections describe related commands. For more details on these commands, see Part 2:
SmartMotor Command Reference on page 247. They are not intended to be combined with Cam mode.

MFSDC(distance,2)

Absolute traverse mode for input distance

distance Length of the dwell at both ends of the move in controller units. Use -1 to
disable; range of distance is 0 to 2147483647.

2 Activates the absolute traverse mode of operation.

For additional details and figures, see MFSDC(distance,mode) on page 147.

MFLTP=formula

Mode follow lower traverse point

formula Specifies the lower traverse point. Range is any 32-bit signed value. It must
be less than or equal to MFHTP; MFHTP-MFLTP must be less than 231.

For a figure showing use examples of this command, see MFSDC Modes on page 148.

MFHTP=formula

Mode follow higher traverse point

formula Specifies the higher traverse point. Range is any 32-bit signed value. It must
be greater than or equal to MFHTP; MFHTP-MFLTP must be less than 231.

For a figure showing use examples of this command, see MFSDC Modes on page 148.

MFCTP(arg1,arg2)

Sets control information for traverse mode

arg1 Sets initial direction motor will move upon receiving G.

arg1=-1: (When G is issued) Traverse toward most recent direction when
previous traverse move ended. This is most likely required in all winders.

Part 1: Programming: MFSDC(distance,2)

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 151 of 969

l This direction is indicated by Status Word 7, Bit 13.
l This state is not reset by an X or an OFF.

arg1=0: (Power-up default value) Initially traverse toward higher bound when G
is issued.

arg1=1: Initially traverse toward lower bound when G is issued.

arg2 Special bits:

arg2=1: The RPC(2) frame of reference is updated with shaft motion when the
servo is off (OFF, MTB, MT). This is a special setting to ensure backward
compatibility with existing applications that may use the RPC(2) frame of
reference.

arg2=0: (Power-up default value) The RPC(2) frame of reference is frozen when
the servo is off (through OFF, MTB, MT).

MFL(distance[,m/s])

Ramp at the lower end of traverse; designate controller or follower

distance Specifies the ramp distance at the lower end of the traverse. Distance range:
0 to 2147483647

[,m/s] 0=controller, 1=follower; distance range: 0 to 2147483647

For a figure showing use examples of this command, see MFSDC Modes on page 148.

MFH(distance[,m/s])

Ramp at the higher end of traverse; designate controller or follower

distance Specifies the ramp distance at the higher end of the traverse. Distance range:
0 to 2147483647

[,m/s] 0=controller, 1=follower; distance range: 0 to 2147483647

For a figure showing use examples of this command, see MFSDC Modes on page 148.

ECS(counts)

Encoder count shift — immediately compensates for variation in material width

counts Specifies the counts to be added to (or subtracted from) incoming controller
counts as if they had an immediate change in value. For example, if the
external encoder count is 4000, and ECS(1234) is issued, the count would
immediately shift to 5234. Note that when the MFMUL:MFDIV ratio is other
than 1:1, the ratio is multiplied by the ECS value.

CAUTION: Large values may cause jerks in motion or following errors.

The ECS command is dynamic and immediate (not buffered), and it does not require a G command.
Further, it works on top of any gearing or camming mode.

Part 1: Programming: MFL(distance[,m/s])

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 152 of 969

Proper use of the ECS command will allow full
packing of material onto a spool regardless of
variance in material width.

1. A sensor reads the material width.

2. Through programming, the user will scale
value to encoder counts.

3. Based on encoder counts, the traversing
SmartMotor will have ECS(encoder counts)
issued, which results in a change to
incoming controller counts by that value.

4. The SmartMotor adjusts its gearing.

The ECS command is for tiny continuous corrections, where changing MFMUL or MFDIV is not desired
because the basic ratio needs to remain fixed, but changes in demand for correction may need to be
adjusted over time. For example, assuming you have a program with normal gearing:

MFMUL=1 'Ratio (default is 1)
MFDIV=1 'Ratio (default is 1)
MFR 'Enable Follow mode at specified ratio
G 'Begin move.

In this case, the motor begins spinning at a 1:1 ratio of external encoder input. Then you issue:

ECS(10) 'Encoder count shift of 10 counts

The motor will lunge forward by 10 encoder counts, as shown in the next figure.

Change Caused by ECS Command

However, if MFMUL=100 and MFDIV=1 (100:1 ratio), the motor would lunge forward by 1000 counts
because the ratio is multiplied by the ECS value. In this case, if EL (Error Limit) was set to 1000 or less,
the change from ECS would cause an instantaneous following error. It could also cause peak
overcurrent errors.

Single Trajectory Example Program

The next example shows a single-trajectory traverse winding application. It uses the commands for
high/low ramps and traverse points, which were discussed previously. For details, see Dedicated,

Part 1: Programming: Single Trajectory Example Program

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 153 of 969

Absolute Position, Winding Traverse Commands on page 149.

' *** User does some type of homing before this. ***
SRC(2) '*** For Demo controller signal ***
'Typical applications would use SRC(1) for encoder input.
MFCTP(0,1) 'Start traverse state in "normal" direction

'Activate update of RCP(2) when servo is off
MFL(1000,1) 'Lower-end ramp
MFH(1000,1) 'Higher-end ramp
MFLTP=-1000 'Lower traverse point
MFHTP=1000 'Higher traverse point
MFMUL=1 'Ratio (default is 1)
MFDIV=1 'Ratio (default is 1)
MFSDC(4000,2) 'Dwell for 4000 counts, 2 is active traverse mode
MFR 'Enable Follow mode at specified ratio
G 'Begin move

Chevron Wrap Example

This example uses a more complex winding method, where camming (high-frequency oscillation) occurs
on top of gearing (low-frequency traverse), to create a custom "chevron" wrap. For electronic camming
details, see Cam Mode (Electronic Camming) on page 156.

The frequency plot for this winding method is shown in the next figure.

"Chevron" Winding Frequency Plot

Part 1: Programming: Chevron Wrap Example

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 154 of 969

Note that camming can be linear, or cubic spline, which permits a smooth, high-frequency oscillation on
top of the low-frequency traverse. Refer to the next figure.

Smooth High-Frequency Oscillation

The overlapping "chevron" wraps are advantageous because they prevent the material from becoming
trapped in the windings of the underlying layer, which can cause it to be pinched/kinked or break during
removal. Either of those conditions would cause the spool to be defective. Refer to the next figures.

To create this solution, the SmartMotor requires only four parameters:

'System parameters:
c=8000 'Controller (External) Encoder resolution

'(counts per 360 deg turn of spool)
w=10000 'Spool width distance in encoder counts of traversing follower motor

'Chevron shape parameters:
n=1000 'Follower counts per full (360 deg) turn of controller spool (pitch)
nn=1000 'Follower counts per half (180 deg) turn of controller spool

'(amplitude of chevron)

The complete code example is available in Chevron Traverse & Takeup on page 877. For more
information on electronic camming, see Cam Mode (Electronic Camming) on page 156. Also, see the
Fixed Segment Cam Simulator (available on the Moog Animatics website at
https://www.animatics.com/support/downloads.knowledgebase.html), which is a gearing/camming
training aid.

Part 1: Programming: Chevron Wrap Example

https://www.animatics.com/support/downloads.knowledgebase.html

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 155 of 969

Other Traverse Mode Notes

These are other notes related to operation in Traverse mode.
l MFA() is not used at this time in Traverse mode.

l MFD() should only be used for a stop from the X command while in Traverse mode.

l The traverse points are in the context of move generator 2: RPC(2). If multiple trajectories are
commanded after the start of the move, then they are not specifically in the context of the
motor shaft's actual position (RPA).

l RPC is automatically copied to RPC(2) at the start of the Traverse move only during single-
trajectory moves. This is done to accommodate the typical use of a single trajectory where the
user is homing the machine based on shaft position.

l If multiple trajectories are active, then the user is responsible for setting RPC(2) with the O(2)=
command or shifting with the OSH(2)= command to establish the desired frame of reference.

CAUTION: Do not issue a change to RPC(2) during a traverse move using either the
O(2)= or OSH(2)= command. This will produce unpredictable behavior that is
undefined at this time. Those commands should be issued before issuing a G or G
(2) when in dual-trajectory mode.

l MFMUL and MFDIV determine the ratio of controller to follower motion as a maximum when a
slew is reached.

l The sign of MFMUL/MFDIV is irrelevant in this mode of operation. Only the absolute value
is used.

l The initial direction of motion is not affected by the sign of MFMUL/MFDIV.

l If MFMUL=0, then the traverse process ends when the next endpoint is reached.

l Traverse mode of operation is initiated using the G command. G may be issued from drive off or
other modes of operation.

CAUTION: Do not repeat the G command while in traverse mode. Doing so will
produce unpredictable behavior that is undefined at this time.

Part 1: Programming: Other Traverse Mode Notes

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 156 of 969

Traverse Mode Status Bits

Status
Word Bit Description

7 8 Trajectory is in progress. Indicates that trajectory is being generated and
continuous motion is in progress, even if in a dwell state.

Bit is cleared when X, S, fault, OFF or MFMUL=0 ends the trajectory.
7 9 Ascend: In Traverse mode, this indicates the lower traverse point ramp is in

progress.
7 10 Slew: in Traverse mode, this indicates the slew segment is in progress.
7 11 Descend: In Traverse mode, this indicates the higher traverse point ramp is in

progress.
7 12 Dwell: In Traverse mode, this indicates the higher dwell state in progress.
7 13 State: The most recent Traverse mode state.

=0 Motion profile is set to/moving in the forward direction. This is the power-up
default state.

=1 Motion profile is set to/moving in the reverse direction.

The use of status word 7, bit 13 is undefined in other modes of operation with
trajectory 2.

7 14 Dwell: In Traverse mode, this indicates the lower dwell state in progress.

Cam Mode (Electronic Camming)

Electronic camming is similar to mechanical cams — for a given controller rotating device, a follower
device tracks the speed and moves through a fixed profile of positions. In electronic camming, the
profile is a look-up table of data stored in the follower motor.

Example Cam Profile

The SmartMotor supports motion profiles based on data stored in a Cam table. The Cam table can
reside in EEPROM memory or in the user array.

NOTE: Cam tables can be written to EEPROM memory, which retains its contents when power is
removed; or to the variable data space, which provides more flexibility but is cleared when power is
removed.

Part 1: Programming: Traverse Mode Status Bits

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 157 of 969

These are the available storage locations:
l RAM storage: 1 Cam table

l 52 fixed length data points, 35 variable length data points

l Flash storage: 9 Cam tables
l 750 fixed length data points, 500 variable length data points

l EEPROM: Up to 8000 points total may be stored and moved to flash or RAM

Cam table data may be directly imported from a tab delimited text file or spreadsheet.
l Data imported to the SMI software can be written into a program, copied to the clipboard or

written directly (live) into a motor
l Import function allows for optimizing data points for cubic spline interpolation

The motor position is interpolated between each data point. This interpolation can be specified as
linear, spline that is not periodic and spline that is periodic. Spline mode allows motion paths to be
created from a reduced number of points. For example, the next figure shows an X-Y plot of Cam
tables running on two motors. While the original data contained over 700 data points, Spline mode
reduced the data set to approximately 30 points in each motor.

Example of Spline Mode Points and Motion Path

Cam mode has the ability to apply sophisticated shaping and selection of the encoder input source
using Follow mode. Cam mode uses MFMUL and MFDIV to set the follow ratio for incoming controller

Part 1: Programming: Cam Mode (Electronic Camming)

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 158 of 969

counts. Through the use of the SRC command, either the external encoder or a fixed-rate "virtual
encoder" can be used as the input source to the cam. This fixed-rate (virtual) encoder also works
through Follow mode, so the actual rate into the cam can be set. The speed of the virtual encoder is
equivalent to the PID rate. In other words, for a Class 5 motor at its default PID rate of 8000 Hz, the
virtual encoder sees 8000 encoder counts per second.

One example of this is a complex "chevron" pattern winding application where camming (high-frequency
oscillation) occurs on top of gearing (low-frequency traverse). This is used to spool material in a way
that prevents it from getting pinched or trapped in the underlying layers. For more details, see Chevron
Wrap Example on page 153.

Electronic Camming Details

For a brief description of the Cam mode (electronic camming) commands in this section, see Electronic
Camming Commands on page 165. Follow mode (electronic gearing) commands were previously
discussed in Electronic Gearing Commands on page 140. Also, refer to the detailed command
descriptions in Part 2: SmartMotor Command Reference on page 247.

Understanding the Inputs

There are two modes of operation (and associated commands) that involve the Trapezoidal Move
Profile (TMP):

l MFR (Mode Follow Ratio) / MSR (Mode Step Ratio): TMP function only.

MFR uses external encoder input if it is in quadrature mode; MSR uses step/direction mode.
When using SRC(2) — internal time base at PID rate — there isn’t a distinction.

l MC (Mode Cam): TMP function with Cam function

The TMP function's output (intermediate counts) feeds into the cam’s input.

Motion is created by "massaging" TMP intermediate counts into the cam table. It is NOT gearing
summed with camming. If the cam length is 0, there is no motion!

Use the Fixed Segment Cam Simulator (available on the Moog Animatics website at
https://www.animatics.com/support/downloads.knowledgebase.html) to learn how to properly select
the appropriate settings that perform the number of cam cycles desired. For example, you can use it to
determine the settings if the application intends to perform a single-shot of the whole cam (refer to
Camming - Demo XY Circle on page 875 for a single-shot program example).

NOTE: The Fixed Segment Cam Simulator is intended as a gearing/camming training aid only. It is
not designed as an all-inclusive means for creating camming applications.

Refer to the next figure.

Part 1: Programming: Electronic Camming Details

https://www.animatics.com/support/downloads.knowledgebase.html

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 159 of 969

Encoder
input

Trap. move
prof. (TMP)

Output
motion

Encoder
input

Cam
function

Output
motion

Follow mode (MFR)

Cam mode (MC)

NOTE: The relationship between TMP source counts and TMP intermediate counts is a�ected by the ratio of MFMUL/MFDIV.
For gearing, MFMUL/MFDIV determines how far; for camming, MFMUL/MFDIV determines how fast.

MFA(x,0)
Source counts
input to TMP

MFA(x,1)
Intermediate counts
output from TMP

MFD and MFSLEW are handled in
the same manner in terms of
“source” and “intermediate” counts

Trap. move
prof. (TMP)

Source Counts
Intermediate
Counts

Source Counts Intermediate
Counts

Motion is created by “massaging ” TMP
Intermediate Counts into the cam table. It
is NOT gearing summed with camming!
I.e., if cam length is 0, there is no motion!

Follow Mode and Cam Mode Functional Diagrams

NOTE: Before programming an electronic camming application, it is strongly recommended to first
evaluate your application in terms of source counts or intermediate counts, and variable or fixed
cam. Refer to the next two sections.

Part 1: Programming: Understanding the Inputs

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 160 of 969

Should I choose Source Counts or Intermediate Counts?

NOTE: In order to simplify programming and math calculations, it is strongly recommended that all
MFA, MFSLEW and MFD second parameters be the same, either a 0 or a 1.

Refer to the previous figure. The choice of MFA(x,0) vs. MFA(x,1), 'encoder input to TMP' (or "source
counts") versus 'motor output from TMP' (or "intermediate counts") is application-dependent. You
should use whichever represents the values used in your application. In other words, it should be values
that you want to keep the same effect even if MFMUL/MFDIV is changed.

NOTE: The MFA(x,1) format of the command is based on the output of the TMP function
(intermediate counts); it IS NOT the motor/shaft total output!

For example:
l If you know that you need to follow a conveyor (not driven by the SmartMotor) and accelerate

over 1000 counts distance on that conveyor as the input value, then choose MFA(x,0) for source
counts.

l If you know that you need Follow mode, and the output distance of the acceleration needs to be
a certain distance of the conveyor being driven by a SmartMotor, then choose MFA(x,1) for
intermediate counts.

When in Cam mode, the output of the TMP function goes into the cam. Therefore, you will likely want to
select MFA(x,1) to ensure the cam input is a known amount for the TMP (i.e., you will execute a known
portion of the cam regardless of the MFMUL/MFDIV settings). If you have a cam application and you
need values in terms of source counts distances, then some additional calculations will be needed in the
program (based on the examples given). Refer to the figure Source Counts into Cam versus
Intermediate Counts into Cam on page 161.

Should I choose Variable or Fixed cam?

The choice of fixed length segments vs. variable length segments in a cam is another choice to make.

Generally speaking, fixed-length segments are simpler and allow more overall points because less
storage space is needed. This works well if you have a large amount of uniformly sampled data points,
for example, the output of a CAD drawing.

Variable segment lengths allow for some special applications. You can more carefully craft a set of
data points that exactly coincide with certain events in the cam input. If you have a set of data points
where you want to reach a specific position for a specific distance of the input (but that doesn’t line up
with a regularly-sampled rate), then the variable-length segments can be used to exactly line up with
those input values. This can produce a smoother, and more predictable, result if spline interpolation is
enabled in Cam mode.

Further, with variable segments, there is a possibility that certain types of applications could
significantly reduce the number of cam points required. For example, there is a tool in SMI that can
take data points and apply a "data pruning" to reduce the number of cam points required. However, the
tradeoff is that each remaining point requires more storage space but the overall table possibly uses
vastly fewer points. In addition, variable-segment cams make it easier to have specific linear and spline
interpolated moves in a reduced cam table, allowing sharp corners mixed with smooth curves in a single
path.

Part 1: Programming: Should I choose Source Counts or Intermediate Counts?

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 161 of 969

Source Counts into Cam - MFA, MFD, MFSLEW use command (x,0)

Ratio

Input
counts

TMP
output

Input
counts

1000 5000 1200

MFA(1000,0)

MFSLEW(5000,0)

MFD(1200,0)

Slope is the ratio MFMUL/MFDIV

regardless of input or output

distance

MFA(x,0), MFD(x,0), MFSLEW(x,0)

If MFMUL or MFDIV are
changed, the new move will
respect the output targets and
adjust output accordingly.

Ratio =
MFMUL

MFDIV

MFMUL=3

MFDIV=7

1200

2
*

3

7

5000 *
3

7

1000

2
*

3

7

0 1000 6000 7200

Intermediate Counts into Cam Diagram - MFA, MFD, MFSLEW use command (x,1)

Ratio

Input
counts

TMP
output

Input
counts

?a ?b ?c

MFA(1000,1)

MFSLEW(5000,1)

MFD(1200,1)

Slope is the ratio MFMUL/MFDIV

regardless of input or output

distance

1000

5000

1200

1000

6000

When MFA(x,1), MFD(x,1), MFSLEW(x,1),

the !rmware back-!gures which input

values are needed to achieve this:

?a = * 2 * 1000
7

3

?b = * 5000
7

3

?c = * 2 * 1200
7

3

If MFMUL or MFDIV are changed, the
new move will respect the output
target and adjust inputs accordingly.

The ratio of MFMUL/MFDIV is still
respected.

Ratio =
MFMUL

MFDIV

MFMUL=3

MFDIV=7

7200

Source Counts into Cam versus Intermediate Counts into Cam

Part 1: Programming: Should I choose Variable or Fixed cam?

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 162 of 969

Electronic Camming Notes and Best Practices

These are important notes and best practices for electronic camming applications:
l The first cam point should be CTW(0,0) or CTW(0) variable length or fixed length cam segment,

respectively.
l It is up to the programmer to pick a repeating cycle of the TMP function (MFA + MFSLEW +

MFD) that also matches the controller length of the table (CTA). Note that:
l The output of MFA, MFSLEW and MFD are physically executed in sequence. They DO NOT

overlap in any way (see the next bullets). Therefore, it may be helpful to place them in
sequence in your program.

l For simplicity, use MFA(x,1), MFSLEW(y,1), and MFD(z,1), output from TMP counts,
because then: x+y+z = the total distance as input into the cam.

For example, if your cam repeats every 800 input counts, then you must distribute that
800 counts over the ascend, slew, and descend parts of the TMP. For an illustration of the
parts of the TMP, refer to the Gearing Profile figure on page 144.

NOTE: DO NOT assume that MFSLEW (slew) alone is the total cam length; it is not!
l If the application needs to function in terms of input encoder counts (see the previous

figure), then these transforms must be considered:

TMP ascend and descend relationship is: Output = (Input/2) * (MFMUL/MFDIV)

Slew section is: Output = Input * (MFMUL/MFDIV)
l As shown in the previous two bullets, MFMUL and MFDIV are imposed on command(x,0)

values. However, note that MFMUL and MFDIV still have an effect in both modes (i.e., the
ratio of input to output counts is still MFMUL/MFDIV). The difference is the final output
value used as the trigger to go to the next phase is not affected in (x,1) mode.

l MFSDC takes two arguments. To disable any "repeating" of the TMP function, the command is
MFSDC(-1,0).

NOTE: MFSDC(-1) is seen as an error and won't change the existing setting.

For diagrams of MFSDC settings and their results, see MFSDC Modes on page 148. However,
note that the last mode shown is not for use with Cam mode.

l If no MFSLEW is set (default operation), the ramp function will execute MFA and then run
forever (until X command). Use the command MFSLEW(-1), MFSLEW(-1,0) or MFSLEW(-1,1) to
disable the slew distance (i.e., any of those three forms of MFSLEW will disable the slew
distance).

l Camming with gearing fed into it is the default operation, i.e., camming with gearing of
MFMUL=1, MFDIV=1, the MFA and MFD commands are at 0 distance, and MFSLEW is ignored. In
this default operation, if you issue MC, G commands, the motor starts camming off of the source
SRC(1, or 2) immediately. When a set single shot or repeated cycle is desired, that is where
MFSDC and the other commands come into play, especially for label feeding, traverse cutting,
and similar applications. For an example, refer to the sample program Camming - Demo XY Circle
on page 875.

Part 1: Programming: Electronic Camming Notes and Best Practices

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 163 of 969

l Always structure the program to minimize writing of the cam table to the EEPROM.

CAUTION: When writing a cam table to EEPROM, structure the program so
that the cam table is not frequently rewritten or written from a loop.
Repeated erasing and rewriting can burn bits and corrupt data.

There are various ways to achieve this—refer to the next code snippet for one example:

C123 'Example of using EEPROM to flag code that has been run
EPTR=100 'set pointer to EEPROM
VLD(a,1) 'load value
IF a!=123 'if value does not equal 123

'do something here that you want to do only once
'such as write a cam table to nonvolatile memory

EPTR=100 'set EEPROM pointer
a=123 '
VST(a,1) 'write value to EEPROM

ELSE
'something was already done
ENDIF
RETURN

Part 1: Programming: Electronic Camming Notes and Best Practices

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 164 of 969

Examples

Fixed cam example with both controller or follower counts as inputs to the cam:
CTE(1)

CTA(5,8000)
CTW(0) 'CP=0 {cam pointer or cam index pointer}
CTW(500) 'CP=1
CTW(4000) 'CP=2
CTW(500) 'Will turn off at this point
CTW(0)
MFMUL=1
MFDIV=2
MCMUL=3
MCDIV=4

'Cam input values in terms of "controller" (encoder input to ramp) counts:
MFA(a,0)
MFSLEW(s,0)
MFD(d,0)
'(a/2 + s + d/2) * MFMUL/MFDIV = 8000*4 = 32000 counts

'OR, cam input values in terms of "follower" (motor output from ramp)counts:
MFA(a,1)
MFSLEW(s,1)
MFD(d,1)
'a+s+d = 8000*4 = 32000 counts

Variable cam example with both controller or follower counts as inputs to the cam:
CTE(1)

CTA(5,0)
CTW(0,0) 'CP=0 {cam pointer or cam index pointer}
CTW(500,8000) 'CP=1
CTW(4000,16000) 'CP=2
CTW(500,24000) 'Will turn off at this point
CTW(0,32000)
MFMUL=1
MFDIV=2
MCMUL=3
MCDIV=4

'Cam input values in terms of "controller" (encoder input to ramp) counts:
MFA(a,0)
MFSLEW(s,0)
MFD(d,0)
'(a/2 + s + d/2) * MFMUL/MFDIV = 32000

'OR, cam input values in terms of "follower" (motor output from ramp) counts:
MFA(a,1)
MFSLEW(s,1)
MFD(d,1)
'a+s+d = 32000

Electronic Gearing and Camming over CANopen

Beginning with firmware 5.x.4.30 and later, the SmartMotor provides precise time synchronization over
CANopen between motors for electronic gearing and camming applications (for example, traverse and

Part 1: Programming: Examples

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 165 of 969

take-up spooling). The CANopen objects related to this are: 1005h, 1006h, 2207h, 2208h, 2209h,
220Ah-220Dh. For details on these objects refer to the SmartMotor CANopen Guide. For a sample user
program, see CAN Bus - Time Sync Follow Encoder on page 883.

NOTE: This capability is currently available on Class 5 SmartMotors only.

Electronic Camming Commands

The next sections describe related commands. For more details on these commands, see Part 2:
SmartMotor Command Reference on page 247.

CTE(table)

Erase tables in EEPROM memory starting at the value specified
To erase all EEPROM tables, choose CTE(1). By choosing a number higher than 1, lower table numbers
can be preserved. If, for example, there were three tables stored, CTE(2) would erase table 2 and 3, but
not table 1. CTE(0) is not defined.

CTA(points,seglen[,location])

Add a Cam table
The CTA command configures a table to use either EEPROM memory (default) or the data variable
space (optional) in preparation for writing the table with the CTW command.

points Specifies the number of points in the table.

seglen Specifies the controller encoder distance between each point. If seglen is set
to 0, then the distance is specified per data record through the CTW command.

[,location] Is optional and specifies if this is a table in user variables or EEPROM. By
default, if [,location] is omitted, then EEPROM is chosen. If [,location] is 0, then
the user array location is chosen (al[0] through al[50].) Only one table can exist
in the user variables. Up to 10 tables (numbered 1 through 10) can exist in
EEPROM location.

CTW(pos[,seglen][,user])

Write a Cam table
The CTW command writes to the table addressed by the most recent CTA command. CTW writes to
either the EEPROM-stored tables or the user-array-stored tables.

NOTE: Typically, the actual Cam table would not be part of the program that executes the mode.
SMI tools are available to facilitate Cam table generation.

pos The position coordinate of the motor for that data point. The first point in the
table should be set to 0 to avoid confusion. When the table is run, the currently
commanded motor position seamlessly becomes the starting point of the table.
By keeping the first point of the table at 0, it is easier to realize that all of the
data points are relative to that starting point.

[,seglen] If this Cam table was specified as variable length in the CTA command, then
[,seglen] is required for each data point. It is optional when using a fixed-length
Cam table (specified in the CTA command). [,seglen] represents the absolute
distance of the encoder source beginning from the start of the table. For

Part 1: Programming: Electronic Camming Commands

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 166 of 969

reasons similar to pos, [,seglen] should also be 0 for the first data point
specified.

If you wish to use the optional [,user] parameter, then the [,seglen] parameter
must be used (set to the default: 0).

[,user] Optional. Defines Cam user bits and Spline mode override. It is an 8-bit binary
weighted value where:

Bit 0-5: User may apply as desired to Cam status bits 0-5 of Status word 8.

Bit 6: Factory Reserved — leave as 0.

Bit 7: When set to 0, no special override of Spline mode. When set to 1, the
segment between the previous point and this point are forced into linear
interpolation. Bit 7 has no effect when MCE has chosen linear mode.

When loading Cam tables, it is important to be aware of the table capacity. As mentioned previously:
l When a Cam table is stored in user array memory (al[0]-al[50]), 52 points can be stored as fixed-

length segments; 35 points are possible when variable-length segments are used.
l When Cam tables are written to EEPROM memory, significantly more data can be written. For

fixed-length segments, there is space for at least 750 points. For variable-length segments, at
least 500 points can be written.

MCE(arg)

Cam table interpolation mode
The MCE(arg) command sets up the Cam function and defines the behavior based on these arguments:

0 Force linear motion for all sections

1 Spline mode with non-periodic data at ends of table

2 Spline mode with periodic data wrapped at ends of table

MCW(table,point)

Cam table starting point
The MCW() command determines where to start the Cam function.

table Defines the Cam table number

point Defines the starting point in the table

RCP

Read Cam pointer
The RCP command reports the Cam pointer, and the CP variable can be used by the user program.

Part 1: Programming: MCE(arg)

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 167 of 969

RCTT

Read number of Cam tables
The RCTT command reports the number of Cam tables, and the CTT variable can be used by the user
program.

MC

Enter Cam mode
The MC command enters Cam mode and must be issued before the G command.

MCMUL=formula

Cam table value multiplier
This value is multiplied by the Cam table value and fed as a commanded value to the trajectory of the
camming motor.

MCDIV=formula

Cam table value divisor
This value is divided into the Cam table value and fed as a commanded value to the trajectory of the
camming motor

O(arg)=formula

Set move generator origin to value
The O()= command sets the move generator origin based on these arguments:

0 Set the origin of the global move generator (sets value of PA)

1 Set the origin of move generator 1 (sets value of PC(1))

2 Set the origin of move generator 2 (sets value of PC(2))

OSH(arg)=formula

Shift move generator origin to value
The OSH()= command shifts the move generator origin based on these arguments:

0 Shift the origin of the global move generator (sets value of PA)

1 Shift the origin of move generator 1 (sets value of PC(1))

2 Shift the origin of move generator 2 (sets value of PC(2))

Part 1: Programming: RCTT

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 168 of 969

Cam Example Program

The next chart shows a plot of from the example code below it. This shows the effects of certain status
bits, I/O points and the resulting motion profile. For additional cam example programs, see Part 3:
Example SmartMotor Programs on page 862.

Sample Plot from Example Program

Note that:
l Changes to the SRC sign results in moving the opposite direction through the Cam table.

l Changes to MFMUL and/or MFDIV result in changes to the frequency or speed at which the Cam
table is processed. The MFMUL and MFDIV commands do not have an effect on dwell time or
distance. Dwell is strictly based on raw controller encoder counts selected by the SRC()
command specifying internal virtual or external controller count source.

l Changes to MCMUL and MCDIV affect the amplitude of the wave form.

l In all cases, updates automatically take effect when passing from the last point of the Cam table
into the first point (or from the first point into the last point, if traveling in the opposite
direction).

ECHO 'ECHO on to allow auto addressing downstream
a=1 'Set default variable for address 1
WAIT=2000 'Wait for boot up time differences
PRINT(#128,"a=a+1",#13) 'each motor prints downstream a=a+1
WAIT=2000 'Wait for response time variations
ADDR=a 'Set motor address
WAIT=2000
EIGN(W,0) ZS

Part 1: Programming: Cam Example Program

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 169 of 969

'===
'Set up parameters
rr=-1 'Home direction
vv=100000 'Home speed
aa=1000 'Home accel
ee=100 'Home error limit
tt=1500 'Home torque limit
hh=4000 'Home offset
mm=90000 'Max stroke with room
'===
GOSUB5 'Home to hard stop
GOSUB40 'Write cam table one time
GOSUB41 'Run cam operation
END
C40 ' Write cam table one time

IF q==123 RETURN ENDIF
CTE(1)
CTA(15,8000)
CTW(0) 'CP=0 {cam pointer or cam index pointer}
CTW(500) 'CP=1
CTW(4000) 'CP=2
CTW(20000)
CTW(45000)
CTW(50000)
CTW(60000)
CTW(65000)
CTW(55000,0,1) 'Turn on Bit 0 Status Word 8
CTW(46000) 'Will turn off at this point
CTW(45000,0,2) 'Turn on Bit 1 Status Word 8
CTW(8000) 'Will turn off at this point
CTW(4000)
CTW(500)
CTW(0) 'CP=14
q=123

RETURN
'===
C41 ' Run cam operation

MP PT=0 G TWAIT
SRC(2)
MCE(1) 'Spline
MCW(1,0)
MFA(0,1)
MFD(0,1)
MFMUL=1
MFDIV=1
MCMUL=1
MCDIV=1
MFSLEW(112000,1)
MFSDC(100,0) 'Set dwell for "c" counts, auto rev. after dwell
MC

G
RETURN

Part 1: Programming: Cam Example Program

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 170 of 969

'==
C5 'Home routine (Home to hard stop)

PRINT("HOME MOTOR",#13)
VT=vv*rr 'Set home velocity
ADT=aa 'Set home accel/decel
MV 'Set to Velocity mode
ZS 'Clear any prior errors
T=tt*rr 'Preset torque values
G 'Begin move toward hard stop
MT
WHILE ABS(EA)<ee LOOP 'Loop, while position error within limit
PRINT("HIT HARD STOP",#13)
G WAIT=50 'Wait 50 milliseconds
O=hh*rr 'Set origin to home offset
PRINT("MOVING TO ZERO",#13)
MP PT=0 G TWAIT 'Set motor to zero

RETURN
'==

CAUTION: When writing a cam table to EEPROM, structure the program so that
the cam table is not frequently rewritten or written from a loop. Repeated erasing
and rewriting can burn bits and corrupt data. For details and sample code, refer to
Electronic Camming Notes and Best Practices on page 162.

Part 1: Programming: Cam Example Program

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 171 of 969

Mode Switch Example

Each SmartMotor™ can move freely between modes of operations including:
l Velocity Mode

l Torque Mode

l Relative Position Mode

l Absolute Position Mode

l Electronic Gearing

l Electronic Camming

This example shows how to use the SMI software to switch from Velocity mode to Torque mode while
the SmartMotor is running.

This procedure assumes that:
l The SmartMotor is connected to the computer. For details, see Connecting the System in the

SmartMotor Installation & Startup Guide for your motor.
l The SmartMotor is connected to a power source. (Certain models of SmartMotors require

separate control and drive power.) For details, see Understanding the Power Requirements in the
SmartMotor Installation & Startup Guide for your motor.

l The SMI software has been installed and is running on the computer. For details, see Installing
the SMI Software in the SmartMotor Installation & Startup Guide for your motor.

l You've completed the first-time motion example. For details, see Moving the SmartMotor in the
SmartMotor Installation & Startup Guide for your motor.

To create the example:

1. Open the Motor View window. For details, see Motor View on page 72.

2. In the SMI software Terminal window, enter these commands:

VT=100000
ADT=1000
MV
G
RTRQ

Part 1: Programming: Mode Switch Example

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 172 of 969

Commands for Velocity Mode

3. In the SMI software Terminal window, enter these commands:

T=TRQ
MT
G

The motor switches to Torque mode. The change is visible in the Mode box of the Motor
View window.

Motor Switched to Torque Mode

Part 1: Programming: Mode Switch Example

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 173 of 969

Position Counters
The SmartMotor's processor contains various position counters. These are used to keep track of shaft
position and the position of trajectories, or commanded counts within those trajectory generators.
Some of the counters are virtual, while others directly track hardware. All counters may be set to zero
or changed to a specific value as shown in the next table.

Counter Description Cleared
to 0 Set to any value Begins

counting Notes

CTR(0),
RCTR(0)

Internal encoder O=0 (When ENC0:
O=value,
OSH=relative)1

Always (from
internal encoder)

Internal Encoder Hardware
level counter that can be set
or changed by user

CTR(1),
RCTR(1)

External encoder
input

MF0, MS0 (When ENC1:
O=value,
OSH=relative)2

Always (from
encoder ext inputs)

External Encoder Hardware
level counter that can be set
or changed by user

PA, RPA Points to CTR(0)
when ENC0
(default), CTR(1)
when ENC1

O=0 O=value,
OSH=relative value

Always Position Actual — Where the
shaft is at any given time with
regard to the encoder being
used for PID

PMA,
RPMA

Modulo actual per
PML limit

O=0 (O=value,
OSH=relative value)
mod PML

Always Position Modulo Actual is a
modulo wrapped counter
based off of PA but limited by
PML (Position Modulo Limit)

PC, RPC Trajectory into PID
(EA=RPC–RPA)

O=0 Always (updates to
RPA when drive is
off)

Position Commanded by the
PID trajectory

PC(0),
RPC(0)

Identical to PC, RPC O=0 Same as above, (PC)

PC(1),
RPC(1)

Relative position of
trajectory 1

O(1)=0 O(1)=value,
OSH(1)=relative
value

Accumulates delta
position from RPA
(but may have a con-
stant offset from
RPA)

PC(1)=PC(0) when in Single Tra-
jectory mode

PC(2),
RPC(2)

Relative position of
trajectory 2

O(2)=0 O(2)=value,
OSH(2)=relative
value

Accumulates rel-
ative targets (but
don’t assume PT =
PA if relative moves
were interrupted)

PC(2) can be used to track
gearing or camming offsets
from point where G(2) was
issued

PT, RPT Target position PT=0 PT=value Position Target is user spe-
cified desired absolute target
position; when G or G(1) is
issued, this will be the Target

PRT,
RPRT

Relative Target Pos-
ition

PRT=0 PRT=value PRT is always a relative dis-
tance offset to where PC is;
similar to PT, G or G(1) is
required

PRA,
RPRA

Relative Move
Actual Position

Start new
move

Start of MV or MP
move (absolute or
relative)

This tracks the distance that a
trajectory 1 move MV or MP
has traveled since the G com-
mand, offset by the position
error of the PID

PRC,
RPRC

Relative Move Com-
manded Position

Start new
move

Start of MV or MP
move (absolute or
relative)

This tracks the distance that a
trajectory 1 move MV or MP
has traveled since the G com-
mand

1. When ENC0 is commanded, CTR(0) tracks PA.
2. When ENC1 is commanded, CTR(1) tracks PA.

Part 1: Programming: Position Counters

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 174 of 969

Modulo Position
Modulo Position mode allows the user to define maximum position counter rollover.

A separate position counter (RPMA) is provided which can be programmed to report a restricted range
of position from 0 to a settable amount. The PML command (position modulo limit) will set the range
from 0 to PML-1. For example PML=10000 will roll over from 9999 to 0 and count upward in the
forward direction. In the reverse physical direction of the motor, the numbers will roll back from 0 to
9999 and count downward.

NOTE: The modulo (RPMA) count will never go negative; it will always be 0<= modulo value<=(PML-1).

In contrast, the typical RPA counter counts in the range -2147483648 to 2147483647, and will roll
over when that range is exceeded; for example, 2147483647 rolls over to -2147483648.

Modulo Position mode is especially useful in rotary pan or azimuth controls for targeting systems,
radar, and camera bases. Combined with the Combitronic™ interface, multi-camera surveillance systems
can pass subject tracking from one pan & tilt to the next.

Modulo Position Example

For the previous figure:
l PML= 360 (Position Modulo Limit) maintains counts between 0 and 359 degrees.

l PMT= 270 (Position Modulo Target) takes the shortest path to the specified target position (270
degrees).

Modulo Position Commands

These commands are used to set and read the modulo position. For more details, see Part 2:
SmartMotor Command Reference on page 247.

PML=formula Set the Modulo Limit. The modulo counter reports
between 0 and this value minus one. By default, this is
1000. The minimum value is 1000. This command resets
the modulo count to 0.

x=PML Assign to a variable the value set as the Modulo Limit.
RPML Report the value set as the Modulo Limit.
PMT=formula Set a Modulo Position Target for a position move. The

motor takes the shortest path to reach this value. This
means that the motor may move in either a clockwise or

Part 1: Programming: Modulo Position

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 175 of 969

counter-clockwise direction, depending on which one
produces the shortest motion in modulo terms.

x=PMT Assign to a variable the value set as the Modulo Target.
RPMT Report the value set as the Modulo Target.
x=PMA Assign to a variable the value of the Actual Modulo

Position.
NOTE: This counter is affected by the O= and OSH=
commands.

RPMA Report the value of the Actual Modulo Position (see
NOTE above).

ENC0 Uses internal Encoder for commanded motion, actual
position reporting and modulo position reporting.

ENC1 Uses external Encoder for commanded motion, actual
position reporting and modulo position reporting. Be sure
that the correct encoder type is selected with the MF0
(for quadrature) command, or the MS0 (step and
direction) command.

Dual Trajectories
NOTE: In addition to this information, refer to Motion Command Quick Reference on page 895 for
details on the primary motion commands and the differences between Actual, Target and
Commanded, etc.

It is possible to create two trajectories that run concurrently. The next figure shows a flow diagram for
a dual trajectory generator.

MP(1) Position Mode

MV(1) Velocity Mode

RPC(1) Reports

Commanded Position

Trajectory Generator 1

Trajectory Generator 2

Input Sources

SRC(1) External Enc.

SRC(2) Internal Clock PID

Trajectory

Summing

∑

 Motor

Shaft

MFR(2)

MC(2) CAM Mode

RPC(2) Reports

Commanded Positon

RPA Reports Motor Position

Dual Trajectory

Generator

ECS(value)

+

Gearing is not summed with camming;

if cam length is 0, there is no motion!

Trapezoidal Move

Profile

Dual Trajectory Generator Flow Diagram

There are restrictions on which combinations of moves are possible. In the next table, a combined move
consists of a selection from column 1 and a selection from column 2.

NOTE: Torque mode cannot be combined with any other mode; selecting Torque mode replaces any
other mode currently running.

Trajectory 1 - PC(1) Trajectory 2 - PC(2)
Position - MP(1)

Part 1: Programming: Dual Trajectories

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 176 of 969

Trajectory 1 - PC(1) Trajectory 2 - PC(2)
Velocity - MV(1)
CANopen Interpolation

Follow - MFR(2)
Cam - MC(2)

Torque mode overrides all other modes

Some commands may be directed at a specific trajectory generator. The next list shows these
commands and which trajectory they can act on. For more details, see Part 2: SmartMotor Command
Reference on page 247.

MP(trj#) trj# = 1 only

MV(trj#) trj# = 1 only

MFR(trj#) trj# = 2 only

MSR(trj#) trj# = 2 only

MC(trj#) trj# = 2 only

G(trj#) trj# = 1 or 2

X(trj#) trj# = 1 or 2

S(trj#) trj# = 1 or 2

TWAIT(trj#) trj# = 1 or 2

x=PC(trj#) trj# = 1 or 2

RPC(trj#) trj# = 1 or 2

O(trj#)= trj# = 1 or 2

OSH(trj#)= trj# = 1 or 2

RMODE(trj#) trj# = 1 or 2

Part 1: Programming: Dual Trajectories

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 177 of 969

Commands That Read Trajectory Information

The next list shows the commands that can be used to read trajectory information. For more details,
see Part 2: SmartMotor Command Reference on page 247.

x=VT Assign to a variable the value set as the Velocity Target.
RVT Report the value set as the Velocity Target.
x=PT Assign to a variable the value set as the Position Target.
RPT Report the value set as the Position Target.
x=PRT Assign to a variable the value set as the Position Relative Target.
RPRT Report the value set as the Position Relative Target.
x=AT Assign to a variable the value set as the Acceleration Target.
RAT Report the value set as the Acceleration Target.
x=DT Assign to a variable the value set as the Deceleration Target.
RDT Report the value set as the Deceleration Target.
x=PC Assign to a variable the value of the Commanded Position of the motor shaft as

a result of motion trajectory generation.
NOTE: This may include a sum of concurrent moves such as a Follow mode move
combined with a position move.

RPC Report the value of the Commanded Position of the motor shaft as a result of
motion trajectory generation (see NOTE above).

x=PC(0) Equivalent to x=PC.
RPC(0) Equivalent to RPC.
x=PC(1) Assign to a variable the value of the Commanded Position in trajectory generator

1’s frame of reference.
RPC(1) Report the value of the Commanded Position in trajectory generator 1’s frame of

reference.
x=PC(2) Assign to a variable the value of the Commanded Position in trajectory generator

2’s frame of reference.
RPC(2) Report the value of the Commanded Position in trajectory generator 2’s frame of

reference.
x=VC Assign to a variable the value of the real-time Commanded Velocity from all tra-

jectory generators.
RVC Report the value of the real-time Commanded Velocity from all trajectory gen-

erators.
x=AC Assign to a variable the value of the real-time Commanded Acceleration from all

trajectory generators (negative indicates deceleration).
RAC Report the value of the real-time Commanded Acceleration from all trajectory

generators (negative indicates deceleration).
x=VA Assign to a variable the value of the Actual Velocity of the motor shaft.

NOTE: The units are encoder counts per PID sample times 65536. The factor of
65536 allows for finer resolution of slower speeds. This finer-resolution
information below 65536 is calculated through a filter because the only direct

Part 1: Programming: Commands That Read Trajectory Information

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 178 of 969

measurement is whole units of encoder counts per sample.
RVA Report the value of the Actual Velocity of the motor shaft (see NOTE above).
VAC(arg) Controls the filter used to measure speed. Default value is 65000. Higher values

provide a smoother filter, at the cost of a longer settling time. The maximum
value is 65535. A value of 0 turns off this filtering.

x=PA Assign to a variable the value of the Actual Position of the motor shaft based on
the encoder chosen by ENC1, ENC0 commands.

RPA Report the value of the Actual Position of the motor shaft based on the encoder
chosen by ENC1, ENC0 commands.

x=CTR(0) Assign to a variable the value of the internal encoder Counter.
NOTE: Unaffected by ENC1, ENC0 commands.

RCTR(0) Report the value of the internal encoder Counter (see NOTE above).
x=CTR(1) Assign to a variable the value of the external encoder Counter.

NOTE: Unaffected by ENC1, ENC0 commands.
RCTR(1) Report the value of the external encoder Counter (see NOTE above).

Dual Trajectory Example Program

In this example program, the SmartMotor moves to its origin and then instantly begins gearing to an
external encoder. It then performs a relative move on top of the gearing relationship, with the relative
move governed by the VT= and ADT= limits.

MP(1) 'Choose position mode from column 1
MFR(2) 'Choose Follow mode from column 2 at same time
PT=0 'This command only relevant to position move
VT=100000 'This command only relevant to position move
ADT=10 'This command only relevant to position move
MFMUL=1 'This command only relevant to Follow mode
MFDIV=1 'This command only relevant to Follow mode
G(1) 'Position move starts
TWAIT(1) 'Wait for position move only
G(2) 'Start Follow mode
WAIT=1000 'Wait for one second
PRT=1000 'Prepare for a relative move on top of

'the Follow mode
G(1) 'Execute the relative position move
TWAIT(1) 'Wait for position move to finish
PT=0 'Command position 0 of the position mode

'frame of reference
G(1)
S 'Stop all moves (follow and position)
MP 'Position mode exclusively. Note there is no

'parentheses to make only position mode
PT=0
G 'Motor returns to position 0 in terms of actual

'position because this is only position mode

Part 1: Programming: Dual Trajectory Example Program

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 179 of 969

Using Mixed Mode Operations After Homing

There are applications where you may wish to use mixed modes of operation after homing. For example,
you may want to use dual trajectory and gearing. In these cases, you need to ensure that the motor is at
a known starting location. To accomplish that, issue the next command sequence after the homing
operation.

' Issue these commands immediately after homing, while at position 0.
O=0 'Set the origin to 0
O(1)=0 'Set trajectory 1 to 0
PRT=0 'Set the relative target position to 0

That command sequence sets the applicable internal counters to zero, which ensures that counter
values are as expected for mixed mode operations.

Synchronized Motion
All SmartMotors equipped with the CAN port option come with Combitronic™ capability, which is
basically the unification of all SmartMotors on a CAN network. With Combitronic technology comes the
ability to perform multiple-axis, synchronized motion. The next sections describe the command set that
enables multi-axis synchronized linear moves.

Synchronized-Target Commands

This section describes the synchronized-target commands. For more details on these commands, see
Part 2: SmartMotor Command Reference on page 247.

PTS(), PRTS()

Position Target Synchronized Abs. and Rel.
These commands allow the user to identify two or three axis positions (posn) and associated axis CAN
addresses (axisn) to cause a synchronized multi-axis move where the combined path velocity is
controlled. For multiple-axis machines that are not using two motors to drive an axis, use this syntax:

PTS(pos1;axis1,pos2;axis2[,pos3;axis3])

In addition to the three-axis limitation, keep in mind the overall limit of 64 characters per line of code
in the SmartMotor. Using variables in place of explicit positions is more space efficient. The PTS()
command processes the positions as absolute, whereas the PRTS() command treats them as relative.
After a PTS() or PRTS() command, the combined distance is stored in the PTSD variable and the
combined axis move time is stored in the PTST variable, in (ms), in the event these may be useful to the
programmer. PTSD and PTST can be used in a program or read over the serial channel by the RPTSD
and RPTST commands. The PTS() command first goes out to the Combitronic network and gathers the
last target positions in order to calculate the relative motion necessary to get to the next absolute
position. It is extremely important that prior to a synchronized move being calculated with the PTS() or
PRTS() commands, the previous target positions are accurate and uncorrupted by origin shifts. It is
equally important that the synchronized move not be initiated before each axis reaches its previous
target positions.

Some gantry-type, multiple-axis machines have two motors operating the same axis of motion (see the
next figure). Below is the full syntax for the PTS command, which shows additional/optional parameters
(enclosed in braces "{ }") for support of two motors operating the same axis. The optional parameter
contains the motor address for the second motor of the axis. (For the PRTS command, replace PTS with
PRTS.)

PTS(pos1;addr1{;addr1'},pos2;addr2{;addr2'}[,pos3;addr3{;axis3'}])

Part 1: Programming: Using Mixed Mode Operations After Homing

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 180 of 969

This is illustrated in the next example. (If you are using the PRTS command, substitute PRTS in place of
PTS below.)

Position target X = 2000

Position target Y = 1000

Position target Z = 500

Motor address X = 5

Motor address X' = 6

Motor address Y = 7

Motor address Z = 8

PTS(2000;5;6,1000;7) 'Two-motor X axis (X, X'), plus Y axis

PTS(2000;5;6,1000;7,500;8) 'Two-motor X axis (X, X'), plus Y & Z axes

In these cases, the same position, velocity and acceleration data sent to motor address 5 is also sent to
motor address 6, with both motors driving the gantry's X axis.

For additional information on the PTS()command, see PTS(...) on page 692. For additional information
on the PRTS()command, see PRTS(...) on page 685. Also, refer to A Note About PTS and PRTS on page
181.

VTS=formula

Velocity Target for Synchronized Move
The motion along a synchronized move is defined along the path. The VTS command is specific to
defining the combined velocity of all contributing axes. If the move were to occur in an X-Y plane, for
example, the velocity set by VTS would not pertain to the X axis or the Y axis, but rather to the
combined motion, in the direction of motion.

ADTS=formula, ATS=formula, DTS=formula

Accel Targets for Synchronized Move
Like the velocity parameter, ADTS pertains to the combined path motion. The PTS() command scales
the path velocity and accelerations set by the VTS= and ADTS= commands so that each axis reaches its
constant velocity portions at exactly the same time, creating combined, straight-line motion. The
ADTS= command sets both acceleration and deceleration, whereas ATS= and DTS= allow you to set
separate acceleration and deceleration where desired.

PTSS(), PRTSS()

Position Target Sync, Absolute and Relative, Supplemental
The PTSS() and PRTSS() commands allow supplemental axis moves to be added and synchronized with
the previous PTS() or PRTS() commanded motion. Issue these additional axis commands after a PTS() or
PRTS() command, but before the next GS. These commands allow the user to identify one axis position
(posn) and associated axis CAN addresses (axisn) at a time.

PTSS(posn;axisn)

Part 1: Programming: VTS=formula

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 181 of 969

The supplemental axis motions will start at exactly the same time as the main PTS() or
PRTS() motion. With the next GS, they will transition from their accelerations to their slew velocities at
exactly the same time, and decelerate and stop at exactly the same time.

Moves too short to ever reach the VTS= velocity will execute a triangular rather than trapezoidal
profile, but the moves will still be synchronized.

The difference between a PTSS() move and a PTS() member is that the supplemental axis moves do not
reduce the primary profile velocity in an effort to hold the total motion to a total combined velocity set
by VTS. The same applies for acceleration. The combined motion of the PTS() move will be controlled to
the VTS limit, and then PTSS() moves will simply align with that combined motion.

. . .
x=1000 y=2000 z=3500 a=100 b=200
PTS(x;1,y;2,z;3) 'Set next positions, axes 1, 2 & 3
PTSS(a;4) 'Set supplemental position, axes 4
PTSS(b;5) 'Set supplemental position, axes 5
GS 'Go, starts the synchronized move

NOTE: If the supplemental axis move is longer than the PTS() move, the supplemental axis velocity
will exceed the limit set by VTS=.

A Note About PTS and PRTS

The PTS and PRTS commands require motors to be stationary (not moving), not faulted, and in position
mode before the commands are issued. These prerequisites are needed because if the previous move
was in gearing, camming, or torque mode, or in a drive fault state as well, target trajectories and
commanded trajectories may not align, which could lead to math errors when calculating synchronized
move parameters.

NOTE: In preparation for a synchronized move, the motors must be stationary (not moving), in
position mode and with no faults.

This applies to both PTS and PRTS commands before they are issued. Also, because PTSS and PRTSS
only work after the above commands are issued and before a GS command, the following examples will
still work if they are included.

Example subroutine of 2-axis synchronized relative move to position x:y for motors 1 and 2

This sample code may be executed by any motor sharing the same CAN bus network with the motors
being commanded to move.

NOTE: Ensure no motor drive faults exist prior to calling this subroutine.

C20
OFF:0 MP:0 PRT:0=0 G TWAIT 'Initialize to stationary in position mode
PT:1=PC:1 PT:2=PC:2 'Set target and commanded positions equal
WAIT=50
VTS=v 'Set target path velocity
ADTS=a 'Set target path accel/decel
PRTS(x;1,y;2) 'Use Position Target Synchronized moves
IF PTSD!=0 'Prevent 0-length (divide by zero) move

GS 'Go Synchronized
TSWAIT 'Wait until path move time is complete

ENDIF
RETURN

Example subroutine of 3-axis synchronized relative move to position x:y:z for motors 1, 2 and 3

Part 1: Programming: A Note About PTS and PRTS

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 182 of 969

This sample code may be executed by any motor sharing the same CAN bus network with the motors
being commanded to move.

NOTE: Ensure no motor drive faults exist prior to calling this subroutine.

C20
OFF:0 MP:0 PRT:0=0 G TWAIT 'Initialize to stationary in position mode
PT:1=PC:1 PT:2=PC:2 PT:3=PC:3 'Set target and commanded positions equal
WAIT=50
VTS=v 'Set target path velocity
ADTS=a 'Set target path accel/decel
PRTS(x;1,y;2,z;3) 'Use Position Target Synchronized moves
IF PTSD!=0 'Prevent 0-length (divide by zero) move

GS 'Go Synchronized
TSWAIT 'Wait until path move time is complete

ENDIF
RETURN

Example subroutine of 2-axis synchronized absolute move to position x:y for motors 1 and 2

This sample code may be executed by any motor sharing the same CAN bus network with the motors
being commanded to move.

NOTE: Ensure no motor drive faults exist prior to calling this subroutine.

C20
OFF:0 MP:0 PRT:0=0 G TWAIT 'Initialize to stationary in position mode
PT:1=PC:1 PT:2=PC:2 'Set target and commanded positions equal
WAIT=50
VTS=v 'Set target path velocity
ADTS=a 'Set target path accel/decel
PTS(x;1,y;2) 'Use Position Target Synchronized moves
IF PTSD!=0 'Prevent 0-length (divide by zero) move

GS 'Go Synchronized
TSWAIT 'Wait until path move time is complete

ENDIF
RETURN

Example subroutine of 3-axis synchronized absolute move to position x:y:z for motors 1, 2 and 3

This sample code may be executed by any motor sharing the same CAN bus network with the motors
being commanded to move.

NOTE: Ensure no motor drive faults exist prior to calling this subroutine.

C20
OFF:0 MP:0 PRT:0=0 G TWAIT 'Initialize to stationary in position mode
PT:1=PC:1 PT:2=PC:2 PT:3=PC:3 'Set target and commanded positions equal
WAIT=50
VTS=v 'Set target path velocity
ADTS=a 'Set target path accel/decel
PTS(x;1,y;2,z;3) 'Use Position Target Synchronized moves
IF PTSD!=0 'Prevent 0-length move (prevent divide by zero)

GS 'Go Synchronized
TSWAIT 'Wait until path move time is complete

ENDIF
RETURN

Part 1: Programming: A Note About PTS and PRTS

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 183 of 969

Other Synchronized-Motion Commands

These commands are used to start a synchronized move and wait for a synchronized move to complete.
For more details on these commands, see Part 2: SmartMotor Command Reference on page 247.

GS

Start Synchronized Move
To start a synchronized motion profile, use the GS command. It acts behind the scenes and issues G
commands to all axes involved in the previous PTS() or PRTS() command. It is important to be sure all
motors are at their previous targets before issuing the GS command. Otherwise, the motion will not be
synchronized.

TSWAIT

Wait for Synchronized Move to Complete
After a GS command has been issued to start a synchronized move, the TSWAIT command can be used
to pause program execution until the move has been completed. A standard TWAIT command would not
work where the motor issuing the PTS() and GS commands had a zero length contribution to the total
move. The TSWAIT command was created for this reason.

. . .
ADTS=100 'Set target synchronized accel/decel
VTS=100000 'Set target synchronized velocity
PTS(30000;1,40000;2) 'Set target positions, axes 1 & 2
GS 'Go, starts the synchronized move
TSWAIT 'Optional wait for sync. move to complete

The previous example is a synchronized move in its simplest form. The code could be written in either
motor 1 or 2 and it would work the same.

The TSWAIT command merely pauses program execution (except for interrupt routines). It may be
desirable to continue running the program while waiting. In that event, the program can loop around the
Synchronized Move Status Bit, which is status word 7, bit 15, accessible by variable B(7,15). So, the
next While Loop code example is equivalent to the TSWAIT command, except that more code can be
added within the loop for execution during the wait.

WHILE B(7,15)==1 'While synchronized move in process
...
LOOP 'Loop back

The next code example adds subroutine efficiency, the efficiency of setting up the next move while the
existing move is ongoing, and adds an error check before continuing to issue synchronized move
commands.

Part 1: Programming: Other Synchronized-Motion Commands

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 184 of 969

. . .
ADTS=100 'Set target synchronized accel/decel
VTS=100000 'Set target synchronized velocity
WHILE B(0,2):1|B(0,2):2|B(0,2):3 'Loop while motion in any axis

WAIT=10 'Allow time for other CAN communications
LOOP 'Loop back
x=1000 y=2000 z=3500 GOSUB10 'Put positions into variables
x=2200 y=1800 z=1200 GOSUB10 'Put positions into variables
x=1500 y=2600 z=2500 GOSUB10 'Put positions into variables
x=-120 y=1000 z=1500 GOSUB10 'Put positions into variables
x=0 y=0 z=0 GOSUB10 'Put positions into variables
END 'End Program
C10 'Place label

PTS(x;1,y;2,z;3) 'Set next positions, axes 1, 2 & 3
'and do this while the previous move
'is in progress

WHILE B(7,15)==1 'While synchronized move in process
'If one motor faults, stop all and end program -

IF B(0,0):1==0 MTB:0 ENDIF '*note
IF B(0,0):2==0 MTB:0 ENDIF '*note
IF B(0,0):3==0 MTB:0 ENDIF '*note

LOOP 'Loop back
GS 'Go, starts the synchronized move

RETURN 'Return to call
'*note: Managing faults is better done by using interrupts
'in other motors, taught later in this guide.

There is a note in the preceding example program stating that a better job can be done of detecting
and reacting to errors by using interrupts. This is true because the example, as written, causes a
considerable amount of unnecessary communications over the Combitronic interface. By loading
interrupt routines in each SmartMotor that constantly monitor for drive status, each motor can be
made responsible for reporting a local error. By this means, it is no longer necessary to poll each motor.
The motor controlling the synchronized motion can simply do a quick check for reports right before
issuing the next GS command. For more details, see Interrupt Programming on page 195.

Part 1: Programming: TSWAIT

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 185 of 969

Program Flow Details
This chapter provides information on using program flow commands with the SmartMotor.

Introduction 186

Flow Commands 186

RUN 186

RUN? 187

GOTO#, GOTO(label), C# 187

GOSUB#, GOSUB(label), RETURN 188

IF, ENDIF 188

ELSE, ELSEIF 188

WHILE, LOOP 189

SWITCH, CASE, DEFAULT, BREAK, ENDS 190

TWAIT 190

WAIT=formula 191

STACK 191

END 191

Program Flow Examples 192

IF, ELSEIF, ELSE, ENDIF Examples 192

WHILE, LOOP Examples 192

GOTO(), GOSUB() Examples 193

SWITCH, CASE, BREAK, ENDS Examples 194

Interrupt Programming 195

ITR(), ITRE, ITRD, EITR(), DITR(), RETURNI 195

TMR(timer,time) 197

Part 1: Programming: Program Flow Details

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 186 of 969

Introduction
Program commands are like tasks. Whether the task is to turn on an output, set a velocity or start a
move, a program is a list of these tasks. When a programmed SmartMotor is powered-up or is reset
with the Z command, it executes its program (list of tasks) from top to bottom, with or without a host
PC connected. This section covers the commands that control the flow of the program.

SmartMotor programs are written in the SMI software editor, which is opened by selecting File > New
from the SMI software toolbar. For details, see Opening the SMI Window (Program Editor) on page 51.

The next program example shows an infinite loop. It causes the motor to move back and forth forever.

Simple Move Program Example

NOTE: Programs execute at rates of thousands of lines per second.

Flow Commands
After a program starts, there are a variety of commands that can redirect program flow, and most of
those can do so based on certain conditions. How these conditional decisions are set up determines
what the programmed SmartMotor will do and how "smart" it will actually be.

Flow commands are described in the next sections. A later section describes Interrupt commands,
which are used to execute subroutines based on the change in a status bit. For more details, see Part 2:
SmartMotor Command Reference on page 247.

RUN
Execute Stored User Program
If the SmartMotor is reset with a Z command or at power-up, all previous variables and mode changes
are erased for a fresh start, and the program begins execution from the top. Alternatively, the RUN
command can be used to start the program, in which case the state of the motor is unchanged and its
program will be invoked.

Part 1: Programming: Introduction

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 187 of 969

RUN?
Halt Program If No RUN Issued
The RUN? command prevents further execution of code until the RUN command is received over the
serial channel. On power up, program code executes to the point of reaching the RUN? command. When
RUN is issued through the serial port, the CPU executes all code— it starts at the top and moves down
through the program, jumps over the RUN? command to the next line of code and then continues
execution to the end of the program.

PRINT("Boot-Up",#13) 'Message always prints
RUN? 'Program stops here on reset or power up
PRINT("Run Issued",#13) 'This runs if RUN received
END

The above code prints the first message only after a Z command or on power-up, but it prints both
messages when a RUN command is received over the serial line.

During development, the RUN? command placed at the top of your program can protect you from
accidentally locking up your SmartMotor with a bad program.

GOTO#, GOTO(label), C#
Redirect Program Flow, Place a Label
The most basic command for redirecting program flow, without inherent conditions, is GOTO# or GOTO
(label), used in conjunction with the label C#. A label consists of the letter C followed by a number (#)
from 0 to 999, and it is inserted in the program as a placeholder. If a label like C1 is placed in a
program and that same number is placed at the end of a GOTO command like GOTO1, the program flow
will be redirected to label C1, and the program will proceed from there.

C10 'Place label
IF IN(0)==0 'Check Input 0

GOSUB20 'If Input 0 low, call Subroutine 20
ENDIF 'End check Input 0
IF IN(1)==0 'Check Input 1

a=30 'as example for below
GOSUB(a) 'If Input 1 low, call Subroutine 30

ENDIF 'End check Input 1
GOTO(10) 'Will loop back to C10

As many as a thousand labels (0 - 999) can be used in a program. However, the program will become
increasingly difficult to read or debug as more GOTO commands are used.

Therefore, try using only one GOTO command, and use it to create the infinite loop necessary to keep
the program running indefinitely as some embedded programs do. For example, put a C10 label near the
beginning of the program but after the initialization code, and then place a GOTO10 at the end. Then,
every time the GOTO10 is reached, the program will loop back to label C10 and start over from that
point until the GOTO10 is reached again, which will start the process at C10 again, and so on. This will
make the program run continuously.

Any program can be written with only one GOTO. It might be a little harder, but it will force better
program organization. If you organize your program using the GOSUB command instead of multiple
GOTO commands, it will be much easier to read and support.

Part 1: Programming: RUN?

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 188 of 969

GOSUB#, GOSUB(label), RETURN
Execute a Subroutine and Return
Just like the GOTO# command, the GOSUB# command, used in conjunction with a C# label, redirects
program execution to the location of the label. However, unlike the GOTO# command, the C# label
needs to eventually requires a RETURN command. This returns the program execution to the location of
the original GOSUB# command that initiated the redirection.

There may be many sections of a program that need to perform the same basic group of commands. By
encapsulating these commands between a C# label and a RETURN, they become a subroutine that can
be called anytime from anywhere with a GOSUB# or GOSUB(label), rather than being repeated. There
can be as many as one thousand (0 - 999) different subroutines, and they can be accessed as many
times as the application requires.

CAUTION: Calling subroutines from the host can crash the stack if not done
carefully.

By pulling sections of code out of a main loop and encapsulating them into subroutines, the main code
can also be easier to read. Therefore, organizing code into multiple subroutines is a good practice.

C10 'Place label
IF IN(0)==0 'Check Input 0

GOSUB20 'If Input 0 low, call Subroutine 20
ENDIF 'End check Input 0
IF IN(1)==0 'Check Input 1

a=30 'as example for below
GOSUB(a) 'If Input 1 low, call Subroutine 30

ENDIF 'End check Input 1
GOTO(10) 'Will loop back to C10

IF, ENDIF
Conditional Test
When the execution of the code reaches the IF command, the code between that IF and the next ENDIF
executes only when the condition directly after the IF command is true. For example:

a=IN(0) 'Variable "a" set 0,1
a=a+IN(1) 'Variable "a" 0,1,2
IF a==1 'Use double "=" to test

b=1 'Set "b" to one
ENDIF 'End IF

Variable "b" gets set to one only when variable "a" is equal to one. If a is not equal to one, then the
program continues to execute using the command after the ENDIF command.

Also, notice that the SmartMotor language uses a single equal sign (=) to make an assignment, such as
where variable a is set to equal the logical state of input 0. Alternatively, a double equal sign (==) is
used as a test, to query whether variable a is equal to 1 without making any change to it. These are two
different functions. Having two different syntaxes has other benefits.

ELSE, ELSEIF

The ELSE and ELSEIF commands can be used to add flexibility to the IF statement. If it were necessary
to execute different code for each possible state of variable "a", the program could be written as:

Part 1: Programming: GOSUB#, GOSUB(label), RETURN

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 189 of 969

a=IN(0) 'Variable "a" set 0,1
a=a+IN(1) 'Variable "a" 0,1,2
IF a==0 'Use double "=" test

b=1 'Set "b" to one
ELSEIF a==1

c=1 'Set "c" to one
ELSEIF a==2

c=2 'Set "c" to two
ELSE 'If not 0 or 1

d=1 'Set "d" to one
ENDIF 'End IF

There can be many ELSEIF statements but only one ELSE. If ELSE is used, it needs to be the last
statement in the structure before the ENDIF. There can also be IF structures inside IF structures —
that’s called "nesting" and there is no practical limit to the number of IF structures that can nest within
one another.

The commands that can conditionally direct program flow based on a test, such as the IF, where the
test may be a==1, can have far more elaborate tests inclusive of virtually any number of operators and
operands. The result of a comparison test is zero if "false", and one if "true". For example:

IF ABS(EA-5)>x 'A numeric test
'placing further commands here

ENDIF
IF (a<b)&(c<d) 'A logical test using bit-wise AND
'placing further commands here

ENDIF
IF (a==b)|(c!=d)'A logical test using bit-wise OR
'placing further commands here

ENDIF

Complex logical tests involving bit-wise AND, OR and exclusive OR depend on whether the result of an
operation is zero or one. Any test for zero or not zero must be made explicitly.

IF (a<b)&c 'This should be avoided and replaced by
IF (a<b)&(c!=0) 'an explicit test of c not zero

WHILE, LOOP

The most basic looping function is a WHILE command. The WHILE requires an expression that
determines whether the code between the WHILE and the next LOOP command will execute or be
passed over. While the expression is true, the code executes. An expression is true when it is nonzero.
If the expression results in a "zero" then it is false. These are valid WHILE structures:

Part 1: Programming: WHILE, LOOP

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 190 of 969

WHILE 1 '1 is always true
OS(0) 'Set output to 1
OR(0) 'Set output to 0

LOOP 'Will loop forever
a=1 'Initialize variable "a"
WHILE a 'Starts out true

a=0 'Set "a" to 0
LOOP 'This never loops back
a=0 'Initialize variable "a"
WHILE a<10 'a starts less

a=a+1 'a grows by 1
LOOP 'Will loop back 10 times

The task or tasks within the WHILE loop executes as long as the loop condition remains true.

The BREAK command can be used to break out of a WHILE loop, although that somewhat compromises
the elegance of a WHILE statement’s single test point and makes the code harder to read/debug. The
BREAK command should be used sparingly or, preferably, not at all in the context of a WHILE loop.

If it’s necessary for a portion of code to execute only once based on a certain condition, then use the IF
command.

SWITCH, CASE, DEFAULT, BREAK, ENDS

Long, drawn out IF structures can be cumbersome, and burden the program visually. In these instances
it can be better to use the SWITCH structure.

This code would accomplish the same thing as the ELSEIF program example:

a=IN(0) 'Variable "a" set 0,1
a=a+IN(1) 'Variable "a" 0,1,2
SWITCH a 'Begin SWITCH

CASE 0
b=1 'Set "b" to one

BREAK
CASE 1

c=1 'Set "c" to one
 BREAK

CASE 2
c=2 'Set "c" to two

BREAK
DEFAULT 'If not 0 or 1

d=1 'Set "d" to one
BREAK

ENDS 'End SWITCH

Just as a rotary switch directs electricity, the SWITCH structure directs the flow of the program. The
BREAK statement then jumps the code execution to the code after the associated ENDS command. The
DEFAULT command covers every condition other than those listed. Its use is optional.

TWAIT
Wait for Trajectory to Finish
The TWAIT command pauses program execution while the motor is moving. The pause is terminated by
either the controlled end of a trajectory or the abrupt end of a trajectory due to an error. If there are a

Part 1: Programming: SWITCH, CASE, DEFAULT, BREAK, ENDS

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 191 of 969

succession of move commands without this command or similar waiting code between them, the
commands will overtake each other because the program advances even while moves are taking place.

The next program example has the same effect as the TWAIT command, but it allows other things to be
programmed during the wait instead of just waiting — such things would be inserted between the two
commands.

WHILE Bt 'While trajectory
...
LOOP 'Loop back

WAIT=formula
Wait, Pause Program Execution for Time in Milliseconds
There will probably be circumstances where the program execution needs to be paused for a specific
period of time. The WAIT command pauses the program for the specified number of milliseconds.
WAIT=1000, for example, would wait one second. The next code example would be the same as
WAIT=1000, only it would allow code to execute during the wait if it was placed between the WHILE
and the LOOP.

CLK=0 'Reset CLK to 0
WHILE CLK<1000 'CLK will grow
...
LOOP 'Loop back

STACK
Reset the GOSUB Return Stack
Information about the nesting of subroutines is held in the STACK ("nesting" is when one or more
subroutines exist within others). In the event program flow is directed out of one or more nested
subroutines without executing the included RETURN commands, the stack will be corrupted. The STACK
command resets the stack with zero recorded nesting. Use it with care and try to build the program
without requiring the STACK command.

One possible use of the STACK command might be if the program used one or more nested subroutines
and an emergency occurred. In this case, the program or operator could issue the STACK command and
then a GOTO command, which would send the program back to a label at the beginning. Using this
method instead of the RESET command would retain the states of the variables and allow further
specific action to resolve the emergency.

C1 'Subroutine C1
STACK 'Clear the nesting stack
RUN 'Begin the program, retaining variables

RETURN 'Never reached, but necessary for comp.

END
End Program Execution
To compile properly, every program needs an END command somewhere, even if it is never reached. If
the program needs to run continuously, the END statement has to be outside the main loop.

If it is necessary to stop a program, issue an END command and execution stops at that point. An END
command can also be sent by the host to intervene and stop a program running within the motor.

Part 1: Programming: WAIT=formula

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 192 of 969

WARNING: An END command will not stop motion of a motor.

The SmartMotor program is never erased until a new program is downloaded. To erase the program in a
SmartMotor, download only the END command as if it were a new program. That will be the only
command that is left in the SmartMotor until a new program is downloaded.

Program Flow Examples
This section describes techniques that can be used for flow control in your SmartMotor program. All
sample code shows advanced use of program flow syntax. Additionally, there are references to lesser-
used math functions and system parameters to enforce learning of new programming techniques.

NOTE: The Variables and Math section should be referenced for a better understanding of the next
example programs. For details, see Variables and Math on page 198.

IF, ELSEIF, ELSE, ENDIF Examples

The next example shows the proper use of the IF, ELSE and ENDIF commands along with nested
conditions and math capabilities. For more details on the IF, ELSE and ENDIF commands, see IF, ENDIF
on page 188.

'Find shortest dist. to Top Dead Center Shaft position from present position
IF (PA%RES)>(RES/2) 'Check shortest distance using Modulo Math function

PRT=RES-(PA%RES) 'Set Relative Position to Modulo Remainder
ELSE

PRT=-(PA%RES) 'Otherwise Set to RES - Modulo remainder
ENDIF

The next example uses #define to associate values and I/O points for use in code.

#define UpperLimit 3000 'Set high voltage threshold
#define LowerLimit 1500 'Set low Voltage threshold
#define MyVoltage INA(V1,3) 'Set input Port to read
C124

IF (UpperLimit>MyVoltage) & MyVoltage>LowerLimit
PRINT("Voltage is in range",#13)

ELSEIF MyVoltage>=UpperLimit
PRINT("Voltage is too high",#13)

ELSE
PRINT("Voltage is too low",#13)

ENDIF
RETURN

WHILE, LOOP Examples

The next example shows the proper use of the WHILE and LOOP commands. For more details on these
commands, see WHILE, LOOP on page 189.

Part 1: Programming: Program Flow Examples

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 193 of 969

#define GoSelSwitch INA(V1,6)
#define Go 200
#define Sel 4000
C345 'Detecting switch on SmartBox
IF (GoSelSwitch<Sel) & (GoSelSwitch>Go)

PRINT("Switch Released",#13)
ENDIF
WHILE 1

IF GoSelSwitch>=Sel
PRINT("Sel",#13)

WHILE GoSelSwitch>=Sel LOOP
PRINT("Switch Released",#13)

ENDIF
IF GoSelSwitch<=Go

PRINT("Go",#13)
WHILE GoSelSwitch<=Go LOOP

PRINT("Switch Released",#13)
ENDIF

LOOP
RETURN

GOTO(), GOSUB() Examples

The Class 5 software allows passing of values into GOTO and GOSUB commands. For details, see
GOTO#, GOTO(label), C# on page 187 and GOSUB#, GOSUB(label), RETURN on page 188.

There are two theories on writing code: One says uses all GOTO commands; the other says use all
GOSUB commands. There are pros and cons to both methods.

l GOTO is good for conditional code bypassing

l GOSUB ensures a return to where you came from

Pay attention to either command when you run into a RETURN that gets ignored by a GOTO or when
you never reach a RETURN for a previous GOSUB due to a GOTO.

i=400 'Motor Current to check for
WHILE 1 'While forever

IF UIA>i 'If motor current in mAmps is > "i"
GOSUB(100)
WHILE UIA>i LOOP 'prevent double trigger

ENDIF
LOOP
C100

IF UIA>(i*2) 'If current is twice as much
GOTO200 'bypass PRINT line below

ENDIF
PRINT("Current is above ",i,"mAmps",#13)

C200
PRINT("Current twice as high as it should be!",#13)

RETURN

Part 1: Programming: GOTO(), GOSUB() Examples

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 194 of 969

GOTO(label) and GOSUB(label) may be used where label can be a variable, a specific number or a single
operand such as a+b, x-5, etc.

NOTE: Nested parenthesis are not permitted—for example, GOTO(IN(3)).

WHILE 1
x=IN(W,0,15) 'precalculate to prevent parenthesis in GOSUB()

IF y!=x
y=x
GOSUB(15-x) 'simple single operand math only

ENDIF
LOOP

SWITCH, CASE, BREAK, ENDS Examples

The next code example shows the proper use of the SWITCH, CASE, BREAK and ENDS commands. For
more details on these commands, see SWITCH, CASE, DEFAULT, BREAK, ENDS on page 190.

C500
#define FiveValues INA(V1,3)/1000
#define CheckPot 501
WHILE 1

IF x!=FiveValues
GOSUB(CheckPot)

ENDIF
LOOP
RETURN
C501 'CheckPot (Check Potentiometer)

y=FiveValues
SWITCH FiveValues
CASE 0 PRINT("Value ",y,#13) BREAK 'Note: Defines not allowed in PRINT
CASE 1 PRINT("Value ",y,#13) BREAK
CASE 2 PRINT("Value ",y,#13) BREAK
CASE 3 PRINT("Value ",y,#13) BREAK
CASE 4 PRINT("Value ",y,#13) BREAK
ENDS
x=FiveValues

RETURN

Part 1: Programming: SWITCH, CASE, BREAK, ENDS Examples

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 195 of 969

The next code shows an example of printing menu selections for a terminal screen using SWITCH. This
example comes from the SmartBox demo program.

IF INA(V1,6)>3800 'If SEL pressed
m=m+1 'increment menu item
IF m>9 m=1 ENDIF 'Limit menu items between 0 and 9

GOSUB102 'PRINT MENU OPTION
WHILE INA(V1,6)>3500 LOOP 'don't double trigger

ENDIF
'===
C102

SWITCH m
CASE 1 PRINT("Electronic Gearing 1:1 ",#13) BREAK
CASE 2 PRINT("Absolute Position Mode ",#13) BREAK
CASE 3 PRINT("Velocity Mode ",#13) BREAK
CASE 4 PRINT("Torque Mode ",#13) BREAK
CASE 5 PRINT("Relative Position Mode ",#13) BREAK
CASE 6 PRINT("High Speed Indexing ",#13) BREAK
CASE 7 PRINT("CAM Mode <Gearing> ",#13) BREAK
CASE 8 PRINT("Variable Gearing ",#13) BREAK
CASE 9 PRINT("Preset Moves ",#13) BREAK

ENDS
RETURN

Interrupt Programming
The section describes interrupt commands that can be used in your SmartMotor programs.
For more details, see Part 2: SmartMotor Command Reference on page 247.

ITR(), ITRE, ITRD, EITR(), DITR(), RETURNI
Interrupt Commands
The interrupt ITR() function can be used to configure a SmartMotor to execute a routine based on the
change of a status bit. There are dozens of different bits of information available in the SmartMotor,
which are held in groups of 16 status bits called Status Words. ITR() can tell the SmartMotor to
execute a subroutine after the change of any one of these status bits in any Status Word. When the
status bit changes, that subroutine executes at that instant from wherever the normal program
happens to be. A program of some sort must be running for the interrupt routine to execute.

Interrupt subroutines end with the RETURNI command to distinguish them from ordinary subroutines.
After the interrupt code execution reaches the RETURNI command, it goes back to the program exactly
where it was interrupted. An interrupt subroutine must not be called directly with a GOSUB command.

Part 1: Programming: Interrupt Programming

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 196 of 969

The ITR() function has five parameters:

ITR(Int #, Status Word, Bit #, Bit State, Label #)

Int #: Can be eight, numbered 0 to 7

Status Word: 0-8,12,13,16 and 17

Bit #: 0 to 15

Bit State: State that causes the interrupt, 0 or 1

Label #: Subroutine label number to be executed, 0 to 999

For an interrupt to work it must be enabled at two levels:
l Individually enable an interrupt with the EITR() command with the interrupt number, 0 to 7, in the

parentheses.
l Enable all interrupts with the ITRE command.

Similarly, individual interrupts can be disabled with the DITR() command, and all interrupts can be
disabled with the ITRD command.

The STACK and END commands clear the tracking of subroutine nesting, and disable all interrupts. For
details on these commands, see Flow Commands on page 186.

In the next program example, interrupt number zero is set to look at Status Word 3, Bit 15, which is
Velocity Target Reached. When this status bit switches to 1, subroutine 20 executes, which issues an X
command and stops the motor. Every time the motor reaches its target velocity, it immediately
decelerates to a stop, causing it to forever accelerate and decelerate without ever spending any time
at rest or at the target velocity.

NOTE: The STACK and END commands disable all interrupts.

EIGN(2) 'Disable left limit
EIGN(3) 'Disable right limit
ZS 'Clear faults
VT=700000 'Set target velocity
ADT=100 'Set target accel/decel
MV 'Set Velocity mode
ITR(0,3,15,1,20)'Set interrupt
EITR(0) 'Enable interrupt zero
ITRE 'Enable all interrupts
G 'Start motion
C10 'Place a label

GOTO10 'Loop, req. for int. operation
END 'End (never reached)
C20 'Interrupt subroutine

X 'Decelerate to stop
TWAIT 'Hold program until motor reaches stop
G 'Restart velocity motion

RETURNI 'Return to infinite loop

Part 1: Programming: ITR(), ITRE, ITRD, EITR(), DITR(), RETURNI

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 197 of 969

TMR(timer,time)
Timers
The TMR() function controls four timers. Their states are found in the first four bits of Status Word 4.
The TMR() function can be used to execute an interrupt routine after a certain period of time.

The TMR() function has two parameters where:

timer Specifies the timer #. There are four timers: 0 to 3.
time Specifies the time (in milliseconds) to count down to zero.

While the timer is counting down, the corresponding status bit in Status Word 4 will be one. When it
reaches zero, the status bit reverts to zero. This bit change can be made to trigger a subroutine using
the ITR() function.

EIGN(2) 'Disable left limit
EIGN(3) 'Disable right limit
ZS 'Clear faults
MP 'Set Position mode
VT=500000 'Set target velocity.
AT=300 'Set target acceleration.
DT=100 'Set target deceleration.
TMR(0,1000) 'Set Timer 0 to 1s
ITR(0,4,0,0,20) 'Set interrupt
EITR(0) 'Enable interrupt
ITRE 'Enable all interrupts
p=0 'Initialize variable p
O=0 'Set commanded and actual pos. to zero
C10 'Place a label

IF PA>47000 'Just before 12 moves
DITR(0) 'Disable interrupt
TWAIT 'Wait till reaches 48000
p=0 'Reset variable p
PT=p 'Set target position
G 'Start motion
TWAIT 'Wait for move to complete
EITR(0) 'Re-enable interrupt
TMR(0,1000) 'Re-start timer

ENDIF
GOTO10 'Go back to label
END 'End (never reached)

C20 'Interrupt subroutine label
TMR(0,1000) 'Re-start timer
p=p+4000 'Increment variable p
PT=p 'Set target position
G 'Start motion

RETURNI 'Return to main loop

Part 1: Programming: TMR(timer,time)

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 198 of 969

Variables and Math
This chapter provides information on using variables and math functions with the SmartMotor.

Introduction 199

Variable Commands 199

EPTR=formula 199

VST(variable,number) 199

VLD(variable,number) 200

Math Expressions 200

Math Operations 200

Logical Operations 200

Integer Operations 200

Floating Point Functions 200

Math Operation Details and Examples 201

Array Variables 201

Array Variable Examples 202

Part 1: Programming: Variables and Math

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 199 of 969

Introduction
Variables are data holders that can be set and changed within the program or over one of the
communication channels. Although most of the variables are 32-bit signed integers, there are also eight
floating-point variables. All variables are represented by lower-case text.

Variables are stored in volatile memory, meaning that they are lost when power is removed, and they
default to zero on power-up. If they need to be saved, you must store them in the EEPROM (nonvolatile
memory) using the VST (Variable Store) command. For more details, see Variable Commands on page
199.

There are three sets of integer variables, each containing twenty-six, 32-bit signed integers and
referenced by:

l a,b,c,…,x,y,z

l aa,bb,cc,…,xx,yy,zz

l aaa,bbb,ccc,…,xxx,yyy,zzz

There is an additional set of fifty-one, 32-bit signed integers in array form, al[i],i=0…50.

The eight floating-point variables are also in array form and referenced by af[i],i=0…7.

a = # Set variable a to a numerical value
a = formula Set variable a to value of a variable or formula

For more details on array variables, see Array Variables on page 201.

Variable Commands
These commands are used to load and store variables. For more details, see Part 2: SmartMotor
Command Reference on page 247.

EPTR=formula
Set EEPROM Pointer in Bytes, 0-32767
To read or write into this memory space, it is necessary to properly locate the pointer. This is
accomplished by setting EPTR equal to the offset in bytes. EEPROM locations above EPTR equal to
32767 contain important motor information and are read-only.

VST(variable,number)
Store Variables
Use the VST command to store a series of variables starting at the pointer. In the "variable" space of
the command, put the name of the variable; in the "number" space, put the total number of sequential
variables that need to be stored. Enter a one if just the variable specified needs to be stored. The
actual sizes of the variables are recognized automatically. Do not put the VST command in a tight
program loop or you will likely exceed the 1M write-cycle limit, which will damage the EEPROM.

NOTE: Keep the VST command out of tight loops to avoid exceeding the 1M write-cycle limit of the
EEPROM.

Part 1: Programming: Introduction

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 200 of 969

VLD(variable,number)
Load Variables
Use the VLD command to load a series of variables starting at the pointer. In the "variable" space of
the command, put the name of the variable; in the "number" space, put the number of sequential
variables to be loaded. Enter a one if just the variable specified needs to be loaded. Again, the actual
sizes of the variables are recognized automatically.

Math Expressions
Variables can be used in mathematical expressions with: math operations, logical operations and
integer operations, as described in the next sections.

Math Operations

All variables can be used in mathematical expressions assuming standard hierarchical rules and using
any of the mathematical operations:

+ Addition
- Subtraction
* Multiplication
/ Division

Logical Operations

The previous mathematical operations can be combined with these logical operations:

> Less than
< Greater than
== Equal to
!= Not equal to
<= Less than or equal to
>= Greater than or equal to

Integer Operations

These integer operations are also supported:

^ Raise to an integer power <=4
& Bit wise AND (see ASCII Character Set on page 899)
| Bit wise OR (see ASCII Character Set on page 899)

!| Bit wise exclusive OR (see ASCII Character Set on page
899)

% Modulo
SQRT (x) Integer Square Root (x = integer, where x>=0)
ABS (x) Integer Absolute Value (x = integer)

Floating Point Functions

These floating point functions are also supported:

Part 1: Programming: VLD(variable,number)

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 201 of 969

FSQRT(x) Floating Point Square Root (x = float, where x>= 0)
FABS(x) Floating Point Absolute Value (x = float)
SIN(x) Floating Point Sine (x = float in degrees)
COS(x) Floating Point Cosine (x = float in degrees)
TAN(x) Floating Point Tangent (x = float in degrees)
ASIN(x) Floating Point Arc Sine in degrees on [-90,90],

(x = float on the interval [-1,1])
ACOS(x) Floating Point Arc Cosine in degrees on [0,180],

(x = float on the interval [-1,1])
ATAN(x) Floating Point Arc Tangent in degrees on [-90,90] ,

(x = float)
PI Floating Point representation of PI = 3.14159265359…

Math Operation Details and Examples

In any operation, if the input is an integer then the result remains an integer. A result is promoted to a
float once the operation includes a float. Functions that require a floating-point argument implicitly
promote integer arguments to float. In converting a floating-point number to an integer result, the
floating-point number is truncated toward zero. Although the floating point variables and their standard
binary operations conform to IEEE-754 double-precision results, the floating-point square root and
trigonometric functions only produce IEEE-754 single-precision results. Here are some examples:

a=(b+c/d)*e 'Standard hierarchical rules apply
a=2^3 'a=8
c=123%12 'Modulo, c=3, remainder of 123/12
b=(-10<a)&(a<10) 'b=0 if "a" not in range, b=1 otherwise
x=ABS(EA) 'Set x to the abs value of pos error
r=SQRT(a) 'if a=64, r=8,; if a=63, r=7

Array Variables
An array variable has a numeric index component that specifies the variable a program is to access.
This memory space is flexible because it can hold fifty-one 32-bit integers, or one-hundred-two 16-bit
integers, or two-hundred-four 8-bit integers (all signed). The array variables use the form:

ab[i]=formula Set variable to a signed 8-bit value where index i=0...203
aw[i]=formula Set variable to a signed 16-bit value where index i=0...101
al[i]=formula Set variable to a signed 32-bit value where index i=0...50

NOTE: The index i may be a number, a variable or an expression.

The same array space can be accessed with any combination of variable types and can be viewed simply
as the union of the data type arrays. Keep in mind how much space each variable takes. Also, note that
one type of variable can be written and another read from the same space. For example, if the first four
eight bit integers are assigned as:

ab[0]=0
ab[1]=0
ab[2]=1
ab[3]=0

they would occupy the same memory space as the first single 32-bit number or the first pair of 16-bit
numbers. The order is from least significant to most significant with ab[3] being the most significant.

Part 1: Programming: Math Operation Details and Examples

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 202 of 969

Because of the way binary numbers work, this would make the 32-bit variable al[0] equal to 65,536, as
well as the 16-bit variables aw[0] equal to 0 and aw[1] equal to 1.

A common use of the array variable type is to set up a buffer. In many applications, the SmartMotor is
tasked with inputting data about an array of objects and to do processing on that data in the same
order but not necessarily at the same time. Therefore, it may be necessary to "buffer" or "store" that
data until it is time for the SmartMotor to process it.

To set up a buffer, the programmer allocates a block of memory to it, assigns one variable to an input
pointer and another variable to an output pointer. Both pointers start out as zero and increment:

l Every time data goes into the buffer — the input pointer increments.

l Every time data is used — the output buffer likewise increments.

l Every time a pointer increments — it is checked for exceeding the allocated memory space and
rolled back to zero in that event. It then continues to increment as data comes in.

This is a first-in, first-out or FIFO circular buffer. There should be enough memory allocated so that the
input pointer never overruns the output pointer.

NOTE: Every SmartMotor has a small solid-state disk drive for long term storage of data, which is
based on EEPROM technology. It can be written to and read from more than one million times.

Array Variable Examples

These are examples of different uses for array variables:

b=af[0] 'if af[0]=1.8, b=1; if af[0]=-1.8, b=-1
af[0]=SIN(57.3) 'Set float var af[0]to sine 57.3 degrees
af[7]=ATAN(af[6])*180/PI 'Set af[7] to arctan result converted to radians
af[4]=af[3]*(af[1]/af[2]-1) 'Standard hierarchical rules apply
af[0]=(a+b)/2+3.0 'if a=8 and b=1, af[0]=7.0
af[0]=(a+b)/2.0+3.0 'if a=8 and b=1, af[0]=7.5
af[5]=FSQRT(a) 'if a=63, af[5]=7.937253952

Part 1: Programming: Array Variable Examples

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 203 of 969

Error and Fault Handling Details
This chapter provides information on the error and fault handling functionality that has been designed
into the SmartMotor.

Motion and Motor Faults 204

Overview 204

Drive Stage Indications and Faults 204

Fault Bits 204

Error Handling 205

Example Fault-Handler Code 205

PAUSE 206

RESUME 206

Limits and Fault Handling 207

Position Error Limits 207

dE/dt Limits 207

Velocity Limits 208

Hardware Limits 208

Software Limits 208

Fault Handling 209

Monitoring the SmartMotor Status 210

Part 1: Programming: Error and Fault Handling Details

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 204 of 969

Motion and Motor Faults
This section provides information on motion faults and motor faults.

Overview

Status bits and LED indicators are used to keep the programmer or operator aware of present or past
fault conditions of the SmartMotor. Keep these points in mind when viewing the status bits or LEDs.

l Red LEDs do not necessarily mean the motor has faulted.

l Faults do not mean the motor is "broken" or not working properly.

l A motor fault typically means a user or design limit has been reached.

l Status bits are not always fault bits.

l Status bits are used to indicate present conditions or past (historical) conditions.

For more details on LED functions, see Understanding the Status LEDs in the SmartMotor Installation
and Startup Guide for your SmartMotor.

Drive Stage Indications and Faults

These are fault bits that stop motion and turn off the Drive OK bit:

1. B(0,3) Voltage Fault Either high or low Historical indication
a. B(6,14) High bus voltage Voltage depends on motor model
b. B(6,13) Low bus voltage Voltage depends on motor model

2. B(0,5) Excessive Temperature Historical indication >=85° C
NOTE: The only fault bit with hysteresis, 80° C prior to clearing

3. B(0,6) Excessive Position Error Historical indication
a. EA (Actual Position Error) exceeded EL (Error Limit)
b. EL=1000 encoder counts by default

4. B(0,7) Velocity Limit Historical indication
VL sets Velocity Limit and defaults to 10400 RPM for most motors

5. dE/dt Error Limit Rate of Change for Position Error
Defaults to +231 and is in same scaled units as velocity

6. Travel Limits, both hardware and programmable software limits

NOTE: Peak Over Current limit is NOT a fault-causing limit! It is an indication that the drive stage is
working as hard as it can to keep up with demand.

For additional details, see Status Word 0: Primary Fault/Status Indicator on page 921, and Status Word
1: Index Registration and Software Travel Limits on page 922.

Fault Bits

The ZS command typically clears all fault bits. However, issuing the ZS command when you get a fault
on the peak overcurrent bit means you will potentially mask other fault conditions and, therefore, not
know why there is a fault on the peak overcurrent bit.

Part 1: Programming: Motion and Motor Faults

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 205 of 969

Mass Moment of Inertia mismatches and high acceleration/deceleration are the primary reasons for
getting faults on the peak overcurrent limit. However, this does not mean you will get a continuous
condition for: overcurrent, position error or overtemperature. Those are typically in the RMS range of
load and are caused by general overload conditions, excessive friction or ambient temperature rise. For
more details, see Moment of Inertia on page 916.

Proper load to motor sizing is crucial in preventing most of these fault conditions from occurring.
Please consult the Moog Animatics Product Catalog for more information. Also, see Torque Curves on
page 938.

Error Handling
This section describes techniques and commands that can be used for error handling in your
SmartMotor program.

Example Fault-Handler Code

In many multiple-axis applications, if there is a fault in one axis, it is desirable to stop all motion in the
machine. An effective way to accomplish this is to place the next example code into every motor.

When any axis experiences a drive-disable condition, interrupt routine C0 executes. The C0 routine
immediately broadcasts a global Mode Torque Brake (MTB) to stop all axes. After that, the motor
calling for the shutdown places its address in the user-accessible mode bits of Status Word 0. For
additional details, see Status Word 0: Primary Fault/Status Indicator on page 921.

EIGN(W,0,12) 'Another way to disable Travel Limits
ZS 'Clear faults
ITR(0,0,0,0,0) 'Set Int 0 for: stat word 0, bit 0,

'shift to 0, to call C0
EITR(0) 'Enable Interrupt 0
ITRE 'Global Interrupt Enable
PAUSE 'Pause to prevent "END" from disabling

'Interrupt, no change to stack
END

C0 'Fault handler
MTB:0 'Motor will turn off with Dynamic

'breaking, tell other motors to stop.
US(0):0 'Set User Status Bit 0 to 1 (Status

'Word 12 bit zero)
US(ADDR):0 'Set User Status Bit "address" to 1

'(Status Word 12 Bit "address")
RETURNI

After all motors are stopped, appropriate recovery actions can be taken.

Part 1: Programming: Error Handling

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 206 of 969

Monitor Status Word 12 in
SMI Motor View
to see the results of an axis
fault. For more details on
Motor View, see Monitoring
the SmartMotor Status on
page 210.

The next sections describe related commands. For more details on these commands, see Part 2:
SmartMotor Command Reference on page 247.

PAUSE
Suspend Program Execution
The PAUSE command suspends program execution until the RESUME command is received. It will not
affect the present state of the Interrupt Handler. If the Interrupt Handler is enabled, it will still be
enabled after a PAUSE, and its execution has no effect on the interrupt/subroutine stack.

NOTE: There is a separate stack for PAUSE that can go up to ten "resumes" deep. It allows for
PAUSES over communications and within user program interrupt routines.

RESUME
Resume from a PAUSE
The RESUME command restarts program execution from the location after the PAUSE command. It is
intended to be issued externally over communications and cannot be compiled within a program.

The RESUME command does not differentiate where the PAUSE came from. If you have a PAUSE in the
main program and a PAUSE in an interrupt, the PAUSE that is currently active will be the one that is
resumed.

Part 1: Programming: PAUSE

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 207 of 969

Limits and Fault Handling
There are commands available for interacting with these types of limits:

l Position error limits

l Velocity limits

l Hardware limits

l Software limits

These are described in the next sections. Additionally, this section describes the FSA (fault stop action)
command.

For more details, see Part 2: SmartMotor Command Reference on page 247.

Position Error Limits

These commands are used to read position error, and to set and read position error limits:

EL=formula Set the position Error Limit.
x=EL Assign to a variable the value set as the position Error

Limit.
REL Report the value set as the position Error Limit.
x=EA Assign to a variable the value of the position Actual Error

(current position error in real time).
REA Report the value of the position Actual Error.

dE/dt Limits

These commands are used to set and read dE/dt limits:

x=DEA Assign to a variable the value of the actual rate of change of the PID
position error (Actual Derivative Error). This value is averaged over four
consecutive PID cycles. It is in units of position error per PID cycle *65,536.

RDEA Report the value of the PID position error (Actual Derivative Error).

DEL=formula Set the position error rate limit (Derivative Error Limit). This is useful for
detecting obstructions to the motor’s path and faulting the motor sooner
than the position error limit alone would. This is in the same units as the
=DEA command.

x=DEL Assign to a variable the value set as the position error rate limit (Derivative
Error Limit).

RDEL Report the value set as the position error rate limit (Derivative Error Limit).

Part 1: Programming: Limits and Fault Handling

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 208 of 969

Velocity Limits

These commands are used to set and read velocity limits:

VL=formula Set the velocity fault limit (Velocity Limit) in revolutions per minute. When
the motor exceeds this speed (traveling clockwise or counter clockwise),
then the motor will fault.

x=VL Assign to a variable the value set as the velocity fault limit (Velocity Limit)
in revolutions per minute.

RVL Report the value set as the velocity fault limit (Velocity Limit) in revolu-
tions per minute.

Hardware Limits

These commands are used to enable the positive and negative hardware limits (external stimulus to
limit motion; causes a motion fault if exceeded):

EILP Enable Positive Limit switch on I/O port.

EILN Enable Negative Limit switch on I/O port.

NOTE: The SmartMotor's hardware limits must be connected (and properly tied low or high,
depending on the motor type) or disabled for motion to occur. For Class 5 D-style motors, which
have sinking inputs, the connected limits must be tied low; for Class 5 M-style and Class 6 motors,
which have sourcing inputs, the connected limits must be tied high.1

Therefore, if your SmartMotor doesn't move when adjusting the SmartMotor Playground's slider or
issuing a motion command, verify that you've either connected the limits (and properly tied them
low or high, depending on your motor type) or selected both Disable Hardware Limits check boxes
(located at the lower-right corner of the SmartMotor Playground screen).

Software Limits

Software limits offer distinct advantages over hardware limits connected to the limit inputs of the
SmartMotor. Software limits are "virtual" (non-hardware) limit switches that can interrupt motion with
a limit fault in the event the actual position of the motor strays beyond the desired region of operation.
The limit fault is directionally sensitive, so it will cause a fault if motion is commanded further in the
direction of a limit once that limit has been exceeded.

SLE Software Limits Enable.

SLD Software Limits Disable.

SLN=formula Sets (left) Negative Limit.

SLP=formula Sets (right) Positive Limit.

SLM(mode) Software Limit Mode. Determines if the software limits result in a fault
or not. 0 no fault, 1 causes fault when soft limit history asserted.

1Allen-Bradley / Rockwell uses opposite meanings for the terms sourcing and sinking.

Part 1: Programming: Velocity Limits

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 209 of 969

Fault Handling

When a limit is exceeded, motion is interrupted with a fault. The FSA (fault stop action) command is
used in fault handling.

FSA(cause,action) Fault Stop Action.

where:

cause: the type of fault to set a mode on:

0 – All types of fault.

1 – Hardware travel limits.

2 – Reserved.

action: action to take:

0 – Default action (MTB).

1 – Servo off.

2 – X command.

Part 1: Programming: Fault Handling

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 210 of 969

Monitoring the SmartMotor Status
NOTE: In addition to the software information in this section, there is context-sensitive help
available within the SMI software interface, which is accessed by pressing the F1 key or selecting
Help from the SMI software main menu.

The Motor View tool is used to monitor the status of the SmartMotor. To see the status of the
connected motor, select:

Tools > Motor View > double-click the desired motor

Selecting a Motor

After the Motor View window appears, click Poll. The status of the selected motor is updated in the
window, as shown in the next figure.

NOTE: The Motor View window provides a view into the status of a SmartMotor.

Part 1: Programming: Monitoring the SmartMotor Status

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 211 of 969

Motor View (with Polling Enabled)

NOTE: The SmartMotor's hardware limits must be connected (and properly tied low or high,
depending on the motor type) or disabled for motion to occur. For Class 5 D-style motors, which
have sinking inputs, the connected limits must be tied low; for Class 5 M-style and Class 6 motors,
which have sourcing inputs, the connected limits must be tied high.1

Therefore, if your SmartMotor doesn't move when adjusting the SmartMotor Playground's slider or
issuing a motion command, verify that you've either connected the limits (and properly tied them
low or high, depending on your motor type) or selected both Disable Hardware Limits check boxes
(located at the lower-right corner of the SmartMotor Playground screen).

WARNING: DO NOT disable the hardware limits if this action creates a safety
hazard for personnel or equipment.

Optionally, if you see limit errors and want to move the motor without wiring the limits or disabling
them in the SmartMotor Playground, you can issue terminal commands to disable the limits and reset
the errors. To do this, issue the next commands in the Terminal window (be sure to use all caps and
don’t enter the comments to the right). For more details on using the Terminal window, see Terminal
Window on page 67.

EIGN(2) 'Disable Left Limit
EIGN(3) 'Disable Right Limit
ZS 'Reset errors

1Allen-Bradley / Rockwell uses opposite meanings for the terms sourcing and sinking.

Part 1: Programming: Monitoring the SmartMotor Status

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 212 of 969

Normally, when the motor is attached to an application that relies on proper limit operation, you would
not disable them. If your motors are connected to an application that is capable of causing damage or
injury, it would be essential to properly install the limits before experimenting.

Part 1: Programming: Monitoring the SmartMotor Status

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 213 of 969

System Status
This chapter provides information on using system status words and bits with the SmartMotor.

Introduction 214

Retrieving and Manipulating Status Words/Bits 214

System and Motor Status Bits 214

Reset Error Flags 217

System Status Examples 217

Timer Status Bits 218

Interrupt Status Bits 218

I/O Status 219

User Status Bits 219

Multiple Trajectory Support Status Bits 220

Cam Status Bits 221

Interpolation Status Bits 222

Motion Mode Status 222

RMODE, RMODE(arg) 222

Part 1: Programming: System Status

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 214 of 969

Introduction
The SmartMotor System Status is divided among 16-bit status words. Many status bits are predefined
and offer information about the state of the SmartMotor operating system or the motor itself.
However, there are status words that contain user bits and have been set aside for use by the
programmers and their specific applications.

NOTE: Status bits may not be cleared or reset if the condition that set it still exists (for example,
the Bh bit).

Status bits can be used to cause interrupts within an application program. The state of a status bit can
also be tested by IF and WHILE instructions. Therefore status bits can determine the flow or path of
execution of an application program.

In addition to the information in this chapter, see Status Words - SmartMotor on page 921. Also, the
Moog Animatics website contains a useful tool for working with status bits, the SmartMotor
Developer's Worksheet, which is available at:
https://www.animatics.com/support/downloads.knowledgebase.html.

Retrieving and Manipulating Status Words/Bits
These commands are used in retrieving and manipulating status words and bits.

x=W(word) Assign to a variable the value of the 16-bit status Word.
RW(word) Report the value of the 16-bit status Word.
x=B(word,bit) Assign to a variable the value of the status Bit, word=Word#,

bit=Bit#.
RB(word,bit) Report the value of the status Bit, word=Word#, bit=Bit#.
Z(word,bit) Clears the status Bit, word=Word#, bit=Bit#.
x=B@ Assign to a variable the value of a status Bit through direct

addressing, where @ is replaced with a lower case alpha
character.

RB@ Report the value of the status Bit through direct addressing,
where @ is replaced with a lower case alpha character.

Z@ Clears a status bit through direct addressing, where @ is
replaced with a lower case alpha character.

ZS Clears a defined set of status bits; its intent is to clear the faults
of a motor allowing motion to continue from a G command.

For more details, see Part 2: SmartMotor Command Reference on page 247.

System and Motor Status Bits
There are many system and motor status bits available to govern the application program and motor
behavior. The next sections show many of the useful, directly-addressed status bits.

Note that the next sections are not the complete list of status bits. You should also refer to Status
Words - SmartMotor on page 921.

Part 1: Programming: Introduction

https://www.animatics.com/support/downloads.knowledgebase.html

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 215 of 969

General System Directly-Addressed Status Bits

Bk Program check sum/EEPROM failure

Bs Syntax error occurred

General Motor Directly-Addressed Status Bits

Bo Motor off

Bt Trajectory in progress

Bw Position wraparound occurred

Bv Velocity limit reached

Ba Over current state occurred

Bh Excessive temperature

Be Excessive position error

NOTE: In cases where the motor has gone beyond the EL (error limit) but the trajectory generator is
still active with the previously calculated trajectory, the ZS command may not clear the Be bit. If
you are unable to reset Be with the ZS command, issue an OFF command before issuing the
ZS command, which clears the current commanded trajectory and allows the reset to complete.

Motor Hardware Limits Directly-Addressed Status Bits

Bm Real time negative hardware limit, left limit

Bp Real time positive hardware limit, right limit

Bl Historical negative hardware limit, left limit

Br Historical positive hardware limit, right limit

Motor Software Limits Directly-Addressed Status Bits

Bms Real time negative hardware limit, left limit

Bps Real time positive hardware limit, right limit

Bls Historical negative software limit, CCW limit

Brs Historical positive software limit, CW limit

Part 1: Programming: System and Motor Status Bits

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 216 of 969

Motor Index/Capture Directly-Addressed Status Bits

Bi(0) Rising index/capture available on the internal motor encoder

Bi(1) Rising index/capture report available on the external encoder

Bj(0) Falling index/capture value available on the internal motor encoder

Bj(1) Falling index/capture value available on the external encoder

Bx(0) Hardware index/capture input level on the internal motor encoder

Bx(1) Hardware index/capture input level on the external encoder

For more details, see Part 2: SmartMotor Command Reference on page 247.

Part 1: Programming: System and Motor Status Bits

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 217 of 969

Reset Error Flags
If action is taken based on some of the error flags, the flag will need to be reset in order to look out for
the next occurrence, or in some cases, depending on how the code is written, prevent repeated action
on the same occurrence.

Za Reset over current state occurred

Zh Reset excessive temperature

Ze Reset excessive position error

Zl Reset historical left limit occurred

Zr Reset historical right limit occurred

Zls Reset historical left limit occurred

Zrs Reset historical right limit occurred

Zs Reset syntax error occurred

Zv Reset velocity limit occurred

Zw Reset encoder wrap occurred

ZS Resets all above Z status flags, and the status of Bi(#) and Bj(#)

NOTE: In cases where the motor has gone beyond the EL (error limit) but the trajectory generator is
still active with the previously calculated trajectory, the ZS command may not clear the Be bit. If
you are unable to reset Be with the ZS command, issue an OFF command before issuing the
ZS command, which clears the current commanded trajectory and allows the reset to complete.

For more details, see Part 2: SmartMotor Command Reference on page 247.

System Status Examples
An example of where you could use a System status bit would be to replace the TWAIT command. The
TWAIT command pauses program execution until motion is complete, but interrupt subroutines will still
take place. To avoid a routine simply resting on the TWAIT command, a routine can be written that does
much more.

This code example performs the same function as the TWAIT command:

WHILE Bt 'While trajectory
LOOP 'Loop back

As shown in the next example, the previous routine can be augmented with code that takes specific
action in the event of an index signal:

Part 1: Programming: Reset Error Flags

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 218 of 969

EIGN(W,0) 'Set all I/O to be general inputs a=0
ZS 'Clear all faults
Ai(0) 'Arm motor’s capture register
MV VT=1000 ADT=10 'Set up slow velocity mode, slow accel/decel
G 'Start motion
WHILE Bt 'While trajectory

IF Bi(0)==0 'Check index captured of encoder
GOSUB(1) 'Call subroutine

ELSE
X

ENDIF 'End checking
LOOP 'Loop back
OFF
END 'SUB 1: Increment a every 1 second
C1

IF B(4,0)==0 'Check Timer 0 status
a=a+1 'Updating a every second
TMR(0,1000) 'Set Timer 0 counting

ENDIF
RETURN
END

Timer Status Bits
Timer Status Bits are true while a timer is actively counting. Timers have resolution of 1 millisecond.

TMR(0,1000) Sets Timer Status bit 0 true for 1 second.

x=TMR(3) Assign to a variable the value of Timer 3.

RTMR(3) Report the value of Timer 3.

For more details, see Part 2: SmartMotor Command Reference on page 247.

Interrupt Status Bits
Interrupt Status Bits are true if an interrupt is enabled. It is important to note the interrupts need to be
configured before being enabled for proper operation. For details on configuring interrupts, refer to
Interrupt Programming on page 195.

These commands directly affect the state of the interrupt status bits:

ITRE Enables the interrupt handler, sets Interrupt Status Bit 15

ITRD Disables the interrupt handler, clears Interrupt Status Bit 15

EITR(0) Enables the highest priority interrupt, sets Interrupt Status Bit 0

DITR(0) Disables the highest priority interrupt, clears Interrupt Status Bit 0

For more details, see Part 2: SmartMotor Command Reference on page 247.

Part 1: Programming: Timer Status Bits

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 219 of 969

I/O Status
Typically, to get an I/O port logical status, you would use the IN() instructions for zero-based
addressing of the I/O Ports. As with any status of the SmartMotor, you can also retrieve the I/O port
status, but not change its state, using the W() and B() status word/bit commands.

x=IN(IO) Assign to a variable the value of the specified Input.
NOTE: Other forms are available, see the command description for
details.

RIN(IO) Report the value of the specified Input (see NOTE above).
x=W(word) Assign to a variable the value of the specified status word.
RW(word) Report the value of the specified status word.
x=B(word,bit) Assign to a variable the value of the specified status word and bit

number.
RB(word,bit) Report the value of the specified status word and bit number.

For more details, see Part 2: SmartMotor Command Reference on page 247.

User Status Bits
Status words 12 and 13 contain user status bits (status bits that can be set by the user). User bits
allow you to keep track of events or status within an application program. Their functions are defined
by the application program of the SmartMotor. User bits are addressed individually starting at 0 (zero
based). Likewise, the user bits words are addressed starting at 0 (zero based).

A powerful feature of user bits is their ability to be addressed over networks such as Combitronic or
CANopen. This feature allows a hosting application to cause a SmartMotor to run an interrupt routine.
For details, see Interrupt Programming on page 195.

The user bits can also be addressed as words, with or without a mask, to define which bits are affected.
These are examples of commands that directly affect the user bits:

US(0) Set user bit 0

US(W,0,a) Set first three user bits when a=7

UO(0)=a&b Set user bit to 1 if the bit-wise operation result is odd, else set it to 0

UO(W,0)=x Set status word 12 to the value of x

UO(W,1)=123 Set status word 13 to the value 123

UO(W,1,7)=a Set user bits 16, 17 and 18 to the value of the lower three bits in a

UR(19) Reset user bit 3 in second user bit status word

UR(W,0) Reset all user bits in first user bit status word

UR(W,1,7) Reset user bits 16, 17 and 18

NOTE: The G command also resets several system state flags.

For more details, see Part 2: SmartMotor Command Reference on page 247.

Part 1: Programming: I/O Status

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 220 of 969

Multiple Trajectory Support Status Bits
The SmartMotor system provides the ability to have multiple trajectory generators operating at the
same time. The outputs of the trajectory generators can be manipulated to affect the SmartMotor in a
combination of ways, which are discussed in other section of this manual. The trajectory generator
status bits help you properly control the use of the trajectory generators from an application program
or over a network.

The next example exercises the trajectory status bits of Status Word 7 in a standard Class 5
SmartMotor:

EIGN(W,0)
ZS
MFA(1000) 'Set up Gearing Profile
MFR(2) 'Gearing profile for Trajectory Generator (TG)2
O=0 'Establish actual position to zero
PT=0 'Set target position to zero
VT=1000 'Set target velocity
ADT=100 'Set accel/decel
MP(1) 'Position mode for Trajectory Generator (TG)1
G(2) 'Start TG 2, TG2 in Progress is ON
G(1) 'Start TG 1, PC=PT so TG 1 in progress is OFF
PT=10000
G(1) 'Until PC=PT TG1 in progress is ON
TWAIT(1)
OFF
END

Part 1: Programming: Multiple Trajectory Support Status Bits

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 221 of 969

Cam Status Bits
The Class 5 SmartMotor supports cams running in Spline and/or Linear Interpolated Position modes.

Each individual cam segment can be interpolated in one of these two modes. While the cam is being
executed, the Cam Segment Mode bits can be interrogated to determine which mode is presently being
used for that segment. The Cam User Bits can also be turned on and off, which is defined when each
segment is written into cam memory through the CTW() command.

Cam User Bits offer a periodic signal based on the phase of a cam, and they can be programmed to
come on and off within any given section of the cam. They function much like a standard Programmable
Limit Switch (PLS). In a standard Class 5 SmartMotor, these bits reside in Status Word 8.

The next example exercises each Cam User Bit during the programmed cam profile.

EIGN(W,0)
ZS
CTA(7,0,0) 'Add table into RAM al[0]-al[8]
CTW(0,0,1) 'Add 1st point, Cam User Bit 0 ON
CTW(1000,4000,1) 'Add 2nd point, Cam User Bit 0 ON
CTW(3000,8000,2) 'Add 3rd point, Cam User Bit 1 ON
CTW(4000,12000,132) 'Add 4th, Spline Mode, Cam Bit 2 ON
CTW(1000,16000,136) 'Add 5th, Spline Mode, Cam Bit 3 ON
CTW(-2000,20000,16) 'Add 6th point. Cam Bit 4 ON
CTW(0,24000,32) 'Add 7th point. Cam Bit 5 ON
MC 'Select Cam Mode
SRC(2) 'Use the virtual controller encoder.
MCE(0) 'Force Linear interpolation.
MCW(0,0) 'Use table 0 in RAM from point 0.
MFMUL=1 'Simple 1:1 ratio from virtual enc.
MFDIV=1 'Simple 1:1 ratio from virtual enc.
MFA(0) MFD(0) 'Disable virtual enc. ramp-up/ramp-

'down sections.
MFSLEW(24000,1) 'Table is 6 segments *4000 encoder

'counts each. Specify the second
'argument as a 1 to force this
'number as the output total of the
'virtual controller encoder into the cam.

MFSDC(-1,0) 'Disable virtual controller (Gearing)
'repeat.

G 'Begin move.
END 'Obligatory END

Part 1: Programming: Cam Status Bits

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 222 of 969

Interpolation Status Bits
The Class 5 SmartMotor supports Interpolated Position modes (IP modes) from data sent over a
CANopen network. The same bits supported for cams also exist as a separate set of status bits when
operating in IP mode. In a standard Class 5 SmartMotor, these bits reside in Status Word 8. When
Moog Animatics SMNC multi-axis contouring software is used, there is built-in support for these status
bits.

For details on the Moog Animatics SMNC software, see this address:

https://www.animatics.com/support/downloads/software/smnc.html

Motion Mode Status
The SmartMotor supports many different motion modes. Keeping them straight can present a
challenge. The RMODE command provides a tool for reporting the motion mode.

RMODE, RMODE(arg)
Report Motion Mode
The RMODE command will report the current active motion mode. Insert an argument to specify move
generator 1 or 2. The value returned has these meanings:

7 CANopen Interpolation

6 CANopen Homing

4 Torque

3 Velocity

1 Position

0 Null (move generator inactive)

-2 Quadrature Follow

-3 Step/Direction Follow

-4 Cam

-5 Mixed

For more details, see Part 2: SmartMotor Command Reference on page 247.

Part 1: Programming: Interpolation Status Bits

https://www.animatics.com/support/downloads/software/smnc.html

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 223 of 969

I/O Control Details
This chapter provides information on the extensive I/O control functionality that has been designed
into the SmartMotor.

I/O Port Hardware 224

I/O Connections Example (Class 5 D-Style Motors) 225

I/O Voltage Protection 225

Discrete Input and Output Commands 225

Discrete Input Commands 226

Discrete Output Commands 226

Output Condition and Fault Status Commands 227

Output Condition Commands 227

Output Fault Status Reports 227

General-Use Input Configuration 228

Multiple I/O Functions Example 228

Analog Functions of I/O Ports 230

5 Volt Push-Pull I/O Analog Functions (Class 5 D-Style Motors) 230

24 Volt I/O Analog Functions (Class 5 D-Style AD1 Option Motors, Class 5 M-Style Motors) 230

24 Volt I/O Analog Functions (Class 6 M-Style Motors) 230

24 Volt I/O Analog Functions (Class 6 D-Style Motors) 231

Special Functions of I/O Ports 232

Class 5 D-Style Motors: Special Functions of I/O Ports 233

Class 5 M-Style Motors: Special Functions of I/O Ports 235

Class 6 Motors: Special Functions of I/O Ports 237

I/O Brake Output Commands 238

I²C Expansion (D-Style Motors) 239

Part 1: Programming: I/O Control Details

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 224 of 969

I/O Port Hardware
The extensive and flexible I/O gives the SmartMotor the capability to control an entire machine.

Each point of SmartMotor I/O can be used or configured as a digital input or digital output. For
example, on the D-style SmartMotor, there are seven points of 5V I/O located in the 15-pin D-sub
connector, and an optional ten points of isolated 24V I/O located in a circular, M-12 connector. The 5V
I/O is push-pull; the 24V I/O is sourcing, for machine safety reasons. Regardless of the I/O setting, the
analog value can also be read. On the M-style SmartMotors, there are eleven I/O points over two
connectors, as well as a drive-enable input and a not faulted signal output.

All I/O are organized into 16-bit status words starting at Status Word 16 of the controller, but within
I/O commands it is word 0 (zero). The I/O ports are initially inputs at power-up; once the state is set
using a discrete output command, it then controls the state of the I/O pin.

On-board I/O in any standard Class 5 motor is in the first I/O Status Word 0. The I/O can be addressed
through commands, and it is zero based — the first I/O number is 0 (zero). There can be as many as 17
on-board I/O ports.

NOTE: Individual motor specifications must be reviewed to determine the number and physical
nature of the I/O. The physical nature of the I/O will address the voltage levels and isolation
characteristics of each I/O point.

Expanded I/O in a Class 5 motor starts at I/O Status Word 1, and the first expanded I/O number is then
16. Again, individual motor specifications determine the number and physical nature of the expanded
I/O.

For all commands listed in the next sections:

IO is the I/O bit number. This can be passed in from a variable.

word is the status word number. This can be passed in from a variable.

mask is a bit-wise mask used to screen out certain bits. This can be passed in from a vari-
able.

W (capital W letter by itself) refers to "Word", or 16 bits of information. Selects the
word format of the command.

For your SmartMotor's connector specifications, refer to Connector Pinouts in the SmartMotor
Installation & Startup Guide for your motor.

Part 1: Programming: I/O Port Hardware

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 225 of 969

I/O Connections Example (Class 5 D-Style Motors)
Encoders, ports, switches and buttons can be connected directly to the SmartMotor's I/O pins.

The next figure provides an example of some common I/O connections to the Class 5 D-style
SmartMotor's 15-pin D-sub connector.

NOTE: The next figure is an example for Class 5 D-style motors only. For additional I/O connection
examples, and connector, pinout and cabling information, refer to the SmartMotor Installation &
Startup Guide for your motor.

1

2

3

4

5

6

7

8

9

11

12

13

14

15

10

Port 0 (Enc A or Step Input)

Port 1 (Enc B or Dir Input)

Port 2 (Pos or Right Limit)

Port 3 (Neg or Left Limit)

Port 5 (AniLink C/RS-485 B)

Port 6 (G, Index Capture, RS-485 COM 0)

Enc A Out

Enc B Out

RS-232 Tx

RS-232 Rx

+5 VDC Out

Signal GND

Power GND

Servo Power (+)

Gnd 5VGnd
B A

Quadrature Signals

Pos / Right Limit (Dry Switch)

Neg / Left Limit (Dry Switch)

NPN Switch

NPN

Sense

Port 4 (AniLink D/RS-485 A)

Optical

Encoder

Momentary Switch

Example of Common I/O Signals and Connections for Class 5 D-style

NOTE: Class 5 D-style SmartMotor I/O is Sinking type (NPN); Class 5 D-style AD1, Class 5 M-style
and all Class 6 SmartMotor I/O are Sourcing type (PNP).

I/O Voltage Protection
This section provides information on I/O voltage protection provided by the SmartMotor.

All SmartMotor I/O is confined to operate within specified VDC limits, and some circuitry exists to
accommodate occurrences outside the operational range. For both its analog and discrete inputs, the
SmartMotor protects against persistent overvoltage to 2x the rated voltage of that input (not to
exceed 50 VDC), and to negative persistent voltage of 1/2 the rated voltage. This is permitted as long
as those occurrences are moderate and have a short duration.

The specified VDC limits and impedance for the I/O ports differ based on the particular SmartMotor
class (e.g., Class 5) and style (e.g., D-style). For details, refer to the corresponding Connector Pinout
table in the SmartMotor Installation & Startup Guide for your motor.

Discrete Input and Output Commands
This section describes the discrete input and output commands available for the SmartMotor.

Part 1: Programming: I/O Connections Example (Class 5 D-Style Motors)

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 226 of 969

NOTE: For the 5V I/O in the Class 5 motor's D-Sub connector, the value can be 0 - 6 for I/Os 0 - 6.
For the 24V I/O, the value can be 16 - 25 for the ten I/Os 16 - 25.

Discrete Input Commands

x=IN(IO) Assign to a variable a value representing the state of the
specified I/O bit.

RIN(IO) Report the value representing the state of the specified I/O
bit.

x=IN(W,word) Assign to a variable a value representing the state of the
specified I/O word.

RIN(W,word) Report the value representing the state of the specified I/O
word.

x=IN(W,word[,mask]) Assign to a variable a value representing the state of the
specified I/O word after applying a mask.

RIN(W,word[,mask]) Report the value representing the state of the specified I/O
word after applying a mask.

Discrete Output Commands

OS(IO) Set a single output to logic 1 or ON.

OS(W,word[,mask]) Set multiple outputs at once, applying a bit mask first.

OR(IO) Reset a single output to logic 0 or OFF.

OR(W,word[,mask]) Reset multiple outputs at once, applying a bit mask first.

OUT(IO)=formula If the bit in formula to the right of the "=" is odd, then set I/O
ON; when even or zero, turn it OFF.

OUT(W,word)=formula Set the I/O group to a value to the right of the "=".

OUT(W,word[,mask])
=formula

Set the I/O group with mask.

For more details, see Part 2: SmartMotor Command Reference on page 247.

Part 1: Programming: Discrete Input Commands

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 227 of 969

Output Condition and Fault Status Commands
This section describes the Output Condition (OC) and Output Fault (OF) status report commands
available for the SmartMotor.

Output Condition Commands

NOTE: The output condition commands are only available for Class 5 24V I/O motors (Class 5
M-style motors or D-style motors with the AD1 option). For other motors, refer to the IN/RIN
commands (with bitmask), see IN(...) on page 509.

x=OC(IO) Assign to a variable the value of the individual output status
of the specified I/O number — the value is 1 if output is on, 0
if it is off.

ROC(IO) Report the value of the individual output status of the spe-
cified I/O number — the value is 1 if output is on, 0 if it is off.

x=OC(W,word) Assign to a variable the value of the output status within a
word.

ROC(W,word) Report the value of the output status within a word.

NOTE: Inputs return OFF even if external condition is logic 1 in the OC() commands.

Output Fault Status Reports

NOTE: The output fault status reports are only available for Class 5 24V I/O motors (Class 5
M-style motors or D-style motors with the AD1 option).

x =OF(IO) Assign to a variable the value of the present fault state for
the specified I/O, where:
0 = no Fault , 1 = over current, 2 = possible shorted.

ROF(IO) Report the value of the present fault state for the specified
I/O.

x=OF(S,word) Assign to a variable the value of the bit mask of present
faulted I/O points. Where word is the 16-bit word number, 0 is
the controller I/O Status Word 16. If the value is ever greater
than zero, then the I/O fault status flag (Controller Status
Word 3) is set.

ROF(S,word) Report the value of the bit mask of present faulted I/O points.
x=OF(L,word) Assign to a variable the value of the bit mask of latched

faulted I/O points. Where word is the 16-bit word number, a
read of a 16-bit word will attempt to clear the I/O words
latch.

ROF(L,word) Report the value of the bit mask of latched faulted I/O points.
x=OF(D,word) Assign to a variable the value of an error code from the con-

troller associated with this I/O word.
ROF(D,word) Report the value of an error code from the controller asso-

ciated with this I/O word.

For more details, see Part 2: SmartMotor Command Reference on page 247.

Part 1: Programming: Output Condition and Fault Status Commands

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 228 of 969

General-Use Input Configuration
This section describes the general-use input configuration commands available for the SmartMotor.

These general-use input configuration commands are available:

EIGN(IO) Sets a given I/O port to or back to an input with no function
attached. In other words, to remove the function of travel limit from
I/O port 2, execute the instruction EIGN(2).

EIGN(W,word) Sets all I/O in a given I/O word back to input.

EIGN(W,word[,mask]) Sets all I/O in a given I/O word back to input if mask bit is set.

For more details, see Part 2: SmartMotor Command Reference on page 247.

Multiple I/O Functions Example

The next example shows multiple I/O functions:

Part 1: Programming: General-Use Input Configuration

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 229 of 969

EIGN(W,0) 'deactivate default on-board I/O functions
ab[10]=W(16) 'read the status of on-board I/O.
ab[11]=IN(W,0) 'Same as above, so ab[10]=ab[11] assuming

'I/O states didn’t change.
a=0
WHILE a<4

ab[a]=IN(a) 'get first 4 I/O states into ab[0]-ab[3]
a=a+1

LOOP
a=0
WHILE a<4

OS(a+4) 'turn ON I/O Ports 4 through 7.
a=a+1

LOOP
a=1
OUT(W,1)=aw[0] 'set expansion I/0 to value in aw[0]
OR(W,1,a) 'reset only I/O 16
END
EIGN(W,0) 'remove default on-board I/O functions
ab[10]=W(16) 'read the status of on-board I/O via

'controllers status word.
ab[11]=IN(W,0) 'same as above, so ab[10]=ab[11] assuming

'I/O states didn’t change.
a=0
WHILE a<4

ab[a]=IN(a) 'get first 4 I/O states into ab[0] through ab[3]
a=a+1

LOOP
a=0
WHILE a<4

OS(a+4) 'turn ON I/O ports 4 through 7.
a=a+1

LOOP
a=1
OUT(W,1)=aw[0] 'set expansion I/0 to value in aw[0]
OR(W,1,a) 'reset only I/O 16
END

Part 1: Programming: Multiple I/O Functions Example

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 230 of 969

Analog Functions of I/O Ports
An I/O port’s analog value can be monitored with the commands described in this section. The 24V I/O
of a SmartMotor offers more flexibility than the 5V I/O, as shown below. All scaled readings are in
millivolts.

The analog reads can help diagnose wiring issues external to the SmartMotor. For example, while Ports
4 and 5 are being used as RS-485, the signal bias could be monitored; if a 5V I/O pin is being driven as
an output, the analog reading can help find a short.

These commands are used to access the analog functions of the 5V and 24V I/O:

5 Volt Push-Pull I/O Analog Functions (Class 5 D-Style Motors)

INA(A,IO) Raw analog read: 10-bit res. 0-32736=0-5 VDC

INA(V1,IO) Scaled voltage reading in millivolts, where 3456 would be 3.456 VDC.
0-5000=0-5 VDC

NOTE: For the 5V I/O in the Class 5 motor's D-Sub connector, the value can be 0 - 6 for I/Os 0 - 6.
For the 24V I/O, the value can be 16 - 25 for the ten I/Os 16 - 25.

24 Volt I/O Analog Functions (Class 5 D-Style AD1 Option Motors, Class 5 M-Style Motors)

NOTE: I/O for the –AD1 option starts at 16; I/O for the M-style starts at 0.

INA(A,IO) Raw analog read: 10-Bit res. 0-19000=0-24 VDC
(Produces a raw value of ~19000 at 24 VDC, ~14000 at 18 VDC)

INA(V,IO) Scaled read 0-24000, where 24000 is 24.0 Volts, 18000 is 18.0 Volts,
etc.

INA(V1,IO) Scaled read 0-5100, where 550 is 0.55 Volts

INA(V2,IO) Scaled read 0-610, where 60 is 0.06 Volts

INA(S,x) Sourcing voltage for the I/O port (when output pin), where x is 16-25
for the Class 5 D-style, use 0 for the M-style.

INA(T,x) I/O chip temperature, where x is 16-25 for the Class 5 D-style, use 0
for the M-style.

NOTE: With the 24V I/O, the V1 and V2 settings focus the 10 bits of resolution on the finer voltage
spans of 5V and 0.6V, respectively.

CAUTION: For Class 5 D-style AD1 option motors, at no time should the voltage
to any input exceed the level on the I/O power input (Pin 11). Doing so could cause
immediate damage to the expanded I/O hardware.

24 Volt I/O Analog Functions (Class 6 M-Style Motors)

NOTE: I/O for the Class 6 M-style starts at 0.

INA(A,IO) Raw analog read: 10-Bit res. 0-32736
(Produces the max. value of 32736 nominally at 18 VDC; note that 24
VDC still reads 32736)

Part 1: Programming: Analog Functions of I/O Ports

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 231 of 969

INA(V,IO) Scaled read 0-18000, where 15500 is 15.5 Volts
(Produces a max. millivolt value of 18000 at 18 VDC; note that 24
VDC still reads 18000, where 24 VDC is still a safe value, it has simply
saturated the scale range)

INA(V1,IO) Not supported on Class 6 M-Style motors

INA(V2,IO) Not supported on Class 6 M-Style motors

INA(S,x) Not supported on Class 6 M-Style motors

INA(T,x) Not supported on Class 6 M-Style motors

24 Volt I/O Analog Functions (Class 6 D-Style Motors)

NOTE: I/O for the Class 6 D-Style starts at 0.

INA(A,0)

INA(A,1)

Raw analog read: 10-Bit res. 0-32736
(Produces the max. value of 32736 nominally at 10.67 VDC; note that
24 VDC still reads 32736)

INA(A,11) Nominal input voltage: 4-20 mA; nominal reported value: 4000-20000,
0-21483 min/max

INA(V,IO) Scaled read 0-10000, where 10000 is 10 Volts
(Produces a max. millivolt value of 10670 at 10.67 VDC; note that 24
VDC still reads 10670, where 24 VDC is still a safe value, it has simply
saturated the scale range)

INA(V1,IO) Not supported on Class 6 D-Style motors

INA(V2,IO) Not supported on Class 6 D-Style motors

INA(S,x) Not supported on Class 6 D-Style motors

INA(T,x) Not supported on Class 6 D-Style motors

For more details, see Part 2: SmartMotor Command Reference on page 247.

Part 1: Programming: 24 Volt I/O Analog Functions (Class 6 D-Style Motors)

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 232 of 969

Special Functions of I/O Ports
This chapter provides information on the special functions of I/O ports for Class 5 and Class 6 motors.

Class 5 D-Style Motors: Special Functions of I/O Ports 233

Class 5 M-Style Motors: Special Functions of I/O Ports 235

Class 6 Motors: Special Functions of I/O Ports 237

Part 1: Programming: Special Functions of I/O Ports

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 233 of 969

Class 5 D-Style Motors: Special Functions of I/O Ports

The on-board I/O ports provide these special functions:

Ports 0 and 1 External encoder (quadrature or step/direction) inputs, brake output

Ports 2 and 3 Travel limit inputs, brake output

Ports 4 and 5 Communications, brake output

Port 6 Go function, capture input, brake output

NOTE: The brake output function can be pointed to any one of the on-board I/O or expanded I/O
ports.

I/O Ports 0 and 1 – External Encoder Function Commands

Ports 0 and 1 can be wired to an external encoder. Below are the supporting configuration commands:

NOTE: For proper counting, the commands OS(), OR() and OUT() should be avoided for ports 0 and 1.

MF0 Set encoder counter to zero; put it in Quadrature Count mode

MS0 Set encoder counter to zero; put it in Step and Direction Count mode
(default count mode)

I/O Ports 2 and 3 – Travel Limit Inputs

Ports 2 and 3 are defaulted to travel limit inputs. They can be changed to a general-purpose I/O points
by using the EIGN() commands and then returned to the travel limit function with these commands:

EILN Set I/O 3 as negative overtravel limit

EILP Set I/O 2 as positive overtravel limit

I/O Ports 4 and 5 – Communications

Ports 4 and 5 can be configured as a second communications channel. Channel 0 is the main
communications channel. Ports 4 and 5 are associated with commands for communications across
channel 1. For more details on communications, see Communication Details on page 96.

Modbus and DMX protocols are additional communications options that can be used instead of RS4.
For more details on these optional protocols, see the documentation for the specified protocol. The
communication protocol is specified with the OCHN command type parameter. For details, see OCHN
(type,channel,parity,bit rate,stop bits,data bits,mode,timeout) on page 104.

CAUTION: The secondary RS-485 port is non-isolated and not properly biased by
the two internal 5k ohm pull-up resistors. Therefore, it is suitable for
communication with a bar code reader or light curtain, but it cannot be used to
cascade motors because of the heavy biasing and ground bounce resulting from
variable shaft loading.

These are examples of the supporting configuration commands:

NOTE: These functions are not supported on the Class 5 IP-65 rated motors with on-board 24V I/O.

Part 1: Programming: Class 5 D-Style Motors: Special Functions of I/O Ports

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 234 of 969

OCHN(IIC,1,N,200000,1,8,D) Set I/O 4 and 5 for I²C mode

CCHN(IIC,1) Close the I²C channel

OCHN(RS4,1,N,38400,1,8,D) Set I/O 4 and 5 to RS-485 mode

CCHN(RS4,1) Close the RS-485 channel

I/O Port 6 – Go Command, Encoder Index Capture Input

These commands are used to issue a G (Go) command, and capture input from internal or external
encoders:

EISM(6) Issues G when specified I/O goes low

EIRE Index/registration input capture of the external encoder count (default
setting)

EIRI Index/registration input capture of the internal motor encoder count

The next table provides a matrix of the index capture functions for the D-style motors.

Capture Internal index inputa External index inputb Disable index inputc

Internal encoder EIRE command (default at
startup)

EIRI command Not supported

External encoder Not supported EIRE command (default
at startup)

EIRI command

a) From the internal encoder
b) I/O port 6, single-ended, 5 volts
c) Disables capture on indicated encoder

For additional information on index capture, see Index Capture Commands on page 130. For more
details, see Part 2: SmartMotor Command Reference on page 247.

Part 1: Programming: I/O Port 6 – Go Command, Encoder Index Capture Input

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 235 of 969

Class 5 M-Style Motors: Special Functions of I/O Ports

The on-board I/O ports provide these special functions:

COM Port pins 4, 5, 6, and 8 A-quad-B or Step-and-Direction counting modes

Ports 2 and 3 Travel limit inputs, brake output

Port 5 Capture input, brake output

Port 6 Go function, brake output

Drive enable input Dedicated input to enable drive

No fault output Dedicated output to indicate when no faults are preventing
motion

NOTE: The brake output function can be pointed to any one of the on-board I/O or expanded I/O
ports.

COM Port Pins 4, 5, 6, and 8 – A-quad-B or Step-and-Direction Modes

These pins are for encoder A+/-, B+/- inputs or outputs. They can also be used for step and direction
mode. Below are the supporting configuration commands:

MF0 Set encoder counter to zero; put it in Quadrature Count mode

MS0 Set encoder counter to zero; put it in Step-and-Direction Count mode
(default count mode)

I/O Ports 2 and 3 – Travel Limit Inputs

Ports 2 and 3 are defaulted to travel limit inputs. They can be changed to general-purpose I/O points by
using the EIGN() commands and then returned to the travel limit function with these commands:

EILN Set I/O 3 as negative overtravel limit

EILP Set I/O 2 as positive overtravel limit

I/O Port 5 – Encoder Index Capture Input

These commands are used to capture input from internal or external encoders:

EIRE Index/registration input capture of the external encoder count (default setting)

EIRI Index/registration input capture of the internal motor encoder count

Part 1: Programming: Class 5 M-Style Motors: Special Functions of I/O Ports

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 236 of 969

The next table provides a matrix of the index capture functions for the M-style motors.

Capture Internal index inputa External index inputb Disable index inputc

Internal encoder EIRE command (default at
startup)

EIRI command Not supported

External encoder Not supported EIRE command (default
at startup)

EIRI command

a) From the internal encoder
b) I/O port 5, single-ended, 24 volts
c) Disables capture on indicated encoder

For additional information on index capture, see Index Capture Commands on page 130. For more
details, see Part 2: SmartMotor Command Reference on page 247.

I/O Port 6 – Go Command

This command is used to issue a G (Go) command:

EISM(6) Issues G when specified I/O goes low

Part 1: Programming: I/O Port 6 – Go Command

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 237 of 969

Class 6 Motors: Special Functions of I/O Ports

The on-board I/O ports provide these special functions:

For Class 6 M-Style Motors:

For this list, COM Port = 8-pin connector; I/O Port = 12-pin connector.

COM Port pins 4, 5,
6, and 8

A-quad-B or Step-and-Direction counting modes

I/O Ports 2 and 3 Travel limit inputs

I/O Port 4 and 5 Capture input for external and internal encoder

I/O Port 6 Go function

I/O Port 7 Drive enable input (dedicated input to enable drive)

I/O Port 8 Brake output

I/O Port 9 Not Fault output - dedicated output to indicate when no faults are
preventing motion

NOTE: The brake output function can be pointed to any one of the on-board I/O or expanded I/O
ports.

For Class 6 D-Style Motors:

These are on the HD26 (26-pin) connector:

I/O Pins 13, 14, 15
and 16

A-quad-B or Step-and-Direction counting modes

I/O Ports 2 and 3 Travel limit inputs or GP

I/O Port 4 and 5 GP or capture input for external and internal encoder

I/O Port 6 GP, Go command or homing input

I/O Port 7 Drive enable input (dedicated input to enable drive)

I/O Port 8 GP or brake line output

I/O Port 9 GP or Not Fault output (indicates when no faults are preventing
motion)

NOTE: The brake output function can be pointed to any one of the on-board I/O or expanded I/O
ports.

A-quad-B or Step-and-Direction Modes

NOTE: See the above listings for the Class 6 M-style and Class 6 D-style pins supporting this
functionality.

These pins are for encoder A+/-, B+/- inputs or outputs (output is only available for Class 6 M-style, see
ENCD(in_out) on page 437). They can also be used for step and direction mode. Below are the
supporting configuration commands:

Part 1: Programming: Class 6 Motors: Special Functions of I/O Ports

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 238 of 969

MF0 Set encoder counter to zero; put it in Quadrature Count mode

MS0 Set encoder counter to zero; put it in Step-and-Direction Count mode
(default count mode)

I/O Ports 2 and 3 – Travel Limit Inputs

Ports 2 and 3 are defaulted to travel limit inputs. They can be changed to general-purpose I/O points by
using the EIGN() commands and then returned to the travel limit function with these commands:

EILN Set I/O 3 as negative overtravel limit

EILP Set I/O 2 as positive overtravel limit

I/O Port 4 and 5 – Encoder Index Capture Input

These commands are used to capture input from internal or external encoders:

EIRE Index/registration input capture of the external encoder count (default setting)

EIRI Index/registration input capture of the internal motor encoder count

The next table provides a matrix of the index capture functions for the M-style motors.

Capture Internal index inputa External index inputb Disable index inputc

Internal encoder EIRE command (default at
startup)

EIRI command Not supported

External encoder Not supported EIRE command (default
at startup)

EIRI command

a) From the internal encoder
b) I/O port 5, single-ended, 24 volts
c) Disables capture on indicated encoder

For additional information on index capture, see Index Capture Commands on page 130. For more
details, see Part 2: SmartMotor Command Reference on page 247.

I/O Port 6 – Go Command

This command is used to issue a G (Go) command:

EISM(6) Issues G when specified I/O goes low

I/O Brake Output Commands
The brake output function can be configured to any I/O port including the expanded I/O ports where IO
is the bit number.

These commands are used to configure the brake output:

EOBK(IO) Configure a given output to control an external brake

EOBK(-1) Remove the brake function from the I/O port

Part 1: Programming: I/O Ports 2 and 3 – Travel Limit Inputs

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 239 of 969

For more details, see Part 2: SmartMotor Command Reference on page 247.

I²C Expansion (D-Style Motors)
I/O ports 4 and 5 can perform as an I²C port. I²C is an "Inter-IC-Communication" scheme that is simple
and powerful. There are dozens of low-cost I²C devices on the market that message over I²C and deliver
many resources. I²C chips include: I/O expanders, analog input and output, nonvolatile memory,
temperature sensors, etc. I²C provides a low cost means of expanding the functionality of a
SmartMotor. For more details on I²C, see I²C Communications (Class 5 D-Style Motors) on page 118.

Part 1: Programming: I²C Expansion (D-Style Motors)

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 240 of 969

Tuning and PID Control
This chapter provides information on the PID control functionality that has been designed into the
SmartMotor.

Introduction 241

Tuning and PID Control on the DS2020 Combitronic System 241

Understanding the PID Control 241

Tuning the PID Control 242

Using F 243

Setting KP 243

Setting KD 243

Setting KI and KL 244

Setting EL=formula 244

Other PID Tuning Parameters 244

KG=formula 245

KV=formula 245

KA=formula 245

Current Limit Control 246

AMPS=formula 246

Part 1: Programming: Tuning and PID Control

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 241 of 969

Introduction
The SmartMotor includes a brushless servomotor with powerful rare-earth magnets and a stator (the
outside, stationary part), which is a densely-wound, multi-slotted electromagnet. Controlling the
position of a brushless servo’s rotor with only electromagnetism is like pulling a sled with a rubber
band—accurate control would seem impossible.

The parameters that make it all work are found in the PID (Proportional, Integral, Derivative) control
section. These are the three fundamental coefficients to a mathematical algorithm that intelligently
recalculates and delivers the power needed by the motor. The input to the PID control is the
instantaneous desired position minus the actual position, whether at rest or part of an ongoing
trajectory. This difference is called the position error.

NOTE: The PID control is off when operating in Torque mode.

In the Class 5 SmartMotor, the PID update rate defaults to 125 microseconds (8,000 times per
second). Optionally it may be decreased or increased to a maximum of 62.5 microseconds. The faster
62.5 microsecond update rate allows for smoother high-speed operation and faster
acceleration/deceleration correction under varying load conditions.

Tuning and PID Control on the DS2020 Combitronic System

The DS2020 Combitronic system, with its separate drive and larger motors, uses a somewhat different
tuning approach than the fully integrated SmartMotor products. For example, it does not offer the
KL, KG or KA parameters, but it does include the KP, KD, KI and KV parameters, which can be set
directly through those commands. Other tuning-related commands, like F and AMPS, are also
supported. For information on those commands, see the next sections and the individual command
description pages in Part 2 of this guide.

The DS2020 Combitronic system internally uses three regulators:
l PI for position loop

l PI for velocity loop

l PI for current loop

The first two are tuned as a single regulator by KP, KI, KD and KV; the last one is automatically set on
the basis of motor resistance and inductance.

Additionally, the DS2020 Combitronic system provides a set of seven filters (0-6) for refining the
performance of the system. These are accessed through the SMI software. Filter 0 has a default
setting of Low Pass Filter (LPF) at 400 Hz; whereas, the other filters (1-6) are disabled by default. For
more details on setting the control loop filters, see the Commissioning chapter in the Moog Animatics
DS2020 Combitronic™ Installation and Startup Guide.

NOTE: The tuning settings must be adjusted by qualified personnel; incorrect settings can cause the
system to become unstable. In that case, the X and S commands will not work (because they use
control loops to be executed), and only an OFF command will effectively disable the drive (and
engage the brake if available and configured).

Understanding the PID Control
The Proportional parameter (KP) of the PID control creates a simple spring constant. The further the
shaft is rotated away from its target position, the more power is delivered to return it. With this as the
only parameter, the motor shaft would respond just as the end of a spring would if it was grabbed and
twisted. If the spring is twisted and let go, it will vibrate wildly. This sort of vibration is hazardous to

Part 1: Programming: Introduction

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 242 of 969

most mechanisms. In this scenario, a shock absorber is added to dampen the vibrations, which is the
equivalent of what the Derivative parameter (KD) does.

For example, when you sit on the fender of a car, it dips down because of the additional weight based
on the constant of the car’s spring. It gives you no indication if the shock absorbers are good or bad.
However, if you jump up and down on the bumper, you would quickly see if the shock absorbers are
working or not. That’s because they are not activated by position but rather by speed.

The Derivative parameter steals power away as a function of the rate of change of the overall PID
control output. The parameter gets its name from the fact that the derivative of position is speed.
Electronically stealing power based on the magnitude of the motor shaft’s vibration has the same
effect as putting a shock absorber in the system.

NOTE: While the Derivative parameter usually acts to dampen instability, this is not the true
definition of the term. Therefore, it is also possible to cause instability by setting the Derivative
parameter too high.

Even with the Proportional and Derivative parameters working properly, a situation created by "dead
weight" can cause the servo to leave its target. If a constant torque is applied to the end of the shaft,
the shaft complies until the deflection causes the Proportional parameter to rise to the equivalent
torque. Because there is no speed, the Derivative parameter has no effect. As long as the torque is
there, the motor’s shaft position will be off target.

That’s where the Integral parameter (KI) comes in. The Integral parameter mounts an opposing force
that is a function of time. As time passes and there is a deflection present, the Integral parameter adds
a little force to bring it back on target with each PID cycle. There is also a separate Integral Limit
parameter (KL) (not available for the DS2020 Combitronic system), which limits the Integral
parameter’s scope of what it can do and help prevent overreaction.

Each of these parameters has its own scaling factor to tailor the overall performance of the PID control
to the specific load conditions of any one particular application. The scaling factors are:

KP Proportional coefficient
KI Integral coefficient
KD Derivative coefficient
KL Integral limit (not available for the DS2020 Combitronic system)

Tuning the PID Control
The task of tuning the PID control is made difficult by the fact that the parameters are so
interdependent. A change in one can shift the optimal settings of the others. The SMI software has a
Tuner tool, which is an automated utility for optimizing the settings. For details, refer to the Tuner on
page 85. Even if you use the Tuner tool, you should still read through this section to understand how to
tune a servo and the interaction between the tuning parameters.

When tuning the motor, it is useful to have the Motor View tool running, which will monitor various bits
of information that describe the motor's performance. For details on the Motor View tool, see Motor
View on page 72.

NOTE: In most cases, it is unnecessary to tune a SmartMotor. They are factory tuned, and stable in
virtually any application.

These are the tuner parameters and their descriptions:

KP=formula Set KP, proportional coefficient

KI=formula Set KI, integral coefficient

Part 1: Programming: Tuning the PID Control

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 243 of 969

KD=formula Set KD, derivative coefficient

KS=formula Set KS, velocity filter option for KD (value is 0, 1, 2, or 3; larger number is
longer filter time) (not available for the DS2020 Combitronic system)

KL=formula Set KL, integral coefficient limit (not available for the DS2020
Combitronic system)

F Update PID control

Using F

The F (update PID filter) command is used to update changes to any of the tuning parameter settings.
Keep in mind that the new parameter settings do not take effect until the F command is issued. For
example:

KP=100 'Initialize KP to some value
F 'Load into present PID filter

Setting KP

The main objective in tuning a servo is to get the KP (proportional coefficient) value as high as possible,
while maintaining stability. The higher the KP value, the stiffer the system and the more "under control"
it is. Also, when initially setting KP, it is a good idea to start with KI equal to zero (for details, see
Setting KI and KL on page 244).

To begin, use the RKP (report KP) command to view the current setting and then increase it by 10% to
20%. For example:

RKP 3000 'Report current KP value
KP=3500 'Increase KP value
F 'Load new value into PID filter

Each time KP is raised, try to physically destabilize the system by bumping it, twisting it or using a
looping program that invokes abrupt motions. As long as the motor always settles to a quiet rest, keep
raising KP.

NOTE: If the SMI Tuning Utility is being used, it will employ a step function and graphically show the
reaction.

Setting KD

As soon as the SmartMotor starts to find it difficult to maintain stability, find the appropriate value for
KD (derivative compensation).

To do this, use the RKD (report KD command) to view the current value. Then move KD up and down
until a value is found that gives the quickest stability. Remember to use the F command to update the
new value.

Note that if KD is too high, there will be a grinding sound — it is not really grinding, but it is a sign to go
the other way. A properly-tuned motor is not only stable but reasonably quiet. The level of noise
immunity in the KD term is controlled by KS (velocity filter option for KD).

NOTE: Although the DS2020 Combitronic system doesn't offer a KS term, it does provide a set of
seven filters for refining the performance of the system. These are accessed through the SMI
software. For details on setting the control loop filters, see the Commissioning chapter in the Moog
Animatics DS2020 Combitronic™ Installation and Startup Guide.

Part 1: Programming: Using F

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 244 of 969

The derivative term KD requires estimating the derivative of the position error. The simplest method is
a backward difference, KS=0, which is no velocity filtering and can result in excessive noise. The
choices of KS=1, 2 and 3 provide increasing levels of noise immunity (velocity filtering) at the expense
of increasing latency. Because higher latency typically results in lower achievable PID loop gains,
choose the best compromise between smoothness and tracking performance. The default setting is
KS=1.

After optimizing KD, it may be possible to raise KP a bit more. Keep going back and forth between
KP and KD until you've maximized the stiffness of the system. After that, it’s time to take a look at KI.

Setting KI and KL

Typically, KI (integral coefficient) is used to compensate for friction; without it, the SmartMotor will
never exactly reach the target. Begin with KI equal to zero and KL equal to 1000. Move the motor off
target and start increasing KI and KL. Keep KL at least ten times greater than KI during this phase. Use
the RKI (report KI) and RKL (report KL) commands to view the values; use the F command to update
changes to the values.

NOTE: Although the DS2020 Combitronic system doesn't offer a KL term, it does provide a set of
seven filters for refining the performance of the system. These are accessed through the SMI
software. For details on setting the control loop filters, see the Commissioning chapter in the Moog
Animatics DS2020 Combitronic™ Installation and Startup Guide.

Continue to increase KI until the motor always reaches its target. When that happens, add about 30%
to KI and start bringing down KL until it prevents the KI term from closing the position precisely on
target. After that point is reached, increase KL by about 30%. The integral term needs to be strong
enough to overcome friction. However, the limit needs to be set so that a surge of power will not be
delivered if the mechanism were to jam or reach one of the physical (hard stop) limits.

Setting EL=formula
Set Maximum Position Error
The difference between where the motor shaft is supposed to be and where it is actually positioned is
called the "position error". The magnitude and sign of the error are delivered to the motor in the form
of torque after it is put through the PID control. As the error increases, the motor becomes more
uncontrolled. Therefore, it is useful to put a limit on the allowable error, which will turn the motor off.

The EL command serves that purpose. It defaults to 1,000, but it can be set from 0 to 262,143. You
can view the current value with the REL (report EL) command.

For more details, see Part 2: SmartMotor Command Reference on page 247.

Other PID Tuning Parameters
There are additional parameters that can be used to reduce the position error of a dynamic application.
Most of the forces that aggravate a PID loop through the execution of a motion trajectory are
unpredictable. However, there are some that can be predicted and eliminated.

NOTE: Although the DS2020 Combitronic system doesn't offer a KG or KA term, it does provide a
set of seven filters for refining the performance of the system. These are accessed through the SMI
software. For details on setting the control loop filters, see the Commissioning chapter in the Moog
Animatics DS2020 Combitronic™ Installation and Startup Guide.

Part 1: Programming: Setting KI and KL

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 245 of 969

KG=formula
Set KG, Gravitational Offset (not available for the DS2020 Combitronic system)
The simplest force to eliminate is gravity. When power is off, if motion would occur due to gravity, a
constant offset can be incorporated into the PID control to balance the system. The KG (gravitational
offset) provides this offset. The value for KG can range from -16777216 to 16777215.

To set KG, use the RKG (report KG) command to view the current value, and then make changes to KG.
Remember to use the F command to update the new value. Continue adjusting KG until the load equally
favors upward and downward motion.

KV=formula
Set KV, Velocity Feed Forward
Another predictable cause of position error is the natural latency of the PID loop itself. At higher
speeds, because the calculation takes a finite amount of time, the result is somewhat delayed — the
higher the speed, the more the actual motor position will slightly lag the trajectory-calculated position.
This can be programmed out with the KV (velocity feed forward) parameter. KV can range from zero to
65535; typical values range in the low hundreds.

To tune KV, use the RKV command to view the current value, and then make changes to KV while
running the motor at a constant speed if the application will allow. Remember to use the F command to
update the new value. Continue increasing the value of KV until the error is reduced to near zero and
stays there. The error can be seen in real time by activating the Motor View window in the SMI
software. For details, see Motor View on page 72.

Position Error Value (in Motor View Window)

In the DS2020 Combitronic system, the velocity feed-forward path directly feeds the velocity control
system with the speed value computed by the trajectory generator. A very effective approach for
improved position tracking is to use the default value KV=1000 (that corresponds to unity feed-
forward gain). In this way, the position control system acts only to adjust position in case of external
disturbances.

KA=formula
Set KA, Acceleration Feed Forward (not available for the DS2020 Combitronic system)
If the SmartMotor is accelerating a mass, it will be exerting a force during that acceleration (force =
mass X acceleration), which disappears immediately on reaching the cruising speed. This momentary
torque during acceleration is also predictable, and its effects can be programmed out with the KA
(acceleration feed forward) parameter. KA can range from zero to 65535.

It is a little more difficult to tune KA, especially with hardware attached. The objective is to arrive at a
value that will close the position error during the acceleration and deceleration phases. It is better to
tune KA with KI set to zero because KI will address this constant force in another way. It is best to have
KA address 100% of the forces due to acceleration, and use the KI term to adjust for friction.

Part 1: Programming: KG=formula

P
a

rt
 1

: P
ro

g
ra

m
m

in
g

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 246 of 969

The PID update rate of the SmartMotor can be slowed down with the values:

PID1 Set highest PID update rate, 16 kHz
PID2 (Default) Divide highest PID update rate by 2, 8 kHz
PID4 Divide highest PID update rate by 4, 4 kHz
PID8 Divide highest PID update rate by 8, 2 kHz

NOTE: A reduction in the PID rate can result in an increase in the SmartMotor application program
execution rate.

The trajectory and PID control calculations occur within the SmartMotor at the "sample rate" selected
by the PIDn command. Although 16 kHz (PID1) is available, 8 kHz (PID2, the default) provides a
reasonable compromise between optimum control and the SmartMotor application program execution
rate. The program execution rate can be increased by reducing the PID rate using PID4 and PID8 in
applications where the lower PID sample rate still results in satisfactory control.

If the PID sample rate is lowered, remember that it is the basis for velocity values, acceleration values
and the PID coefficients. If the rate is cut in half, expect to do this to keep all else the same:

l Double velocity

l Increase acceleration by a factor of four

NOTE: If proper care is taken to keep the PID filter stable, the PID# command can be issued on the
fly.

Current Limit Control
In some applications, if the motor is misapplied at full power, the attached mechanism could be
damaged. Therefore, it can be useful to reduce the maximum amount of current available, which limits
the torque the motor can produce.

AMPS=formula
Set Current Limit, 0 to 1023
The AMPS (PWM limit) command is used to set the current limit. Use the AMPS command with a
number, variable or formula within the range of 0 to 1023, where the value 1023 corresponds to the
maximum commanded torque to the motor. Current is controlled by limiting the maximum PWM duty
cycle, which will reduce the maximum speed of the motor as well.

NOTE: The AMPS command has no effect in Torque mode.

For more details, see Part 2: SmartMotor Command Reference on page 247.

Part 1: Programming: Current Limit Control

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 247 of 969

Part 2: SmartMotor Command Reference

Part 2 of this guide provides the reference pages for the SmartMotor command set. The commands
are listed in alphabetical order. In addition:

l A quick-reference command list sorted alphabetically is available at the end of this manual. For
details, see Commands Listed Alphabetically on page 946.

l A quick-reference command list sorted by function is available at the end of this manual. For
details, see Commands Listed by Function on page 954.

NOTE: In the command syntax, when optional bracketed arguments are shown, the comma within the
brackets is only used with the optional argument. For example, the comma is used with the optional
"m/s" argument in the command MFSLEW(distance[,m/s]).

Each command description includes these items:
l Summary Table

A table at the beginning of each command page provides a summary list of information about the
command. It includes these categories: Application, Description, Execution, Conditional To,
Limitations, Read/Report, Write, Language Access, Units, Range Of Values, Typical values,
Default Value, Firmware Version, and Combitronic Support.

NOTE: If an item does not apply to the particular command, it is marked with N/A.
l Detailed Description

This section provides details about the command. Notes, Cautions and Warnings are used to
highlight any critical information that must be adhered to for proper use of the command. For
more details on Notes, Cautions and Warnings, see Safety Information on page 31.

l Example Code

This section provides some example code to show the use of the command. In some cases, the
example may be a "snippet" (one or a few lines); in other cases, the example may be a complete
program.

NOTE: The programs and code samples in this manual are provided for example purposes only. It is
the user's responsibility to decide if a particular code sample or program applies to the application
being developed and to adjust the values to fit that application.

In addition, note that:
l Code examples can be copied and pasted into the SMI program editor.
l When copying from a PDF file, the pasted code will have line indents removed. However,

the code will still work properly.
l All programs must include an END statement. For details, see END on page 439.

l Related Commands

This section lists commands that are functionally related to the current command.

NOTE: A superscript "R" character preceding the command indicates there is a corresponding
"report" version of that command.

Part 2: Commands:

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 248 of 969

(Single Space Character)
Single Space Delimiter and String Terminator

APPLICATION: Program execution and flow control

DESCRIPTION: Single spaces placed between a series of user variables or commands

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: Serial communications channel data

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

A single space character may be placed between a series of user commands in a single ASCII string as
delimiter. If it is sent from a PLC or PC, the same space character can be used as a string terminating
character.

NOTE: When sending commands through the serial port from a PC, PLC or other controller, a space
character can be used as both a delimiter and a string terminator. It can be used equally and
interchangeably with a carriage return as a string terminator.

EXAMPLE: (as delimiter and null terminator in PRINT command)

PRINT("a=1 b=2 ")
'Note space after b=2 as null terminator.

equivalent:
PRINT("a=1 b=2",#13)
'Note carriage return as null terminator.

RELATED COMMANDS:

N/A

Part 2: Commands: (Single Space Character)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 249 of 969

a...z
aa...zz

aaa...zzz
32-Bit Variables

APPLICATION: Variables

DESCRIPTION: Signed 32-bit user variables

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: Ra...Rz
Raa...Rzz
Raaa...Rzzz

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Signed 32-bit integer

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -2147483648 to 2147483647

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: a:3=1 or Ra:3 or a=a:3
aa:3=1 or Raa:3 or a=aa:3
aaa:3=1 or Raaa:3 or a=aaa:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The SmartMotor™ has three groups of predefined user variables:
l The first group consists of the variables a through z

l The second group consists of the variables aa through zz

l The third group consists of the variables aaa through zzz

They are general-purpose, read/write, 32-bit, signed integer variables that can be reported and used on
either side of an equal sign in an equation.

CAUTION: These variables are stored in dynamic RAM, which means their values
are lost when power is lost.

The value of any variable a through z is reported with the R, PRINT() or PRINT1() functions.

Part 2: Commands: a...z

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 250 of 969

NOTE: These examples and descriptions use the single-character variables. However, you can
substitute the double- or triple-character variables, if desired.

EXAMPLE:
g=123 'Assign the value of 123 to "g".
Rg 'Report the value of g to the primary serial port.
PRINT("g=",g,#13) 'Print to the primary serial port.
PRINT1("g=",g,#13) 'Print to the secondary serial port.
END

Program output is:

123
g=123

These variables are 32-bit signed integers, so they are limited to whole numbers from -2147483648 to
2147483647. Math operations that result in digits after the decimal point are truncated toward zero.
Therefore, the value 2.9 becomes 2, and the value -2.9 becomes -2.

If you assign or perform an operation that normally results in a value outside this range, the Bs bit
indicates an overflow and the operation aborts before assigning the value to the left of the equal sign.

For modulo behavior, the operation must be promoted to a float and use the modulo operator "%".

EXAMPLE:
c=123 'Sets initial value of c to 123.
Rc 'Reports 123; initial value of c.
RBs 'Reports 0; no error stored.
b=70000
c=b*b 'This will overflow.
Rc 'Reports 123; the value of c is unchanged.
RBs 'Reports 1; error is indicated.
Zs 'Clears error bit.
RBs 'Reports 0; no error stored.
a=-2147483648 'Used as modulo range.
c=((b*1.0)*b)%a 'Equation that promotes to a float internally

'and modulo divides.
Rc 'Reports 605032704; this is what is expected if

'the original value 'wrapped' on 32-bit boundaries.
RBs 'Reports 0; this does not cause an error.

Program output is:

123
0
123
1
0
605032704
0

It is also possible to use these variables in certain array index operations:

EXAMPLE:
a=10
Raw[a]
Raw[a+1]

Part 2: Commands: aaa...zzz

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 251 of 969

These are other restrictions:
l If a+b exceeds 32 signed bits, the operation c=a+b will abort, and an error flag is set.

l If a-b exceeds 32 signed bits, the operation c=a-b will abort, and an error flag is set.

l If a*b exceeds 32 signed bits, the operation c=a*b will abort, and an error flag is set.

The system flag, Bs, is set. Note that many different types of command errors will also set the
Bs bit. The RERRC command can be used to retrieve the last command error. For a math
overflow, that is error code 23. For details on the RERRC command, see ERRC on page 451.

If one of these variables is used with a variable of another type, it will be appropriately converted (the
variable will be "type cast").

For example, assigning the variable aw[27]=yy directly stores the 16 least-significant bits of yy to aw
[27]. The sign bit of yy is not considered, the sign is determined based on bit 15 of yy. The higher bits of
variable yy are ignored.

Similarly, if the left-hand variable is an 8-bit one, such as ab[167], only the lowest 8 bits are preserved.
The sign is determined by bit 7 of the value on the right-side of the equals sign.

Conversely, if the left-hand value is a 32-bit variable and the right-hand side contains 16-bit variables,
the 16-bit variables will be "upgraded" to 32 bits. The sign is preserved when casting to a longer
format. For example, in the equation cc=ab[4]-aw[7], both ab[4] and aw[7] are converted into 32-bit
numbers before the subtraction occurs.

In the SmartMotor language, all user variables are written as lowercase letters, while functions and
commands have at least one uppercase character. The term "a" is a general-purpose variable, while "A"
is the acceleration function. As previously described, any user variable can be assigned a value through
an equation.

EXAMPLE:
c=123 'Assign the value of 123 to "c".
d=345 'Assign the value of 345 to "d".
e=-599 'Assign the value of -599 to "e".
f=346 'Assign the value of 346 to "f".
g=678678 'Assign the value of 678678 to "g".

All user variables are initialized to the value 0 at power up or on execution of the Z system-reset
command. Other than by direct assignment, this is the only way the SmartMotor sets all of the user
variables to 0. Issuing a RUN command does not perform this automatic initialization. For this reason, it
is better to test a program, whether it is auto-execution or not, by power cycling the SmartMotor or
issuing the Z system-reset command.

NOTE: To understand the relationship between user assigned letter variables a-z, aa-zz and aaa-zzz,
and variable arrays ab[], al[] and aw[], see Array Variable Memory Map on page 897. The arrays and
the letter variables do not overlap in the Class 5 motor.

RELATED COMMANDS:
R ab[index]=formula Array Byte [index] (see page 252)
R al[index]=formula Array Long [index] (see page 278)
R aw[index]=formula Array Word [index] (see page 294)

Part 2: Commands: aaa...zzz

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 252 of 969

ab[index]=formula
Array Byte [index]

APPLICATION: Variables

DESCRIPTION: User signed 8-bit variables

EXECUTION: Immediate

CONDITIONAL TO: Index values range 0 to 203

LIMITATIONS: An expression used as an index within the [] brackets is limited to no
more than one operator (two values).

No Combitronic requests or functions with parenthesis are supported
within the [] brackets.

This data space is shared with Cam motion (MC) if a RAM table
location is selected. However, the aw command must not be used to
access this space during that time.

READ/REPORT: Rab[index]

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Signed 8-bit number

RANGE OF VALUES: -128 to 127

TYPICAL VALUES: -128 to 127

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: ab[0]:3=1234, a=ab[0]:3, Rab[0]:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The SmartMotor™ has 8, 16 and 32-bit arrays. The 8-bit array takes the form of the variables ab[index].
These are general-purpose, 8-bit, signed-integer variables that can be reported, used on either side of
an equation, and mixed in an expression with variables other than 8-bit. Like all user variables, they are
always lowercase, and are automatically initialized to zero at power up or reset.

The syntax of the 8-bit array is ab[index], which stands for "array byte", and accepts an index value
between 0 and 203. This index can be specified explicitly or through another variable. For example, ab
[4] refers to the fifth element in the 8-bit array, while ab[n] refers to an element of the array where the
variable "n" must be between 0 and 203.

The value of any array variable is reported with the R, PRINT() or PRINT1() functions.

Part 2: Commands: ab[index]=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 253 of 969

EXAMPLE:
ab[47]=20 'Assign the value of 20 to ab[47]
Rab[47] 'Report the value of ab[47] to the primary serial port
PRINT("ab[47]=",ab[47],#13) 'Print to the primary serial port
PRINT1("ab[47]=",ab[47],#13) 'Print to the secondary serial port
END

Program output is:

20
ab[47]=20

The ab[] array is classified as read/write, meaning that it can be assigned a value or can be assigned to
some other variable or function. In other words, these variables can be left-hand or right-hand values.

EXAMPLE:
ab[24]=ab[43]+ab[7]

The above is a valid equation that combines the contents of ab[43] with ab[7] and sends the total into
ab[24]. As signed 8-bit variables, they are limited to whole numbers ranging from -128 and 127. Math
operations that result in digits after the decimal point are truncated toward zero. Therefore, a value of
2.9 becomes 2, and a value of -2.9 becomes -2.

If you assign or perform an operation that would normally result in a value outside of this range, the
variable will "wrap" or take on the corresponding modulo. For example, 127+1= -128; the result
wrapped around to the negative extreme.

These are other restrictions:
l If ab[1]+a exceeds 32 signed bits, the operation c=ab[1]+a will abort and an error flag is set.

l If a-ab[1] exceeds 32 signed bits, the operation c=a-ab[1] will abort and an error flag is set.

l If a*ab[1] exceeds 32 signed bits, the operation c=a*ab[1] will abort and an error flag is set.

The system flag, Bs, is set. Note that many different types of command errors will also set the
Bs bit. The RERRC command can be used to retrieve the last command error. For a math
overflow, that is error code 23. For details on the RERRC command, see ERRC on page 451.

If one of these variables is used with a variable of another type, it will be appropriately converted (the
variable will be "type cast").

If the left-hand variable is an 8-bit one like ab[167], only the lowest 8 bits are preserved. The sign is
determined by bit 7 of the value on the right-side of the equals sign.

Conversely, if the left-hand value is a 32-bit variable and the right-hand side contains 8-bit variables,
the 8-bit variables will be "upgraded" to 32-bits. The sign is preserved when casting to a longer format.
In the equation cc=ab[4]-aw[7], both ab[4] and aw[7] are converted into 32-bit numbers before the
subtraction occurs.

In the SmartMotor language, all user variables are written as lowercase letters, while functions and
commands have at least one uppercase character. The term "a" is a general-purpose variable, while "A"
is the acceleration function. As previously described, any user variable can be assigned a value through
an equation.

All user variables are initialized to the value 0 at power up or on execution of the Z system-reset
command. Other than by direct assignment, this is the only way the SmartMotor sets all of the user
variables to 0. Issuing a RUN command does not perform this automatic initialization. For this reason, it

Part 2: Commands: ab[index]=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 254 of 969

is better to test a program, whether it is auto-execution or not, by power cycling the SmartMotor or
issuing the Z system-reset command.

NOTE: To understand the relationship between user assigned letter variables a-z, aa-zz and aaa-zzz,
and variable arrays ab[], al[] and aw[], see Array Variable Memory Map on page 897. The arrays and
the letter variables do not overlap in the Class 5 motor.

RELATED COMMANDS:
R a...z 32-Bit Variables (see page 249)
R aa...zz 32-Bit Variables (see page 249)
R aaa...zzz 32-Bit Variables (see page 249)
R af[index]=formula Array Float [index] (see page 267)
R al[index]=formula Array Long [index] (see page 278)
R aw[index]=formula Array Word [index] (see page 294)
VLD(variable,number) Variable Load (see page 820)
VST(variable,number) Variable Save (see page 824)

Part 2: Commands: ab[index]=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 255 of 969

ABS(value)
Absolute Value of ()

APPLICATION: Math function

DESCRIPTION: Gets the absolute integer value of the specified variable or number

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RABS(value)

WRITE: N/A

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: Input: -2147483648 to 2147483647
Output: 0 to 2147483647

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The ABS command gets (reads) the absolute integer value of the specified variable or number. For
example:

x=ABS(value)

sets the variable x to the absolute integer value of the variable or number specified in (value).

The ABS command cannot have math arguments and cannot be a variable or value from another motor.
For example, x=ABS(PA) is allowed, but x=ABS(PA:3) is not allowed.

There is a special case when using this function—the input value of -2147483648 will output
2147483647. The positive value 2147483648 cannot be represented in a 32-bit value. If the user finds
this special case unacceptable, then the user must first test the input value for this special case and
provide an alternative action.

EXAMPLE:
a=ABS(-5) 'Set variable = ABS(-5)
PRINT(a,#13) 'Print value of variable a
RABS(-5) 'Report ABS(-5)
END

Program output is:

5
5

RELATED COMMANDS:
R FABS(value) Floating-Point Absolute Value of () (see page 463)

Part 2: Commands: ABS(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 256 of 969

AC
Acceleration Commanded

APPLICATION: Motion control

DESCRIPTION: Get (reads) the commanded acceleration

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RAC

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: (encoder counts / (sample²)) * 65536

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -1000 to 1000

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: RAC:3, x=AC:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEA command. For details, see SCALEA(m,d) on page
724. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The AC command gets (reads) the commanded acceleration:

l =AC
Reads the real-time commanded acceleration from trajectory generator 1 (MV or MP modes
only)

When a velocity or position profile move is commanded, the velocity is ramped up and down according
to the settings of ADT=, AT=, or DT=. At any instant, the calculated acceleration or deceleration of the
motion profile can be reported. The sign (positive or negative) of this reported acceleration depends on
the direction of travel and the command type (begin motion or end motion).

The next table provides example values that illustrate how the sign of AC is reported. It assumes MV
(velocity mode).

VT Command Direction Reported
Sign of AC

100000 G (start motion) Positive (increasing position) Positive
100000 X (end motion) Positive (increasing position) Negative

-100000 G (start motion) Negative (decreasing position) Negative

Part 2: Commands: AC

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 257 of 969

VT Command Direction Reported
Sign of AC

-100000 X (end motion) Negative (decreasing position) Positive

Also, refer to the next figure, which shows the sign (positive or negative) of the reported commanded-
acceleration value compared to command velocity and command position.

+

-

AC, RAC Commanded Acceleration

VC, RVC Commanded Velocity

PC, RPC Commanded Position

Parameter:

0

Reported Sign of AC (Commanded Acceleration) Compared to VC and PC

Equations for Real-World Units:

Encoder resolution and sample rate can vary. Therefore, the general equations shown in the next table
can be used to convert the value of AC to various units of acceleration. These equations force floating-
point calculations to avoid overflow and maintain resolution. They can be placed in a user program, or
they can be precalculated if the values of SAMP and RES are known (SAMP and RES can be reported
from the terminal using the RSAMP and RRES commands, respectively). SAMP can change if the PID
command is used. The value of RES can differ between motor models.

Output Equation
Radians/(Sec2) =AC*PI*2*((((SAMP*1.0)*SAMP)/65536.0)/RES)
Encoder Counts/(Sec2) =AC*(((SAMP*1.0)*SAMP)/65536.0)
Rev/(Sec2) =AC*((((SAMP*1.0)*SAMP)/65536.0)/RES)
RPM/Sec =AC*60.0*((((SAMP*1.0)*SAMP)/65536.0)/RES)
RPM/Min =AC*3600.0*((((SAMP*1.0)*SAMP)/65536.0)/RES)

Part 2: Commands: AC

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 258 of 969

EXAMPLE:
ADT=10
VT=100000
MV
G
WAIT=10 'Wait to make sure move has started
WHILE AC>0
LOOP
PRINT("Acceleration Complete",#13)

RELATED COMMANDS:
R AT=formula Acceleration Target (see page 286)
ADT=formula Acceleration/Deceleration Target (see page 263)
R DT=formula Deceleration Target (see page 396)

Part 2: Commands: AC

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 259 of 969

ACOS(value)
Arccosine

APPLICATION: Math function

DESCRIPTION: Gets the arccosine of the input value

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RACOS(value)

WRITE: N/A

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Degrees output

RANGE OF VALUES: Input (floating-point): -1.0 to 1.0
Output in degrees: 180.0 to 0.0 (floating-point)

TYPICAL VALUES: Input (floating-point): -1.0 to 1.0
Output in degrees: 180.0 to 0.0 (floating-point)

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

ACOS takes an input and returns a floating-point arccosine in degrees:

af[1]=ACOS(arg)

where arg may be an integer (e.g., a or aw[0]) or floating-point variable (e.g., af[0]). Integer or floating-
point constants may also be used (e.g., 23 or 23.7, respectively).

This command cannot have within the parenthesis: math operators, other parenthetical functions, or a
Combitronic request from another motor. For example, x=FABS(PA) is allowed, but x=FABS(PA:3) is not
allowed.

The result of this function is a floating-point type. If used in an equation, the operations in the equation
that are processed after this function are automatically promoted to a float. This is dependent on the
mathematical order of operations in the equation. As with other equations (e.g., x=a+b), the variable to
the left of "=" may be an integer variable to accept the result. However, the value will be truncated to
fit to that integer type. For example, the assignment "aw[0]=" will drop any fractional amount and
truncate the result to the range -32768 to 32767 (aw[0]=100.5 will report as 100, and aw[0]=40000.0
will report as -25536).

Although the floating-point variables and their standard binary operations conform to IEEE-754 double
precision, the floating-point square root and trigonometric functions only produce IEEE-754 single-
precision results. For more details, see Variables and Math on page 198.

Part 2: Commands: ACOS(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 260 of 969

EXAMPLE:
af[0]=ACOS(.5) 'Set array variable = ACOS(.5)
Raf[0] 'Report variable af[0]
RACOS(.5) 'Report ACOS(.5)
af[1]=0.4332
af[0]=ACOS(af[1]) 'Variables may be put in the parenthesis
Raf[0] 'Output in degrees
END

Program output is:

60.000000000
60.000000000
64.329193115

RELATED COMMANDS:
R ASIN(value) Arcsine (see page 284)
R ATAN(value) Arctangent (see page 289)
R COS(value) Cosine (see page 372)
R SIN(value) Sine (see page 738)
R TAN(value) Tangent (see page 775)

Part 2: Commands: ACOS(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 261 of 969

ADDR=formula
Address (for RS-232 and RS-485)

APPLICATION: Communications control; supports the DS2020 Combitronic system

DESCRIPTION: Motor address

EXECUTION: N/A

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: PRINT(ADDR), <variable>=ADDR

RADDR

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Address

RANGE OF VALUES: 0 to 120
DS2020 Combitronic system: 1 to 120

TYPICAL VALUES: 1 to 120

DEFAULT VALUE: 0 on power-up and until an address is assigned to the motor

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The SmartMotor™ is designed to be used as much in multiple-axis systems as in single-axis systems.
For that reason, each SmartMotor can be uniquely addressed through the ADDR command. Used within
a program, ADDR permits an identical program stored in different motors to differentiate between
motors and provide individual runtime controls. For example, ADDR=5 sets the motor’s address to 5.

ADDR is a read/write function, so it can also be used to access the address of the current SmartMotor.
For example, to read the motor address, use this ADDR command:

var=ADDR

where var is any variable. Then you can use the PRINT(var) command to print the motor's serial address
to the Terminal window.

To set the motor's serial address to the CAN address, use this ADDR command:

<SerialMotorNumber>ADDR=CADDR

For example, 3ADDR=CADDR sets the motor 3 serial address to its CAN address; 0ADDR=CADDR
would globally set every serial motor's address to its CAN address.

NOTE: SmartMotor commands like 0CADDR=... or 0ADDR=... with a leading number really send a
corresponding address byte (i.e., "0", which is hex 80 or decimal 128). This can be seen by viewing
the serial data with the Serial Data Analyzer ("sniffer") tool, which is available on the SMI software
View menu.

The ADDR command also allows you to retrieve a value over the Combitronic network. See the second
example section for details.

Part 2: Commands: ADDR=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 262 of 969

EXAMPLE:
SWITCH ADDR
 CASE 1 'Motors 1,2 and 3 "GO"
 CASE 2
 CASE 3 G
 BREAK
 CASE 4 S 'Motor 4 "STOP"
ENDS 'Start motion (or stop)

EXAMPLE:

The ADDR command allows you to retrieve a value over the Combitronic network, as shown in these
examples.

For example: ADDR=x:3

where (assuming the motor processing the command is motor 1):

1. Motor 1 parses the line of text: ADDR=x:3
2. Motor 1 asks motor 3 for motor 3’s x variable.
3. Motor 1 completes any other operations on the right side of the equation.
4. Motor 1 assigns motor 1’s ADDR with the value from the right side of the equation.

For example: b:2=a+a:3+a:4

where (assuming the motor processing the command is motor 1):

1. Motor 1 parses the text: b:2=a+a:3+a:4
2. Motor 1 retrieves variable a from motors 3 and 4.
3. Motor 1 completes the right side of the equation, including in this case, its own variable a.
4. Motor 1 sends result of the right side of the equation into motor 2’s variable b.

EXAMPLE: (Code sets CAN address to motor address and resets all motors. Motors should be
addressed on serial RS-232 chain first.)

NOTE: Issue these commands at serial port (SMI Terminal window) only. The "0" in front of these
commands will not be recognized by a user program.

0CADDR=ADDR 'Set if not same as motor address
0Z 'Reset all motors to enable CAN address

RELATED COMMANDS:
R CADDR=formula CAN Address (see page 355)
SADDR# Set Address (see page 720)

Part 2: Commands: ADDR=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 263 of 969

ADT=formula
Acceleration/Deceleration Target

APPLICATION: Motion control; supports the DS2020 Combitronic system

DESCRIPTION: Sets the buffered acceleration target (AT) /deceleration target (DT)
at the same time

EXECUTION: Buffered until a G command is issued or an X command is issued

CONDITIONAL TO: MP, MV, G, X, PIDn (sample rate), encoder resolution

LIMITATIONS: Must not be negative; effective value is rounded down to next even
number

READ/REPORT: There is no direct report for ADT; use RAT and RDT

WRITE: Write only

LANGUAGE ACCESS: Assignment

UNITS: (encoder counts / (sample²)) * 65536
DS2020 Combitronic system: user increments / sec², see FD=e-
expression on page 461

RANGE OF VALUES: 0 to 2147483647
DS2020 Combitronic system: 0 to 4294967295

TYPICAL VALUES: 2 to 5000
DS2020 Combitronic system: depends on FD

DEFAULT VALUE: See: AT, DT
DS2020 Combitronic system: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: ADT:3=1234
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEA command. For details, see SCALEA(m,d) on page
724. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The ADT command sets the AT and DT parameters of the motion profile. Those values are individually
accessible with the AT=, =AT, DT=, and =AT commands. ADT is provided as a convenience when those
values do not need to be different from each other. See the respective commands for specific details
about how they apply to a motion profile.

The ADT= command cannot be reported back directly, because it simply passes the value to AT= and
DT=.

A useful Scale Factor Multiplier code example, which also illustrates the use of af[], SAMP and RES, is
shown in RES on page 702 and SAMP on page 722.

Part 2: Commands: ADT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 264 of 969

EXAMPLE: (Shows use of ADT, PT and VT)

MP 'Set mode position
ADT=5000 'Set target accel/decel
PT=20000 'Set absolute position
VT=10000 'Set velocity
G 'Start motion
END 'End program

EXAMPLE: (Routine homes motor against a hard stop)

MDS 'Using Sine mode commutation
KP=3200 'Increase stiffness from default
KD=10200 'Increase damping from default
F 'Activate new tuning parameters
AMPS=100 'Lower current limit to 10%
VT=-10000 'Set maximum velocity
ADT=100 'Set maximum accel/decel
MV 'Set Velocity mode
G 'Start motion
WHILE EA>-100 'Loop while position error is small
LOOP 'Loop back to WHILE
O=-100 'While pressed, declare home offset
S 'Abruptly stop trajectory
MP 'Switch to Position mode
VT=20000 'Set higher maximum velocity
PT=0 'Set target position to be home
G 'Start motion
TWAIT 'Wait for motion to complete
AMPS=1023 'Restore current limit to maximum
END 'End program

RELATED COMMANDS:
R AT=formula Acceleration Target (see page 286)
R DT=formula Deceleration Target (see page 396)
R EL=formula Error Limit (see page 426)
R FD=expression Resolution to Set Units of Position/Velocity/Acceleration (see page 461)
G Start Motion (GO) (see page 473)
R HM_ADT=formula Homing Accel/Decel Target (see page 491)
MP Mode Position (see page 613)
MV Mode Velocity (see page 624)
PID# Proportional-Integral-Differential Filter Rate (see page 654)
R PRT=formula Position, Relative Target (see page 683)
R PT=formula Position, (Absolute) Target (see page 690)
R VT=formula Velocity Target (see page 828)
X Decelerate to Stop (see page 844)

Part 2: Commands: ADT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 265 of 969

ADTS=formula
Acceleration/Deceleration Target, Synchronized

APPLICATION: Motion control

DESCRIPTION: Sets the synchronized (path) acceleration/deceleration target

EXECUTION: Must be set before issuing PTS or PRTS; will not be effective after
that point

CONDITIONAL TO: PIDn

LIMITATIONS: Must not be negative; 0 is not valid; effective value is rounded up to
next even number

READ/REPORT: None

WRITE: Write only

LANGUAGE ACCESS: Assignment

UNITS: (encoder counts / (sample²)) * 65536 in 2D or 3D space

RANGE OF VALUES: 0 to 2147483647

TYPICAL VALUES: 10 to 500

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M), not ver. 5.32.x.x; 6.x (D/M), M requires EIP option

COMBITRONIC: N/A

DETAILED DESCRIPTION:

NOTE: This command requires a Combitronic-supported motor. Although this command does not
support Combitronic syntax, it does use Combitronic communication to pass information between
other motors.

NOTE: This command is affected by the SCALEA command. For details, see SCALEA(m,d) on page
724. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The ADTS value determines the synchronized (path) acceleration/deceleration that will be used by
subsequent position or velocity moves to calculate the required trajectory. Changing ADTS during a
move will not alter the current trajectory unless a new G command is issued.

Acceleration is pre-scaled by 65536 and may range from 2 to 2147483647. A value of 0 is not valid.
Due to internal calculations, odd values for this command are rounded up to an even value.

A useful Scale Factor Multiplier code example, which also illustrates the use of af[], SAMP and RES, is
shown in RES on page 702 and SAMP on page 722.

Part 2: Commands: ADTS=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 266 of 969

EXAMPLE: (2-axis synchronized absolute move to position x:y for motors 1 and 2)

This sample code may be executed by any motor sharing the same CAN bus network with the motors
being commanded to move.

NOTE: Ensure no motor drive faults exist prior to calling this subroutine.

. . .
C20

OFF:0 MP:0 PRT:0=0 G TWAIT 'Initialize to stationary in position mode
PT:1=PC:1 PT:2=PC:2 'Set target and commanded positions equal
WAIT=50
VTS=v 'Set target path velocity
ADTS=a 'Set target path accel/decel
PTS(x;1,y;2) 'Use Position Target Synchronized moves
PTSS(a;3) 'Supplemental synchronized target
IF PTSD!=0 'Prevent 0-length (divide by zero) move

GS 'Go Synchronized
TSWAIT 'Wait until path move time is complete

ENDIF
RETURN

For additional examples, see A Note About PTS and PRTS on page 181.

EXAMPLE: (3-axis synchronized relative move to position x:y:z for motors 1, 2 and 3)

This sample code may be executed by any motor sharing the same CAN bus network with the motors
being commanded to move.

NOTE: Ensure no motor drive faults exist prior to calling this subroutine.

. . .
C20

OFF:0 MP:0 PRT:0=0 G TWAIT 'Initialize to stationary in position mode
PT:1=PC:1 PT:2=PC:2 PT:3=PC:3 'Set target and commanded positions equal
WAIT=50
VTS=v 'Set target path velocity
ADTS=a 'Set target path accel/decel
PRTS(x;1,y;2,z;3) 'Use Position Target Synchronized moves
PRTSS(a;4) 'Supplemental synchronized relative target
IF PTSD!=0 'Prevent 0-length (divide by zero) move

GS 'Go Synchronized
TSWAIT 'Wait until path move time is complete

ENDIF
RETURN

For additional examples, see A Note About PTS and PRTS on page 181.

RELATED COMMANDS:

PID# Proportional-Integral-Differential Filter Rate (see page 654)
PRTS(...) Position, Relative Target, Synchronized (see page 685)
PRTSS(...) Position, Relative Target, Synchronized, Supplemental (see page 688)
PTS(...) Position Target, Synchronized (see page 692)
PTSS(...) Position Target, Synchronized Supplemental (see page 696)
VTS=formula Velocity Target, Synchronized Move (see page 831)

Part 2: Commands: ADTS=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 267 of 969

af[index]=formula
Array Float [index]

APPLICATION: Variables

DESCRIPTION: Floating-point array variables

EXECUTION: Immediate

CONDITIONAL TO: Index values 0 to 7

LIMITATIONS: Index limited to two values with single operator; index values may be
a constant or variables a-zzz

READ/REPORT: Raf[index]

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Signed floating-point number

RANGE OF VALUES: Very large: more than ±10300a,b

TYPICAL VALUES: Depends on required precision (approximate):

To maintain integer precision:
-4503599627370496 to +4503599627370496b

To maintain 3 decimal digits:
-4503599627370.496 to +4503599627370.496b

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: af[0]:3=1234.0, a=af[0]:3, Raf[0]:3
where ":3" is the motor address — use the actual address or a vari-
able

a Use of full range is not recommended because precision of the number is lost. At this extreme range,
precision is worse than a whole number.

b Entering and reporting values through user commands is limited to the range: -2147483648.0 to
2147483647.0

DETAILED DESCRIPTION:

The floating-point array variables meet IEEE-754 specifications. Therefore, they are true floating-point
variables — the location of the decimal point can vary with the exponent from very small
(approximately 1x10-300) to very large (approximately 1x10300). The user is encouraged to make use of
floating-point variables in equations where a typical 32-bit integer might overflow (see examples).

While floating-point numbers seem to have nearly limitless range from large to small, the user must
exercise caution. The precision of the number is limited to approximately 15 decimal digits. The number
is stored in a base-2 format, including the fractional part. This can result in subtle issues with precision
and representation of base-10 values. This is generally avoided by only displaying nine rounded digits

Part 2: Commands: af[index]=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 268 of 969

after the decimal place. This allows for small numbers (less than 100000) to show all nine decimal
digits.

When using floating-point values or floating-point variables in equations, there are some rules to be
aware of. The equation parser will not perform floating-point operations until at least one of the input
values is a floating-point value. After a floating-point value is seen, subsequent operations (in the order
of operations) in that equation will proceed as floating-point operations. Note that it is a common
mistake to divide two integers and expect a floating-point result — at least one of those input values
must be entered as a floating-point value or first multiplied by 1.0, to invoke floating-point operations.

Floating-point variables will remember the full range possible but can only display a limited range. The
display is limited to nine digits after the decimal point, and -2147483648 to 2147483647 before the
decimal point.

When assigning a floating-point variable to an integer, the integer cannot accept a value outside of the
range: -2147483648 to 2147483647. This will result in a command error (Code 23: Math Overflow) and
the integer will remain at its previous value.

A floating-point number can be assigned to an integer, but it will round toward 0. For example, the
value 1.9 becomes 1; the value -1.9 becomes -1.

Basic math operations (+, -, *, /) are performed at 64-bit precision. However, the trigonometric
functions are only calculated with 32-bit precision.

For more details, see Variables and Math on page 198.

EXAMPLE:
af[0]=123.5 'Assign the value of 123.5 to af[0].
Raf[0]
af[0]=1/10 'Perform the integer divide and store result to af[0].
Raf[0]
af[0]=1.0/10 'Perform the floating-point divide and store

'result to af[0].
Raf[0]
af[0]=1300000.0*2700000 'The product would overflow a 32-bit integer,

'but af[0] can handle it.
a=af[0]/1000000 'Reduce the size of the value to something an

'integer can handle.
Ra
a=(1300000.0*2700000)/1000000 'This has the same result; the equation

'still performs a floating-point divide
'and stores the integer result.

Ra
END

Program output is:

123.500000000
0.000000000
0.100000000
3510000
3510000

Part 2: Commands: af[index]=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 269 of 969

RELATED COMMANDS:
R a...z 32-Bit Variables (see page 249)
R aa...zz 32-Bit Variables (see page 249)
R aaa...zzz 32-Bit Variables (see page 249)
R ab[index]=formula Array Byte [index] (see page 252)
R al[index]=formula Array Long [index] (see page 278)
R aw[index]=formula Array Word [index] (see page 294)
R DFS(value) Dump Float, Single (see page 393)
R LFS(value) Load Float Single (see page 547)
VLD(variable,number) Variable Load (see page 820)
VST(variable,number) Variable Save (see page 824)

Part 2: Commands: af[index]=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 270 of 969

Ai(enc)
Arm Index Rising Edge

APPLICATION: I/O control; supports the DS2020 Combitronic system over RS-232
only

DESCRIPTION: Arms the index register for capturing the rising edge of the encoder

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Input: 0 or 1

TYPICAL VALUES: Input: 0 or 1

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: Ai(0):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The Ai(enc) command arms the index register for capturing the rising edge of the encoder. To capture
the falling edge, see Aj(enc) on page 274.

NOTE: The rising and falling edges are stored to different index registers.

For the DS2020 Combitronic system, the command is used for a procedure to find the position that
corresponds to the physical zero position of the feedback sensor.

The enc parameter specifies the encoder to be captured; it does not specify the source of the index
signal.

l Ai(0) specifies internal encoder; for the DS2020 Combitronic system, starts the procedure to
find the zero position of motor shaft

l Ai(1) specifies external encoder

Part 2: Commands: Ai(enc)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 271 of 969

EXAMPLE:
EIGN(W,0) 'Set all I/O as general inputs
a=0
ZS 'Clear all faults
Ai(0) 'Arm motor’s capture register
MV 'Set up slow velocity mode
VT=1000
ADT=10 'Set up accel/decel
G 'Start motion
WHILE Bt 'While trajectory

IF Bi(0)==0 'Check index capture of encoder
GOSUB(1) 'Call subroutine

ELSE
X

ENDIF 'End checking
LOOP 'Loop back
RI(0) 'Report rising edge
OFF
END
'SUB 1: Increment a every 1 second
C1

IF B(4,0)==0 'Check Timer 0 status
a=a+1 'Updating a every second
TMR(0,1000) 'Set Timer 0 counting

ENDIF
RETURN

RELATED COMMANDS:

Aij(enc) Arm Index Rising Edge Then Falling Edge (see page 272)
Aj(enc) Arm Index Falling Edge (see page 274)
Aji(enc) Arm Index Falling Edge Then Rising Edge (see page 276)
R Bi(enc) Bit, Index Capture, Rising (see page 309)
EIRE Enable Index Register, Encoder Capture (see page 419)
EIRI Enable Index Register, Input Capture (see page 421)
R I(enc) Index, Rising-Edge Position (see page 502)

Part 2: Commands: Ai(enc)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 272 of 969

Aij(enc)
Arm Index Rising Edge Then Falling Edge

APPLICATION: I/O control

DESCRIPTION: Arms the index registers for capturing the rising edge and then the
falling edge of the encoder

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: Input: 0 or 1

DEFAULT VALUE: Input: 0 or 1

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: Aij(0):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The Aij(enc) command arms the index registers for capturing the rising edge and then the falling edge
of the encoder. To first capture the falling edge and then the rising edge, see Aji(enc) on page 276.

NOTE: The rising and falling edges are stored to different index registers.

The enc parameter specifies the encoder to be captured; it does not specify the source of the index
signal.

l Aij(0) specifies internal encoder

l Aij(1) specifies external encoder

Part 2: Commands: Aij(enc)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 273 of 969

EXAMPLE:
EIGN(W,0) 'Set all I/O as general inputs
a=0
ZS 'Clear all faults
Aij(0) 'Arm motor’s capture register
MV 'Set up slow velocity mode
VT=1000
ADT=10 'Set up slow accel/decel
G 'Start motion
WHILE Bi(0)==0 'While waiting for rising edge
LOOP 'Loop back
RI(0) 'Report rising edge
WHILE Bj(0)==0 'While waiting for falling edge
LOOP 'Loop back
RJ(0) 'Report falling edge
OFF
END

RELATED COMMANDS:

Ai(enc) Arm Index Rising Edge (see page 270)
Aj(enc) Arm Index Falling Edge (see page 274)
Aji(enc) Arm Index Falling Edge Then Rising Edge (see page 276)
R Bi(enc) Bit, Index Capture, Rising (see page 309)
R Bj(enc) Bit, Index Capture, Falling (see page 312)
EIRE Enable Index Register, Encoder Capture (see page 419)
EIRI Enable Index Register, Input Capture (see page 421)
R I(enc) Index, Rising-Edge Position (see page 502)
R J(enc) Index, Falling-Edge Position (see page 524)

Part 2: Commands: Aij(enc)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 274 of 969

Aj(enc)
Arm Index Falling Edge

APPLICATION: I/O control

DESCRIPTION: Arms the index register for capturing the falling edge of the encoder

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Input: 0 or 1

TYPICAL VALUES: Input: 0 or 1

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: Aj(0):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The Aj(enc) command arms the index register for capturing the falling edge of the encoder. To capture
the falling edge, see Ai(enc) on page 270.

NOTE: The rising and falling edges are stored to different index registers.

The enc parameter specifies the encoder to be captured; it does not specify the source of the index
signal.

l Aj(0) specifies internal encoder

l Aj(1) specifies external encoder

Part 2: Commands: Aj(enc)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 275 of 969

EXAMPLE:
EIGN(W,0) 'Set all I/O as general inputs
a=0
ZS 'Clear all faults
Aj(0) 'Arm motor’s capture register
MV 'Set up slow velocity mode
VT=1000
ADT=10 'Set up slow accel/decel
G 'Start motion
WHILE Bt 'While trajectory

IF Bj(0)==0 'Check index capture of encoder
GOSUB(1) 'Call subroutine

ELSE
X

ENDIF 'End checking
LOOP 'Loop back
RJ(0) 'Report falling edge
OFF
END
'SUB 1: Increment a every 1 second
C1

IF B(4,0)==0 'Check Timer 0 status
a=a+1 'Updating a every second
TMR(0,1000) 'Set Timer 0 counting

ENDIF
RETURN

RELATED COMMANDS:

Ai(enc) Arm Index Rising Edge (see page 270)
Aij(enc) Arm Index Rising Edge Then Falling Edge (see page 272)
Aji(enc) Arm Index Falling Edge Then Rising Edge (see page 276)
R Bj(enc) Bit, Index Capture, Falling (see page 312)
EIRE Enable Index Register, Encoder Capture (see page 419)
EIRI Enable Index Register, Input Capture (see page 421)
R J(enc) Index, Falling-Edge Position (see page 524)

Part 2: Commands: Aj(enc)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 276 of 969

Aji(enc)
Arm Index Falling Edge Then Rising Edge

APPLICATION: I/O control

DESCRIPTION: Arms the index registers for capturing the falling edge and then the
rising edge of the encoder

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: Input: 0 or 1

DEFAULT VALUE: Input: 0 or 1

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: Aji(0):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The Aji(enc) command arms the index registers for capturing the falling edge and then the rising edge
of the encoder. To first capture the rising edge and then falling edge, see Aij(enc) on page 272.

NOTE: The rising and falling edges are stored to different index registers.

The enc parameter specifies the encoder to be captured; it does not specify the source of the index
signal.

l Aji(0) specifies internal encoder

l Aji(1) specifies external encoder

Part 2: Commands: Aji(enc)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 277 of 969

EXAMPLE:
EIGN(W,0) 'Set all I/O as general inputs
a=0
ZS 'Clear all faults
Aji(0) 'Arm motor’s capture register
MV 'Set up slow velocity mode
VT=1000
ADT=10 'Set up slow accel/decel
G 'Start motion
WHILE Bj(0)==0 'While waiting for falling edge
LOOP 'Loop back
RJ(0) 'Report falling edge
WHILE Bi(0)==0 'While waiting for rising edge
LOOP 'Loop back
RI(0) 'Report rising edge
OFF
END

RELATED COMMANDS:

Ai(enc) Arm Index Rising Edge (see page 270)
Aij(enc) Arm Index Rising Edge Then Falling Edge (see page 272)
Aj(enc) Arm Index Falling Edge (see page 274)
R Bi(enc) Bit, Index Capture, Rising (see page 309)
R Bj(enc) Bit, Index Capture, Falling (see page 312)
EIRE Enable Index Register, Encoder Capture (see page 419)
EIRI Enable Index Register, Input Capture (see page 421)
R I(enc) Index, Rising-Edge Position (see page 502)
R J(enc) Index, Falling-Edge Position (see page 524)

Part 2: Commands: Aji(enc)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 278 of 969

al[index]=formula
Array Long [index]

APPLICATION: Variables

DESCRIPTION: User signed 32-bit variables

EXECUTION: Immediate

CONDITIONAL TO: Index values range 0 to 50

LIMITATIONS: An expression used as an index within the [] brackets is limited to no
more than one operator (two values).

No Combitronic requests or functions with parenthesis are supported
within the [] brackets.

This data space is shared with Cam motion (MC) if a RAM table
location is selected. However, the aw command must not be used to
access this space during that time.

READ/REPORT: Ral[index]

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Signed 32-bit number

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -2147483648 to 2147483647

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: al[0]:3=1234, a=al[0]:3, Ral[0]:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The SmartMotor™ has 8, 16 and 32-bit arrays. The 32-bit array takes the form of the variables al
[index]. These are general-purpose, 32-bit signed integer variables that can be reported, used on either
side of an equation, and can be mixed in an expression with variables other than 32-bit. Like all user
variables, they are always lowercase, and they are automatically initialized to zero at power up or reset.

The syntax of the 32-bit array is al[index] which stands for array long and accepts an index value
between 0 and 50. This index can be specified explicitly or through another variable. For example, al[4]
refers to the fifth element in the 32-bit array, while aw[n] refers to an element of the array, where the
variable "n" must be between 0 and 50.

The value of any array variable is reported with the R, PRINT() or PRINT1() functions.

Part 2: Commands: al[index]=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 279 of 969

EXAMPLE:
al[47]=20 'Assign the value of 20 to al[47]
Ral[47] 'Report the value of al[47] to the primary serial port.
PRINT("al[47]=",al[47],#13) 'Print to the primary serial port.
PRINT1("al[47]=",al[47],#13) 'Print to the secondary serial port.
END

Program output is:

20
al[47]=20

The al[] array is classified as read/write, meaning that it can be assigned a value, or it can be assigned
to some other variable or function. In other words, these variables can be left- or right-hand values.

EXAMPLE:
al[24]=al[43]+al[7]

The above is a valid equation, combining the contents of al[43] and al[7] and sending the total into al
[24].

These variables are 32-bit signed integers, so they are limited to whole numbers from -2147483648 to
2147483647. Math operations that result in digits after the decimal point are truncated toward zero.
Therefore, the value 2.9 becomes 2, and the value -2.9 becomes -2.

If you assign or perform an operation that normally results in a value outside this range, the Bs bit
indicates an overflow and the operation aborts before assigning the value to the left of the equal sign.

These are other restrictions:
l If al[1]+a exceeds 32 signed bits, the operation c=al[1]+a aborts and an error flag is set.

l If a-al[1] exceeds 32 signed bits, the operation c=a-al[1] aborts and an error flag is set.

l If a*al[1] exceeds 32 signed bits, the operation c=a*al[1] aborts and an error flag is set.

The system flag, Bs, is set. Note that many different types of command errors will also set the
Bs bit. The RERRC command can be used to retrieve the last command error. For a math
overflow, that is error code 23. For details on the RERRC command, see ERRC on page 451.

If one of these variables is used with a variable of another type, it will be appropriately converted (the
variable will be "type cast").

For example, assigning the variable aw[27]=al[0] directly stores the 16 least-significant bits of al[0] to
aw[27]. The sign bit of al[0] is not considered, the sign is determined based on bit 15 of al[0]. The higher
bits of the variable al[0] are ignored.

Conversely, if the left-hand value is a 32-bit variable and the right-hand side contains 16-bit variables,
the 16-bit variables will be "upgraded" to 32-bits. The sign is preserved when casting to a longer
format. In the equation al[0]=ab[4]-aw[7], both ab[4] and aw[7] are converted into 32-bit numbers before
the subtraction occurs.

In the SmartMotor language, all user variables are written as lowercase letters, while functions and
commands have at least one uppercase character. The term "a" is a general-purpose variable, while "A"
is the acceleration function. As previously described, any user variable can be assigned a value through
an equation.

All user variables are initialized to the value 0 at power up or on execution of the Z system-reset
command. Other than by direct assignment, this is the only way the SmartMotor sets all of the user
variables to 0. Issuing a RUN command does not perform this automatic initialization. For this reason, it

Part 2: Commands: al[index]=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 280 of 969

is better to test a program, whether it is auto-execution or not, by power cycling the SmartMotor or
issuing the Z system-reset command.

NOTE: To understand the relationship between user assigned letter variables a-z, aa-zz and aaa-zzz,
and variable arrays ab[], al[] and aw[], see Array Variable Memory Map on page 897. The arrays and
the letter variables do not overlap in the Class 5 motor.

RELATED COMMANDS:
R a...z 32-Bit Variables (see page 249)
R aa...zz 32-Bit Variables (see page 249)
R aaa...zzz 32-Bit Variables (see page 249)
R ab[index]=formula Array Byte [index] (see page 252)
R af[index]=formula Array Float [index] (see page 267)
R aw[index]=formula Array Word [index] (see page 294)
VLD(variable,number) Variable Load (see page 820)
VST(variable,number) Variable Save (see page 824)

Part 2: Commands: al[index]=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 281 of 969

AMPS=formula
Amps, PWM Limit

APPLICATION: Motion control; supports the DS2020 Combitronic system

DESCRIPTION: Sets maximum allowed pulse width modulation (PWM) to motor wind-
ings

EXECUTION: Next PID sample

CONDITIONAL TO: N/A

LIMITATIONS: Must not be negative

READ/REPORT: RAMPS

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: 1/1023 of maximum PWM permitted

RANGE OF VALUES: 0 to 1023

TYPICAL VALUES: 0 to 1023

DEFAULT VALUE: 1023

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: AMPS:3=100, a=AMPS:3, RAMPS:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The AMPS command limits both the continuous torque and speed of the SmartMotor™.

In the DS2020 Combitronic system, this command does not act directly on PWM limitation. Instead, it
limits the current reference that can be required to the current loop. Units are 1/1023 of maximum
motor current set by the SMI software DS2020 Configuration tool. For details, see the Moog Animatics
DS2020 Combitronic™ Installation and Startup Guide.

To set the SmartMotor to use maximum available PWM, issue the command AMPS=1023. Setting
AMPS=0 limits PWM to 0 and prevents any output torque. To conceptually understand what happens
when you use values between 0 and 1023, consider the next torque-speed diagram:

Part 2: Commands: AMPS=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 282 of 969

AMPS torque-speed diagram

The AMPS function essentially cuts the torque-speed characteristic of the motor by slicing off the part
of the curve to the right of the AMPS line. Note that there are some values of AMPS that will limit top
speed but not peak torque. The slope of the line is highly dependent on the voltage of the power
source.

AMPS is often used to limit torque and speed. AMPS has no effect in torque mode (MT or T). In this
mode, the value of T controls the commanded torque of the motor without limitation by AMPS.

EXAMPLE: (Routine homes motor against a hard stop)

MDS 'Using Sine mode commutation
KP=3200 'Increase stiffness from default
KD=10200 'Increase damping from default
F 'Activate new tuning parameters
AMPS=100 'Lower current limit to 10%
VT=-10000 'Set maximum velocity
ADT=100 'Set maximum accel/decel
MV 'Set Velocity mode
G 'Start motion
WHILE EA>-100 'Loop while position error is small
LOOP 'Loop back to WHILE
O=-100 'While pressed, declare home offset
S 'Abruptly stop trajectory
MP 'Switch to Position mode
VT=20000 'Set higher maximum velocity
PT=0 'Set target position to be home
G 'Start motion
TWAIT 'Wait for motion to complete
AMPS=1023 'Restore current limit to maximum
END 'End program

Part 2: Commands: AMPS=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 283 of 969

RELATED COMMANDS:

MT Mode Torque (see page 620)
R T=formula Torque, Open-Loop Commanded (see page 769)

Part 2: Commands: AMPS=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 284 of 969

ASIN(value)
Arcsine

APPLICATION: Math function

DESCRIPTION: Gets the arcsine of the input value

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RASIN(value)

WRITE: N/A

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Degrees output

RANGE OF VALUES: Input (floating-point): -1.0 to 1.0
Output in degrees: -90.0 to 90.0 (floating-point)

TYPICAL VALUES: Input (floating-point): -1.0 to 1.0
Output in degrees: -90.0 to 90.0 (floating-point)

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

ASIN takes an input and returns a floating-point arcsine in degrees:

af[1]=ASIN(arg)

where arg may be an integer (e.g., a or aw[0]) or floating-point variable (e.g., af[0]). Integer or floating-
point constants may also be used (e.g., 23 or 23.7, respectively).

This command cannot have within the parenthesis: math operators, other parenthetical functions, or a
Combitronic request from another motor. For example, x=FABS(PA) is allowed, but x=FABS(PA:3) is not
allowed.

The result of this function is a floating-point type. If used in an equation, the operations in the equation
that are processed after this function are automatically promoted to a float. This is dependent on the
mathematical order of operations in the equation. As with other equations (e.g., x=a+b), the variable to
the left of "=" may be an integer variable to accept the result. However, the value will be truncated to
fit to that integer type. For example, the assignment "aw[0]=" will drop any fractional amount and
truncate the result to the range -32768 to 32767 (aw[0]=100.5 will report as 100, and aw[0]=40000.0
will report as -25536).

Although the floating-point variables and their standard binary operations conform to IEEE-754 double
precision, the floating-point square root and trigonometric functions only produce IEEE-754 single-
precision results. For more details, see Variables and Math on page 198.

Part 2: Commands: ASIN(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 285 of 969

EXAMPLE:
af[0]=ASIN(.5) 'Set array variable = ASIN(.5)
Raf[0] 'Report variable af[0]
RASIN(.5) 'Report ASIN(.5)
af[1]=0.4332
af[0]=ASIN(af[1]) 'Variables may be put in the parenthesis
Raf[0] 'Output in degrees
END

Program output is:

30.000000000
30.000000000
25.670810699

RELATED COMMANDS:
R ACOS(value) Arccosine (see page 259)
R ATAN(value) Arctangent (see page 289)
R COS(value) Cosine (see page 372)
R SIN(value) Sine (see page 738)
R TAN(value) Tangent (see page 775)

Part 2: Commands: ASIN(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 286 of 969

AT=formula
Acceleration Target

APPLICATION: Motion control; supports the DS2020 Combitronic system

DESCRIPTION: Sets the target acceleration only (does not change deceleration
unless no deceleration has been set)

EXECUTION: Buffered until a G command is issued

CONDITIONAL TO: MP, MV, ADT=, G, PIDn (sample rate), encoder resolution

LIMITATIONS: Must not be negative; effective value is rounded down to next even
number

READ/REPORT: RAT

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: (encoder counts / (sample²)) * 65536
DS2020 Combitronic system: user increments / sec², see FD=e-
expression on page 461

RANGE OF VALUES: 0 to 2147483647
DS2020 Combitronic system: 0 to 4294967295

TYPICAL VALUES: 2 to 5000
DS2020 Combitronic system: depends on FD

DEFAULT VALUE: 0 (for firmware 5.x.4.x and later, the default is set to 4)
DS2020 Combitronic system: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: AT:3=1234, a=AT:3, RAT:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEA command. For details, see SCALEA(m,d) on page
724. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The buffered AT value determines the acceleration used by subsequent position or velocity moves to
calculate the required trajectory. Changing AT during a move will not alter the current trajectory unless
a new G command is issued.

Acceleration is pre-scaled by 65536 and may range from 2 to 2147483647. A value of 0 is not valid.
Due to internal calculations, odd values for this command are rounded up to an even value.

If the value for DT has not been set since powering up the motor, the value of AT= will be automatically
applied to DT=. However, this should be avoided. Instead, always use the ADT= command to specify the
value for AT and DT when they are the same. If the value needed for DT is different than AT, specify it
with the DT= command.

Part 2: Commands: AT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 287 of 969

Equations for Real-World Units:

Encoder resolution and sample rate can vary. Therefore, the general equations in the next table can be
used to convert the real-world units of acceleration to a value for AT, where af[0] is already set with
the real-world unit value. These equations force floating-point calculations to avoid overflow and
maintain resolution. They can be placed in a user program, or they can be precalculated if the values of
SAMP and RES are known (SAMP and RES can be reported from the terminal using the RSAMP and
RRES commands, respectively). SAMP can change if the PID command is used. The value of RES can
differ between motor models.

Input as value
in af[0] Equation

Radians/(Sec2) AT=((af[0]*RES)/(PI*2*((SAMP*1.0)*SAMP)))*65536
DS2020 Combitronic system: AT=((af[0]*FD)/(PI*2))

Encoder Counts/(Sec2)
DS2020 Combitronic system: User
Increments/(Sec^2)

AT=(af[0]/((SAMP*1.0)*SAMP))*65536
DS2020 Combitronic system: AT=(af[0])

Rev/(Sec2) AT=((af[0]*RES)/((SAMP*1.0)*SAMP))*65536
DS2020 Combitronic system: AT=(af[0]*FD)

RPM/Sec AT=((af[0]*RES)/(60.0*((SAMP*1.0)*SAMP)))*65536
DS2020 Combitronic system: AT=((af[0]*FD)/60)

RPM/Min AT=((af[0]*RES)/(3600.0*((SAMP*1.0)*SAMP)))*65536
DS2020 Combitronic system: AT=((af[0]*FD)/3600)

A useful Scale Factor Multiplier code example, which also illustrates the use of af[], SAMP and RES, is
shown in RES on page 702 and SAMP on page 722.

EXAMPLE:
MP 'Set mode position
AT=5000 'Set target acceleration
PT=20000 'Set absolute position
VT=10000 'Set velocity
G 'Start motion

EXAMPLE:
AT=100 'Set buffered acceleration
VT=750 'Set buffered velocity
MV 'Set buffered velocity mode
G 'Start motion

RELATED COMMANDS:

ADT=formula Acceleration/Deceleration Target (see page 263)
ADTS=formula Acceleration/Deceleration Target, Synchronized (see page 265)
ATS=formula Acceleration Target, Synchronized (see page 292)
R DT=formula Deceleration Target (see page 396)
DTS=formula Deceleration Target, Synchronized (see page 399)
R EL=formula Error Limit (see page 426)
R FD=expression Resolution to Set Units of Position/Velocity/Acceleration (see page 461)
G Start Motion (GO) (see page 473)

Part 2: Commands: AT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 288 of 969

MP Mode Position (see page 613)
MV Mode Velocity (see page 624)
PID# Proportional-Integral-Differential Filter Rate (see page 654)
R PT=formula Position, (Absolute) Target (see page 690)
R RES Resolution (see page 702)
R SAMP Sampling Rate (see page 722)
R VT=formula Velocity Target (see page 828)
X Decelerate to Stop (see page 844)

Part 2: Commands: AT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 289 of 969

ATAN(value)
Arctangent

APPLICATION: Math function

DESCRIPTION: Gets the arctangent of the input value

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RATAN(value)

WRITE: N/A

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Degrees output

RANGE OF VALUES: Input (floating-point): any value
Output in degrees (floating-point): -90.0 to 90.0

TYPICAL VALUES: Input (floating-point): any value
Output in degrees (floating-point): -90.0 to 90.0

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

ATAN takes an input and returns a floating-point arctangent in degrees:

af[1]=ATAN(arg)

where arg may be an integer (e.g., a or aw[0]) or floating-point variable (e.g., af[0]). Integer or floating-
point constants may also be used (e.g., 23 or 23.7, respectively).

This command cannot have within the parenthesis: math operators, other parenthetical functions, or a
Combitronic request from another motor. For example, x=FABS(PA) is allowed, but x=FABS(PA:3) is not
allowed.

The result of this function is a floating-point type. If used in an equation, the operations in the equation
that are processed after this function are automatically promoted to a float. This is dependent on the
mathematical order of operations in the equation. As with other equations (e.g., x=a+b), the variable to
the left of "=" may be an integer variable to accept the result. However, the value will be truncated to
fit to that integer type. For example, the assignment "aw[0]=" will drop any fractional amount and
truncate the result to the range -32768 to 32767 (aw[0]=100.5 will report as 100, and aw[0]=40000.0
will report as -25536).

Although the floating-point variables and their standard binary operations conform to IEEE-754 double
precision, the floating-point square root and trigonometric functions only produce IEEE-754 single-
precision results. For more details, see Variables and Math on page 198.

Part 2: Commands: ATAN(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 290 of 969

EXAMPLE:
af[0]=ATAN(50.5) 'Set array variable = ATAN(50.5)
Raf[0] 'Report value of af[0] variable
RATAN(50.5) 'Report ATAN(50.5)
af[1]=0.4332
af[0]=ATAN(af[1]) 'Variables may be put in the parenthesis
Raf[0] 'Output in degrees
END

Program output is:

88.865577697
88.865577697
23.422260284

RELATED COMMANDS:
R ACOS(value) Arccosine (see page 259)
R ASIN(value) Arcsine (see page 284)
R COS(value) Cosine (see page 372)
R SIN(value) Sine (see page 738)
R TAN(value) Tangent (see page 775)

Part 2: Commands: ATAN(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 291 of 969

ATOF(index)
ASCII to Float

APPLICATION: Data conversion

DESCRIPTION: Gets (reads) the ASCII to float conversion

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: Integer portion of input string must be in 32-bit range

READ/REPORT: RATOF(index)

WRITE: N/A

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: -2147483648.000000000 to +2147483647.000000000

TYPICAL VALUES: -2147483648.000000000 to +2147483647.000000000

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The ATOF command is used to read an ASCII string containing a number in the format:

-123456789.123456789

The string is stored in the ab[index] array. The argument in the ATOF(index) function is the index of ab[]
where the string begins. The parsing ends when a character other than a digit, decimal point or minus
sign is met.

The value returned is a float, which can be assigned to a floating-point variable or an integer.

EXAMPLE:
ab[10]=50
ab[11]=51
ab[12]=48
ab[13]=46
ab[14]=49
ab[15]=0
af[0]=ATOF(10)
Raf[0]
END

Program output is:

230.099999999

RELATED COMMANDS:
R HEX(index) Decimal Value of a Hex String (see page 489)

Part 2: Commands: ATOF(index)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 292 of 969

ATS=formula
Acceleration Target, Synchronized

APPLICATION: Motion control

DESCRIPTION: Sets the synchronized (path) target acceleration (does not change
deceleration)

EXECUTION: Immediate

CONDITIONAL TO: PIDn

LIMITATIONS: Must not be negative; 0 is not valid; effective value is rounded up to
next even number

READ/REPORT: None

WRITE: Write only

LANGUAGE ACCESS: Assignment

UNITS: (encoder counts / (sample²)) * 65536

RANGE OF VALUES: 0 to 2147483647

TYPICAL VALUES: 0 to 5000

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M), not ver. 5.32.x.x; 6.x (D/M), M requires EIP option

COMBITRONIC: N/A

DETAILED DESCRIPTION:

NOTE: This command requires a Combitronic-supported motor. Although this command does not
support Combitronic syntax, it does use Combitronic communication to pass information between
other motors.

NOTE: This command is affected by the SCALEA command. For details, see SCALEA(m,d) on page
724. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

Setting the synchronized (path) ATS value determines the acceleration that will be used by subsequent
position or velocity moves to calculate the required trajectory. Changing ATS during a move will not
alter the current trajectory unless a new G command is issued.

Acceleration is pre-scaled by 65536 and may range from 2 to 2147483647. A value of 0 is not valid.
Due to internal calculations, odd values for this command are rounded up to an even value.

Equations for Real-World Units:

Encoder resolution and sample rate can vary. Therefore, the general equations in the next table can be
used to convert the real-world units of acceleration to a value for ATS, where af[0] is already set with
the real-world unit value. These equations force floating-point calculations to avoid overflow and
maintain resolution. They can be placed in a user program, or they can be precalculated if the values of
SAMP and RES are known (SAMP and RES can be reported from the terminal using the RSAMP and
RRES commands, respectively). SAMP can change if the PID command is used. The value of RES can
differ between motor models.

Part 2: Commands: ATS=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 293 of 969

Input as value
in af[0] Equation

Radians/(Sec2) ATS=((af[0]*RES)/(PI*2*((SAMP*1.0)*SAMP)))*65536
Encoder Counts/(Sec2) ATS=(af[0]/((SAMP*1.0)*SAMP))*65536
Rev/(Sec2) ATS=((af[0]*RES)/((SAMP*1.0)*SAMP))*65536
RPM/Sec ATS=((af[0]*RES)/(60.0*((SAMP*1.0)*SAMP)))*65536
RPM/Min ATS=((af[0]*RES)/(3600.0*((SAMP*1.0)*SAMP)))*65536

A useful Scale Factor Multiplier code example, which also illustrates the use of af[], SAMP and RES, is
shown in RES on page 702 and SAMP on page 722.

EXAMPLE: (Shows use of ATS, DTS and VTS)

EIGN(W,0) 'Set all I/O as general inputs.
ZS 'Clear errors.
ATS=100 'Set synchronized acceleration target.
DTS=500 'Set synchronized deceleration target.
VTS=100000000 'Set synchronized target velocity.
PTS(500;1,1000;2,10000;3) 'Set synchronized target position

'on motor 1, 2 and 3.
GS 'Initiate synchronized move.
TSWAIT 'Wait until synchronized move ends.
END 'Required END.

RELATED COMMANDS:

ADTS=formula Acceleration/Deceleration Target, Synchronized (see page 265)
DTS=formula Deceleration Target, Synchronized (see page 399)
PID# Proportional-Integral-Differential Filter Rate (see page 654)
PRTS(...) Position, Relative Target, Synchronized (see page 685)
PRTSS(...) Position, Relative Target, Synchronized, Supplemental (see page 688)
PTS(...) Position Target, Synchronized (see page 692)
R PTSD Position Target, Synchronized Distance (see page 695)
PTSS(...) Position Target, Synchronized Supplemental (see page 696)
R PTST Position Target, Synchronized Time (see page 698)
VTS=formula Velocity Target, Synchronized Move (see page 831)

Part 2: Commands: ATS=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 294 of 969

aw[index]=formula
Array Word [index]

APPLICATION: Variables

DESCRIPTION: User signed 16-bit data variables

EXECUTION: Immediate

CONDITIONAL TO: Index values range 0 to 101

LIMITATIONS: An expression used as an index within the [] brackets is limited to no
more than one operator (two values).

No Combitronic requests or functions with parenthesis are supported
within the [] brackets.

This data space is shared with Cam motion (MC) if a RAM table
location is selected. However, the aw command must not be used to
access this space during that time.

READ/REPORT: Raw[index]

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Signed 16-bit number

RANGE OF VALUES: -32768 to 32767

TYPICAL VALUES: -32768 to 32767

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: aw[0]:3=1234, a=aw[0]:3, Raw[0]:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The SmartMotor™ has 8, 16 and 32-bit arrays. The 16-bit array takes the form of the variables aw
[index]. These are general-purpose, 16-bit signed integer variables that can be reported, used on either
side of an equation, and can be mixed in an expression with variables other than 16-bit. Like all user
variables, they are always lowercase, and are automatically initialized to zero at power up or reset.

The syntax of the 16-bit array is aw[index], which stands for array word, and accepts an index value
between 0 and 101. This index can be specified explicitly or through another variable. For example, aw
[4] refers to the fifth element in the 16-bit array, while aw[n] refers to an element of the array, where
the variable "n" must be between 0 and 101.

The value of any array variable is reported with the R, PRINT() or PRINT1() functions.

Part 2: Commands: aw[index]=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 295 of 969

EXAMPLE:
aw[47]=20 'Assign the value of 20 to aw[47]
Raw[47] 'Report the value of aw[47] to the primary serial port
PRINT("aw[47]=",aw[47],#13) 'Print to the primary serial port
PRINT1("aw[47]=",aw[47],#13) 'Print to the secondary serial port
END

Program output is:

20
aw[47]=20

The aw[] array is classified as read/write, meaning that it can be assigned a value, or it can be assigned
to some other variable or function. In other words, these variables can be left- or right-hand values.

EXAMPLE:
aw[24]=aw[43]+aw[7]

The above is a valid equation, combining the contents of aw[43] and aw[7] and sending the total into aw
[24].

As signed 16-bit variables, they are limited to whole numbers ranging from -32768 and 32767. Math
operations that result in digits after the decimal point are truncated toward zero. So a value of 2.9
becomes 2, and a value of -2.9 becomes -2.

If you assign or perform an operation that would normally result in a value outside of this range, the
variable will "wrap," or take on the corresponding modulo. As an example, because of this, 32767+1=-
32768. The result "wrapped around" to the negative extreme.

These are other restrictions:
l If aw[1]+a exceeds 32 signed bits, the operation c=aw[1]+a will abort and an error flag is set.

l If a-aw[1] exceeds 32 signed bits, the operation c=a-aw[1] will abort and an error flag is set.

l If a*aw[1] exceeds 32 signed bits, the operation c=a*aw[1] will abort and an error flag is set.

The system flag, Bs, is set. Note that many different types of command errors will also set the
Bs bit. The RERRC command can be used to retrieve the last command error. For a math
overflow, that is error code 23. For details on the RERRC command, see ERRC on page 451.

If one of these variables is used with a variable of another type, it will be appropriately converted (the
variable will be "type cast").

If the left-hand variable is a 16-bit one like aw[100], only the lowest 16 bits are preserved. The sign is
determined by bit 15 of the value on the right-side of the equals sign.

Conversely, if the left-hand value is a 32-bit variable and the right-hand side contains 16-bit variables,
the 16-bit variables will be "upgraded" to 32-bits. The sign is preserved when casting to a longer
format. In the equation cc=ab[4]-aw[7], both ab[4] and aw[7] are converted into 32-bit numbers before
the subtraction occurs.

In the SmartMotor language, all user variables are written as lowercase letters, while functions and
commands have at least one uppercase character. The term "a" is a general-purpose variable, while "A"
is the acceleration function. As previously described, any user variable can be assigned a value through
an equation.

All user variables are initialized to the value 0 at power up or on execution of the Z system-reset
command. Other than by direct assignment, this is the only way the SmartMotor sets all of the user
variables to 0. Issuing a RUN command does not perform this automatic initialization. For this reason, it

Part 2: Commands: aw[index]=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 296 of 969

is better to test a program, whether it is auto-execution or not, by power cycling the SmartMotor or
issuing the Z system-reset command.

NOTE: To understand the relationship between user assigned letter variables a-z, aa-zz and aaa-zzz,
and variable arrays ab[], al[] and aw[], see Array Variable Memory Map on page 897. The arrays and
the letter variables do not overlap in the Class 5 motor.

RELATED COMMANDS:
R a...z 32-Bit Variables (see page 249)
R aa...zz 32-Bit Variables (see page 249)
R aaa...zzz 32-Bit Variables (see page 249)
R ab[index]=formula Array Byte [index] (see page 252)
R af[index]=formula Array Float [index] (see page 267)
R al[index]=formula Array Long [index] (see page 278)
VLD(variable,number) Variable Load (see page 820)
VST(variable,number) Variable Save (see page 824)

Part 2: Commands: aw[index]=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 297 of 969

B(word,bit)
Status Byte

APPLICATION: System; supports the DS2020 Combitronic system

DESCRIPTION: Reads the status from the specified status word and bit number

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RB(word,bit)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Binary bit

RANGE OF VALUES: Input:

 word argument range: 0–17

 bit argument range: 0–15

Output: 0 or 1

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: RB(2,4):3, x=B(2,4):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The B command reads the status from the specified status word and bit number:

=B(word,bit)

where "word" is the word number and "bit" is the bit number.

EXAMPLE: Check timer status

IF B(4,0)==0 'Check Timer 0 status
a=a+1 'Updating a every second
TMR(0,1000) 'Set Timer 0 counting

ENDIF

Part 2: Commands: B(word,bit)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 298 of 969

EXAMPLE: (For CANopen only, using firmware 5.x.4.21 or later) Read status word 10, bits 1-5, and then
clear the event flag.

WHILE 1
IF B(10,1)==1

Z(10,1) ' Clear event flag
PRINT("Rx PDO 1",#13)

ENDIF
IF B(10,2)==1

Z(10,2) ' Clear event flag
PRINT("Rx PDO 2",#13)

. . .

ENDIF
IF B(10,5)==1

Z(10,5) ' Clear event flag
PRINT("Rx PDO 5",#13)

ENDIF
LOOP
END

EXAMPLE: Read Status Words for faults, and print fault messages to the screen. You can use the
tables in Status Words - SmartMotor on page 921 to get the bits and meanings, or you can use the "bit"
commands (like Ba, Be, etc.) where available.

IF(B(0,0)!=1) 'Read Status Word 0, bit 0 for Drive Enable fault

' This section looks at low voltage and drive enable input state,
' which can prevent drive ready state regardless of any faults.

Z(6,13) WAIT=10 ' Clear drive voltage low flag to check true state
IF B(6,13) == 1 ' Not a fault but will prevent drive ready

PRINT("Bus voltage is too low.",#13)
ENDIF

IF (FW/(2^24)) == 6
' For Class 6 motors:

IF IN(7) == 0
PRINT("Drive enable input low",#13)

ENDIF
IF Ba==1 ' Look for overcurrent fault

PRINT("Overcurrent occurred",#13)
ENDIF

ELSEIF (FW/(2^24)) == 5
' For Class 5 Class 5 M-series 5.98.x.x or 5.97.x.x
' NOTE: Not a fault in D-series

IF (((FW/65536)&255) == 98)|(((FW/65536)&255) == 97)
IF IN(12) == 0

PRINT("Drive enable input low",#13)
ENDIF
IF Ba==1 ' Look for overcurrent fault

PRINT("Overcurrent occurred",#13)
ENDIF

Part 2: Commands: B(word,bit)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 299 of 969

ENDIF
ENDIF

' This section look at faults.

IF Bh==1 ' Look for overtemperature fault
PRINT("Over temperature",#13)

ENDIF

IF Be==1 ' Look for position error fault
PRINT("Excessive Position Error",#13)

ENDIF

IF(B(0,3)==1) ' Look for bus voltage fault
PRINT("Bus voltage Fault",#13)

ENDIF

IF Bv==1 ' Look for velocity limit fault
PRINT("Velocity limit fault",#13)

ENDIF

IF(B(0,9)==1) ' Look for dE/dt fault
PRINT("DE/DT Fault",#13)

ENDIF

IF Br==1 ' Look for historical positive hardware limit fault
PRINT("Historical Positive H/W limit",#13)

ENDIF

IF Bl==1 ' Look for historical negative hardware limit fault
PRINT("Historical Negative H/W limit",#13)

ENDIF

IF (B(1,10)==1)&(B(1,11)==1) ' Software limits enabled with
' mode to cause faults

IF Brs==1 ' Look for historical positive software limit fault
PRINT("Historical Positive S/W limit",#13)

ENDIF
IF Bls==1 ' Look for historical negative software limit fault

PRINT("Historical Negative S/W limit",#13)
ENDIF

ENDIF

IF B(2,8)==1 ' Look for Watchdog fault on supported motors
' NOTE: Not all firmware supports this notification

PRINT("Watchdog",#13)
ENDIF

IF B(2,9)==1 ' Look for ADB (Animatics Data Block) fault
' If ADB is corrupt, motion is prevented

PRINT("ADB checksum Fault",#13)

Part 2: Commands: B(word,bit)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 300 of 969

ENDIF

IF B(6,5)==1 ' Look for encoder feedback fault
PRINT("Feedback Fault (encoder)",#13)

ENDIF

IF B(6,7)==1 ' Look for drive enable fault
PRINT("Drive Enable Fault",#13)

ENDIF

IF B(6,12)==1 ' Look for absolute encoder battery fault
' NOTE: This will print even if configured to not fault motor
PRINT("ABS Battery Fault",#13)

ENDIF

ELSE ' The drive is ready for motion
PRINT("Drive is ready!",#13)

ENDIF

RELATED COMMANDS:
R FAUSTS(x) Returns Fault Status Word (see page 459)
R W(word) Report Specified Status Word (see page 833)

Part 2: Commands: B(word,bit)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 301 of 969

Ba
Bit, Peak Overcurrent

APPLICATION: System

DESCRIPTION: Overcurrent detected state

EXECUTION: Historical, latched by PID sample

CONDITIONAL TO: Hardware Detection

LIMITATIONS: N/A

READ/REPORT: RBa

RB(0,4)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Binary bit

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The SmartMotor™ firmware checks each PID Sample to see whether or not a peak overcurrent condition
exists. The setpoint is in hardware and depends on the model motor and drive stage. If the setpoint is
reached, the system flag Ba is to 1.

For a Class 5 D-style motor:

When an overcurrent condition is detected, the SmartMotor will turn off the amplifier for several servo
samples to reduce the peak load and then turn on the amplifier to complete the commanded motion.
During the off state, if the position error exceeds the allowable following error (EL), the servo will
indicate a position error (shown by the Be status bit).

For an M-style motor:

The M-style motor has more sophisticated current sensing and protection. Other mechanisms in the
firmware are used to try to prevent the peak current from occurring. This bit is an indication that a
more severe situation has occurred. If this bit is indicated on an M-style motor, then the motor will shut
down, similar to other faults. This fault must be cleared (typically with a ZS command) to resume
motion.

Part 2: Commands: Ba

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 302 of 969

The Ba bit is reset by any of these methods:
l Power reset

l Z command (total reset of software)

l Z(0,4) command

l ZS command

l Za command

When the Ba flag is repeatedly set, it indicates an underlying problem:
l If the Ba flag is frequently set, it typically indicates that the motor is undersized in the peak

range.
l If the Ba bit is set during every machine cycle, the acceleration value may be too high. Therefore,

try lowering the acceleration value. If the flag is still set for every cycle, then the motor may be
under sized for the application.

For details on motor sizing, see the Moog Animatics Product Catalog.

EXAMPLE: (Subcomponent of system check routine)

IF Ba 'If Peak overcurrent is detected
PRINT("OVERCURRENT") 'Inform host
Za 'Clear overcurrent state latch

ENDIF

EXAMPLE: (Subroutine finds and prints errors)

C10 'Subroutine label
 IF Be 'Check for position error
 PRINT("Position Error", #13)
 ENDIF
 IF Bh 'Check for overtemp error
 PRINT("Overtemp Error",#13)
 ENDIF
 IF Ba 'Check for overcurrent error
 PRINT("Overcurrent Error",#13)
 ENDIF
RETURN 'Return to subroutine call

RELATED COMMANDS:
R B(word,bit) Status Byte (see page 297)
R W(word) Report Specified Status Word (see page 833)
Z(word,bit) Reset Specified Status Bit (see page 848)
Z Total CPU Reset (see page 846)
Za Reset Overcurrent Flag (see page 850)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Ba

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 303 of 969

BAUD(channel)=formula
Set BAUD Rate (RS-232 and RS-485)

APPLICATION: Communications control; supports the DS2020 Combitronic system

DESCRIPTION: Set serial communication BAUD rate for transmitting data

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: There may be limitations based on the motor type. For details, see
Product-Specific Table on page 303.

READ/REPORT: RBAUD(channel)

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: bits per second (Baud)

RANGE OF VALUES: 2400, 4800, 9600, 19200, 38400, 57600 or 115200

TYPICAL VALUES: 2400, 4800, 9600, 19200, 38400, 57600 or 115200

DEFAULT VALUE: 9600

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)
RBAUD(1) requires: 5.x (D/M); 6.4.2.x (D)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The BAUD command sets the speed or baud rate of the specified serial channel. To do this, use:

BAUD(channel)=formula

where (channel) is 0 or 1 for channel 0 or channel 1, respectively, and formula is the desired baud rate:
2400, 4800, 9600, 19200, 38400, 57600 or 115200.

NOTE: BAUD(1)= and RBAUD(1) are not available on M-style motors.

Additionally, the baud rate of the primary communications channel can be set by the command:

BAUDrate

where rate is the desired baud rate: 2400, 4800, 9600, 19200, 38400, 57600 or 115200. For example,
BAUD9600 would be equivalent to BAUD(0)=9600.

You can also set the baud rate for all motors, for example:

0BAUD9600

would globally set all motors on the serial network to a baud rate of 9600 bps.

NOTE: SmartMotor commands like 0CADDR=... or 0ADDR=... with a leading number really send a
corresponding address byte (i.e., "0", which is hex 80 or decimal 128). This can be seen by viewing
the serial data with the Serial Data Analyzer ("sniffer") tool, which is available on the SMI software
View menu.

Product-Specific Table

Part 2: Commands: BAUD(channel)=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 304 of 969

This table provides product-specific information on the BAUD command.

Motor Chnl1 COM
Chnls

COM
Pins

BAUD Cmd
Forms2

Report Cmd
Forms3

Combi
Cmd

Forms
Class 5
D-Style

COM0 RS-232
(RS-485 with
adapter)

7W2;
15-pin
(not CDS)

BAUDrate
BAUD(channel)=baud

RBAUD(chan-
nel)

N/A

COM1 RS-485 15-pin BAUD(channel)=baud RBAUD(chan-
nel)

N/A

Class 5
M-Style

COM0 RS-485 8-pin cir-
cular

BAUDrate
BAUD(channel)=baud

RBAUD(chan-
nel)

N/A

COM1 N/A N/A N/A RBAUD(chan-
nel)

N/A

Class 6
D-Style

COM0 RS-232 7W2 BAUDrate
BAUD(channel)=baud

RBAUD(chan-
nel)

N/A

COM1 RS-485 26-pin BAUD(channel)=baud RBAUD(chan-
nel)

N/A

Class 6
M-Style

COM0 RS-485 8-pin cir-
cular

BAUDrate
BAUD(channel)=baud

RBAUD(chan-
nel)

N/A

COM1 N/A N/A N/A N/A N/A

Class 6
SL17

COM0 RS-232 15-pin BAUDrate
BAUD(channel)=baud

RBAUD(chan-
nel)

N/A

COM1 N/A N/A N/A N/A N/A

1. See the corresponding motor installation guide for I/O and channel details.
2. For details, see BAUD(channel)=formula on page 303.
3. Not the same as Class 5 M-style or Class 6 IE motors.

EXAMPLE: (Shows use of BAUD(channel)=formula, CBAUD=formula)

ECHO 'Turn echo on
EL=-1 'Disable error limits
BAUD(0)=115200 'Set serial chan. 0 communications to 115,200
CBAUD=1000000 'Set CAN bus to 1000000
. . .

EXAMPLE: (Shows use of BAUDrate)

EIGN(W,0) 'Set all local I/O as general-use inputs
ZS 'Clear errors
BAUD115200 'Set baud rate of channel 0 to 115,200
END

RELATED COMMANDS:
R CAN, CAN(arg) CAN Bus Status (see page 357)
R CBAUD=formula CAN Baud Rate (see page 363)

Part 2: Commands: BAUD(channel)=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 305 of 969

Be
Bit, Position Error Limit

APPLICATION: System; supports the DS2020 Combitronic system

DESCRIPTION: Position error declared

EXECUTION: Historical, latched by PID sample

CONDITIONAL TO: Position error exceeded EL value during trajectory move

LIMITATIONS: Torque modes have no position error

READ/REPORT: RBe

RB(0,6)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Binary bit

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The Be status bit indicates the detection of a position error. At each PID sample, the magnitude of the
measured position error is compared to the user-specified position error (EL) value. If this value is
exceeded, the servo will be immediately turned off.

The Be bit is reset by any of these methods:
l Power reset

l Z command (total reset of software)

l Z(0,6) command

l ZS command

l Ze command

NOTE: In cases where the motor has gone beyond the EL (error limit) but the trajectory generator is
still active with the previously calculated trajectory, the ZS command may not clear the Be bit. If
you are unable to reset Be with the ZS command, issue an OFF command before issuing the
ZS command, which clears the current commanded trajectory and allows the reset to complete.

Part 2: Commands: Be

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 306 of 969

EXAMPLE: (test for position error)

TWAIT 'wait for trajectory in progress
'to complete

IF Be 'unsuccessful, position error?
PRINT("POSITION ERROR") 'inform host

ENDIF

EXAMPLE: (loop while Be is 0)

WHILE Be==0 LOOP 'Loop while Be is 0
'Then proceed when Be is 1

NOTE: An extended period of overcurrent condition may result in a position error because this
condition will cause a reduction in power to the motor and cause it to fall behind, possibly enough to
exceed EL (maximum allowable position error).

If position errors are continuously received, check for loss of drive power, increased load or locked
load.

EXAMPLE: (Subroutine finds and prints errors)

C10 'Subroutine label
 IF Be 'Check for position error
 PRINT("Position Error", #13)
 ENDIF
 IF Bh 'Check for overtemp error
 PRINT("Overtemp Error",#13)
 ENDIF
 IF Ba 'Check for overcurrent error
 PRINT("Overcurrent Error",#13)
 ENDIF
RETURN 'Return to subroutine call

RELATED COMMANDS:
R B(word,bit) Status Byte (see page 297)
R W(word) Report Specified Status Word (see page 833)
Z(word,bit) Reset Specified Status Bit (see page 848)
Z Total CPU Reset (see page 846)
Ze Reset Position Error Flag (see page 851)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Be

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 307 of 969

Bh
Bit, Overheat

APPLICATION: System

DESCRIPTION: Hardware motor overheat state

EXECUTION: Historical, latched by PID sample

CONDITIONAL TO: Motor temperature, temperature setpoint (TH)

LIMITATIONS: N/A

READ/REPORT: RBh

RB(0,5)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Binary bit

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The SmartMotor has an internal temperature sensor on the control circuit board. This provides a simple
safety mechanism to shut down the motor when the average temperature exceeds 85 degrees Celsius.

Under continuous heavy loads, all motors will generate heat. If the heat sink or ventilation method is
inadequate, eventually the motor will overheat. If this situation repeatedly occurs, it may mean that the
motor does not have enough power for the assigned task (inadequate motor size) or excessive
resistance (friction) to motion is occurring. Therefore, check the design of your motion system. For
details on motor sizing, see the Moog Animatics Product Catalog.

The overheat temperature limit is specified using the TH command, but it cannot exceed 85 degrees
Celsius. If the temperature exceeds the TH value, the motor will turn off, and Bh will be set to 1. The
SmartMotor will reject any motion command until the temperature has dropped below the trip point by
5 degrees Celsius (below 80 degrees Celsius).

The Ba bit is reset by any of these methods:
l Power reset

l Z command (total reset of software)

l Z(0,5) command

l ZS command

l Zh command

Part 2: Commands: Bh

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 308 of 969

EXAMPLE: (Subcomponent of system check routine)

IF Bh
PRINT("MOTOR TOO HOT") 'Inform host
GOSUB123 'Deal with condition

ENDIF
C123 'Some code to deal with condition

EXAMPLE:
PRINT(#13,"Default value of TH = ",TH) 'default=85
PRINT(#13,"Motor Temperature = ",TEMP)
PRINT(#13,"START MOTION")
ADT=222 'Set accel/decel
VT=44444
MV 'Set velocity mode
G 'Start motion
TH=TEMP-5 'Force an overheat condition

'units are degrees Celsius
'TH maximum setting is 85

a=CLK
WHILE Bh==0 LOOP 'Loop while Bh is 0
WHILE Bt LOOP
b=CLK
PRINT(#13,"Servo OFF after ",b-a," milliseconds")

EXAMPLE: (Subroutine finds and prints errors)

C10 'Subroutine label
 IF Be 'Check for position error
 PRINT("Position Error", #13)
 ENDIF
 IF Bh 'Check for overtemp error
 PRINT("Overtemp Error",#13)
 ENDIF
 IF Ba 'Check for overcurrent error
 PRINT("Overcurrent Error",#13)
 ENDIF
RETURN 'Return to subroutine call

RELATED COMMANDS:
R B(word,bit) Status Byte (see page 297)
R TEMP, TEMP(arg) Temperature, Motor (see page 777)
R TH=formula Temperature, High Limit (see page 779)
R W(word) Report Specified Status Word (see page 833)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
Zh Reset Temperature Fault (see page 852)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Bh

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 309 of 969

Bi(enc)
Bit, Index Capture, Rising

APPLICATION: System

DESCRIPTION: Rising edge capture on encoder

EXECUTION: Historical, latched by PID sample

CONDITIONAL TO: Index capture, arming index: Ai(enc), Aij(enc), Aji(enc), EIRI, EIRE

LIMITATIONS: N/A

READ/REPORT: RBi(enc); supports the DS2020 Combitronic system over RS-232 only

RBi(0), RBi(1),

RB(1,2), RB(1,6)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Binary bit

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The Bi(enc) flag is set to 1 when the associated encoder Z pulse (index mark) is detected. The value of
the associated encoder capture is valid and can be read using the I(enc) command.

For the DS2020 Combitronic system, the report version of this command is used for a procedure to
find the position that corresponds to the physical zero position of the feedback sensor.

Before a capture can occur, arming is required using the Ai(enc), Aij(enc) or Aji(enc) command. After a
capture has occurred, the value stored in I(enc) will remain the same until another arming command is
issued and another index is detected. Reading the captured value does not change the capture state or
captured value.

The enc parameter specifies the encoder to be captured; it does not specify the source of the index
signal.

l Bi(0) specifies the internal encoder

l Bi(1) specifies the external encoder

The command RI(enc) reports the captured index reading.

Part 2: Commands: Bi(enc)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 310 of 969

The Bi(0) bit is reset by any of these methods:
l Power reset

l Z command (total reset of software)

l Z(1,2) command

l ZS command

The Bi(1) bit is reset by any of these methods:
l Power reset

l Z command (total reset of software)

l Z(1,6) command

l ZS command

For the DS2020 Combitronic system, RBi(0) is initially 0 and returns 1 if the procedure to find the zero
position of motor shaft is finished (zero found).

EXAMPLE: (simple homing)

MV 'Set buffered velocity mode
ADT=10 'Set buffered accel/decel
VT=-4000 'Set low buffered maximum velocity
i=0 'A flag to know if any index was found
ZS G 'Start slow motion profile
Ai(0) 'Clear and arm index capture
WHILE Bm==0 'Travel until negative limit reached

IF Bi(0)==1
PT=I(0) 'Save this target
Ai(0) 'Clear and arm index capture
i=1 'Set flag to indicate index was found

ENDIF
LOOP
X 'Decelerate to a stop
IF i==0
'Index not seen, must have started close to limit
VT=4000 'Set low buffered maximum velocity
Ai(0) 'Clear and arm index capture
ZS G
WHILE Bi(0)==0 'Travel positive until index reached
LOOP
PT=I(0) 'Go back to index

ENDIF
MP ZS G 'Start motion
TWAIT 'Wait till end of trajectory
O=0 'Set origin at index

Part 2: Commands: Bi(enc)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 311 of 969

EXAMPLE: (fast index find)

MP 'Set buffered velocity mode
ADT=1000 'Set fast accel/decel
VT=4000000 'Set fast velocity
PRT=RES+100 'Set relative distance just beyond

'One shaft turn
Ai(0) 'Clear and arm index capture
O=0 'Force change to position register
G 'Start fast move
TWAIT 'Wait till end of trajectory
PT=I(0)+100 'Go back to index
G 'Start motion
TWAIT 'Wait until end of trajectory
O=0 'Set origin at index

Index used as High Speed Position Capture:

When enabled through EIRI, the Bi(0) flag is set to 1 when a rising edge is seen at I/O pin 6. As a result,
I/O pin 6 can be used to capture position for high-speed registration applications.

EXAMPLE: (fast position capture)

EIGN(6) 'Set port 6 as input port
EIRI 'Set port 6 to register internal encoder

'Set F command flags
VT=100000 'Set Velocity
ADT=100 'Set accel/decel
MV 'Set to Velocity Mode
Ai(0) 'Arm registration
G 'Start moving

WHILE Bi(0)==0 'Travel until index reached
LOOP

X 'Decelerate to a stop
RI(0) 'Report registered position

END

RELATED COMMANDS:

Ai(enc) Arm Index Rising Edge (see page 270)
Aij(enc) Arm Index Rising Edge Then Falling Edge (see page 272)
Aji(enc) Arm Index Falling Edge Then Rising Edge (see page 276)
R B(word,bit) Status Byte (see page 297)
R Bx(enc) Bit, Index Input, Real-Time (see page 351)
EIRE Enable Index Register, Encoder Capture (see page 419)
EIRI Enable Index Register, Input Capture (see page 421)
R I(enc) Index, Rising-Edge Position (see page 502)
R W(word) Report Specified Status Word (see page 833)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Bi(enc)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 312 of 969

Bj(enc)
Bit, Index Capture, Falling

APPLICATION: System

DESCRIPTION: Falling edge capture on encoder

EXECUTION: Historical, latched by PID sample

CONDITIONAL TO: Index capture, arming index: Aj(enc), Aij(enc), Aji(enc), EIRI, EIRE

LIMITATIONS: N/A

READ/REPORT: RBj(enc)

RBj(0), RB(1,3)

RBj(1), RB(1,7)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Binary bit

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The Bj(enc) flag is set to 1 when the associated encoder Z pulse (index mark) is detected. The value of
the associated encoder capture is valid and can be read using the J(enc) command.

Before a capture can occur, arming is required using the Aj(enc), Aij(enc) or Aji(enc) command. After a
capture has occurred, the value stored in J(enc) will remain the same until another arming command is
issued and another index is detected. Reading the captured value does not change the capture state or
captured value.

The enc parameter specifies the encoder to be captured; it does not specify the source of the index
signal.

l Bj(0) specifies the internal encoder

l Bj(1) specifies the external encoder

The command RJ(enc) reports the captured index reading.

The Bj(0) bit is reset by any of these methods:
l Power reset

l Z command (total reset of software)

l Z(1,3) command

l ZS command

Part 2: Commands: Bj(enc)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 313 of 969

The Bj(1) bit is reset by any of these methods:
l Power reset

l Z command (total reset of software)

l Z(1,7) command

l ZS command

EXAMPLE: (simple homing)

MV 'Set buffered velocity mode
ADT=10 'Set buffered accel/decel
VT=-4000 'Set low buffered maximum velocity
i=0 'A flag to know if any index was found
ZS G 'Start slow motion profile
Aj(0) 'Clear and arm index capture
WHILE Bm==0 'Travel until negative limit reached

IF Bj(0)==1
PT=J(0) 'Save this target
Aj(0) 'Clear and arm index capture
i=1 'Set flag to indicate index was found

ENDIF
LOOP
X 'Decelerate to a stop
IF i==0
'Index not seen, must have started close to limit
VT=4000 'Set low buffered maximum velocity
Aj(0) 'Clear and arm index capture
ZS G
WHILE Bj(0)==0 'Travel positive until index reached
LOOP
PT=J(0) 'Go back to index

ENDIF
MP ZS G 'Start motion
TWAIT 'Wait till end of trajectory
O=0 'Set origin at index

Index used as High Speed Position Capture:

When enabled through EIRI, the Bj(0) flag is set to 1 when a falling edge is seen at I/O pin 6. As a result,
I/O pin 6 can be used to capture position for high-speed registration applications.

Part 2: Commands: Bj(enc)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 314 of 969

EXAMPLE: (fast position capture)

EIGN(6) 'Set port 6 as input port
EIRI 'Set port 6 to register internal encoder

'Set F command flags
VT=100000 'Set velocity
ADT=100 'Set accel/decel
MV 'Set to Velocity Mode
Aj(0) 'Arm registration
G 'Start moving

WHILE Bj(0)==0 'Travel until index reached
LOOP

X 'Decelerate to a stop
RJ(0) 'Report registered position

END

RELATED COMMANDS:

Aij(enc) Arm Index Rising Edge Then Falling Edge (see page 272)
Aj(enc) Arm Index Falling Edge (see page 274)
Aji(enc) Arm Index Falling Edge Then Rising Edge (see page 276)
R B(word,bit) Status Byte (see page 297)
R Bx(enc) Bit, Index Input, Real-Time (see page 351)
EIRE Enable Index Register, Encoder Capture (see page 419)
EIRI Enable Index Register, Input Capture (see page 421)
R J(enc) Index, Falling-Edge Position (see page 524)
R W(word) Report Specified Status Word (see page 833)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Bj(enc)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 315 of 969

Bk
Bit, Program EEPROM Data Status

APPLICATION: System

DESCRIPTION: Program EEPROM checksum failure state

EXECUTION: Historical, set on EEPROM data check (during startup and program
download)

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RBk

RB(2,15)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Binary bit

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0= valid EEPROM user program checksum
1= Invalid EEPROM user program checksum

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

Bk indicates whether a user-program checksum write error has been detected. If Bk is 1, the user
program and/or program header has been corrupted. You should not run the program in the
SmartMotor™. This can occur if communications was lost or corrupted during a download of a program.
Bk is reset to zero by a power reset or Z command, and a valid (pass) checksum is detected through
RCKS.

RCKS scans the entire program, including the header, and returns two 6-bit checksums and then a "P"
(pass) or "F" (fail) at the end. If RCKS reports a failure, Bk is set to 1. RCKS sends its value through the
primary serial port.

EXAMPLE: (terminal window commands with responses)

RCKS 000049 0025E0 P
RBk 0

RELATED COMMANDS:
R B(word,bit) Status Byte (see page 297)
LOAD Download Compiled User Program to Motor (see page 548)
RCKS Report Checksum (see page 701)
R W(word) Report Specified Status Word (see page 833)
Z Total CPU Reset (see page 846)

Part 2: Commands: Bk

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 316 of 969

Bl
Bit, Left Hardware Limit, Historical

APPLICATION: System

DESCRIPTION: Hardware left travel limit

EXECUTION: Historical, sampled each PID update until latched

CONDITIONAL TO: EIGN(3), OUT(3)=, EILN

LIMITATIONS: N/A

READ/REPORT: RBl

RB(0,13)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Binary bit

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0= Left/negative limit has not been active
1= Left/negative limit has been active

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

Bl is the historical left limit flag. If the left limit is found to be active during any servo sample, Bl is set
to 1; it remains at 1 until you reset it. In addition, the motion will stop, and the motor will either servo
in place or turn off the amplifier, depending on the value of the FSA function. The historical
left/negative limit flag Bl provides a latched limit value, in case the limit was already reached or
exceeded but is not currently active.

The real-time left/negative limit flag is Bm. It remains at 1 only while there is an active signal level on
user pin 3. When Bm is set to 1, Bl is set to 1.

If the pin’s function is assigned as general-purpose I/O through the EIGN(3) command, neither Bm nor Bl
will be affected by the pin state. Changing pin states will not elicit limit behavior from the motor. For
the pin to again elicit limit behavior, including the setting of Bl, the EILN command must be used to
assign the pin’s function as a limit switch.

The Bl bit is reset by any of these methods:
l Power reset

l Z command (total reset of software)

l Z(0,13) command

l ZS command

l Zl command

Part 2: Commands: Bl

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 317 of 969

EXAMPLE:
IF Bm

PRINT("LEFT LIMIT PRESENTLY ACTIVE")
ELSEIF Bl

PRINT("LEFT LIMIT PREVIOUSLY CONTACTED")
ELSE

PRINT("LEFT LIMIT NEVER REACHED")
ENDIF

RELATED COMMANDS:
R B(word,bit) Status Byte (see page 297)
R Bm Bit, Left Hardware Limit, Real-Time (see page 320)
R Bp Bit, Right Hardware Limit, Real-Time (see page 325)
R Br Bit, Right Hardware Limit, Historical (see page 329)
EIGN(...) Enable as Input for General-Use (see page 412)
EILN Enable Input as Limit Negative (see page 415)
R W(word) Report Specified Status Word (see page 833)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
Zl Reset Historical Left Limit Flag (see page 853)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Bl

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 318 of 969

Bls
Bit, Left Software Limit, Historical

APPLICATION: System

DESCRIPTION: Software left travel limit

EXECUTION: Historical, sampled each PID update until latched

CONDITIONAL TO: SLD, SLM, SLE, SLN, motor actual position (RPA)

LIMITATIONS: N/A

READ/REPORT: RBls

RB(1,13)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Binary bit

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0= Left/negative software limit has not been active
1= Left/negative software limit has been active

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

Bls is the historical software left-limit flag. Bls provides a latched value in case the software limit was
already reached or exceeded but is not currently active.

The software limits are an indication that the motor's actual position has exceeded the set range. If the
software left limit is found to be active during any servo sample, Bls is set to 1 and remains 1 until you
reset it. In addition, the motion will stop, and the motor will either servo in place or turn off the
amplifier, depending on the value of the SLM and/or FSA function.

The left/negative software limit position can be set through the SLN command. The left and right
software-limit functionality can be enabled and disabled with the SLE and SLD commands, respectively.

The real-time software left/negative limit flag is Bms, which only remains set to 1 while the motor is
past the software limit. When Bms is set to 1, Bls is set to 1.

The Bls bit is reset by any of these methods:
l Power reset

l Z command (total reset of software)

l Z(1,13) command

l ZS command

l Zls command

Part 2: Commands: Bls

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 319 of 969

EXAMPLE:
IF Bms

PRINT("SOFTWARE LEFT LIMIT PRESENTLY ACTIVE")
ELSEIF Bls

PRINT("SOFTWARE LEFT LIMIT PREVIOUSLY CONTACTED")
ELSE

PRINT("SOFTWARE LEFT LIMIT NEVER REACHED")
ENDIF

RELATED COMMANDS:
R B(word,bit) Status Byte (see page 297)
R Bms Bit, Left Software Limit, Real-Time (see page 322)
R Bps Bit, Right Software Limit, Real-Time (see page 327)
R Brs Bit, Right Software Limit, Historical (see page 341)
FSA(cause,action) Fault Stop Action (see page 465)
SLD Software Limits, Disable (see page 740)
SLE Software Limits, Enable (see page 742)
R SLM(mode) Software Limit Mode (see page 748)
R SLN=formula Software Limit, Negative (see page 750)
R W(word) Report Specified Status Word (see page 833)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
Zls Reset Left Software Limit Flag, Historical (see page 854)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Bls

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 320 of 969

Bm
Bit, Left Hardware Limit, Real-Time

APPLICATION: System

DESCRIPTION: Left/negative hardware limit state

EXECUTION: Real time, sampled each PID update

CONDITIONAL TO: EIGN(3), OUT(3)=, EILN

LIMITATIONS: N/A

READ/REPORT: RBm

RB(0,15)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Binary bit

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0 = Left/negative limit switch not active, or pin not assigned as a limit
switch
1 = Left/negative limit switch active

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

Bm indicates if the left/negative pin is currently active. When Bm is set to 1, the historical left limit
flag (Bl) is set to 1.

The left/negative software travel limit may be disabled by being assigned as a general-purpose input
using the EIGN(3) command or as an output using the OUT(3)= command. To re-enable the left/negative
hardware travel limit, issue the EILN command.

EXAMPLE:
IF Bm

PRINT("LEFT LIMIT PRESENTLY ACTIVE")
ELSEIF Bl

PRINT("LEFT LIMIT PREVIOUSLY CONTACTED")
ELSE

PRINT("LEFT LIMIT NEVER REACHED")
ENDIF

Part 2: Commands: Bm

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 321 of 969

RELATED COMMANDS:
R B(word,bit) Status Byte (see page 297)
R Bl Bit, Left Hardware Limit, Historical (see page 316)
R Bp Bit, Right Hardware Limit, Real-Time (see page 325)
R Br Bit, Right Hardware Limit, Historical (see page 329)
EIGN(...) Enable as Input for General-Use (see page 412)
EILN Enable Input as Limit Negative (see page 415)
R W(word) Report Specified Status Word (see page 833)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Bm

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 322 of 969

Bms
Bit, Left Software Limit, Real-Time

APPLICATION: System

DESCRIPTION: Left (negative) software limit state flag

EXECUTION: Real time, sampled each PID update

CONDITIONAL TO: SLD, SLM, SLE, SLN, motor actual position (RPA)

LIMITATIONS: N/A

READ/REPORT: RBms

RB(1,15)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Binary bit

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0 = Software left/negative limit switch not active, or pin not assigned
as a limit switch
1 = Software left/negative limit switch active

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

Bms indicates if the left/negative software limit is currently active. The software limits are an
indication that the motor's actual position has exceeded the set range. When Bms is set to 1, the
historical left limit flag (Bls) is set to 1.

The left/negative software limit position can be set through the SLN command. The left and right
software-limit functionality can be enabled and disabled with the SLE and SLD commands, respectively.

EXAMPLE:
IF Bms

PRINT("SOFTWARE LEFT LIMIT PRESENTLY ACTIVE")
ELSEIF Bls

PRINT("SOFTWARE LEFT LIMIT PREVIOUSLY CONTACTED")
ELSE

PRINT("SOFTWARE LEFT LIMIT NEVER REACHED")
ENDIF

Part 2: Commands: Bms

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 323 of 969

RELATED COMMANDS:
R B(word,bit) Status Byte (see page 297)
R Bls Bit, Left Software Limit, Historical (see page 318)
R Bps Bit, Right Software Limit, Real-Time (see page 327)
R Brs Bit, Right Software Limit, Historical (see page 341)
FSA(cause,action) Fault Stop Action (see page 465)
SLD Software Limits, Disable (see page 740)
SLE Software Limits, Enable (see page 742)
R SLM(mode) Software Limit Mode (see page 748)
R SLN=formula Software Limit, Negative (see page 750)
R W(word) Report Specified Status Word (see page 833)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Bms

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 324 of 969

Bo
Bit, Motor OFF

APPLICATION: System

DESCRIPTION: Motor OFF state

EXECUTION: Immediate

CONDITIONAL TO: Motor is off

LIMITATIONS: N/A

READ/REPORT: RBo

RB(0,1)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Binary flag

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 1 = Motor is off
0 = Motor is on

DEFAULT VALUE: 1

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The Bo bit represents the SmartMotor™ drive stage state. When Bo is 0, the drive stage is on; when Bo
is 1, the drive stage is off.

Bo is set to 1 for any of these conditions:
l The motor has been powered on but no command has activated the drive stage

l The Z command is used to reset the motor

l The OFF command is issued or triggered by a motor fault

EXAMPLE:
C1 'Subroutine C1
IF Bo==1 'If Bo (motor off) is true

PRINT("MOTOR DRIVE IS OFF",#13)
ENDIF
RETURN

RELATED COMMANDS:

G Start Motion (GO) (see page 473)
OFF Off (Drive Stage Power) (see page 636)
Z Total CPU Reset (see page 846)

Part 2: Commands: Bo

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 325 of 969

Bp
Bit, Right Hardware Limit, Real-Time

APPLICATION: System

DESCRIPTION: Right/positive hardware limit state

EXECUTION: Sampled each PID update

CONDITIONAL TO: EIGN(2), OUT(2)=, EILP

LIMITATIONS: N/A

READ/REPORT: RBp

RB(0,14)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Binary bit

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0= Right/positive limit switch not active, or pin not assigned as a limit
switch
1= Right/positive limit switch is active

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

Bp indicates if the right/positive pin is active. When Bp is set to 1, the historical right limit flag (Br) is
set to 1.

The right/positive software travel limit may be disabled by being assigned as a general-purpose input
using the EIGN(2) command or as an output using the OUT(2)= command. To re-enable the
right/positive software travel limit, issue the EILP command.

EXAMPLE:
IF Br

PRINT("RIGHT LIMIT PRESENTLY ACTIVE")
ELSEIF Bp

PRINT("RIGHT LIMIT PREVIOUSLY CONTACTED")
ELSE

PRINT("RIGHT LIMIT NEVER REACHED")
ENDIF

Part 2: Commands: Bp

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 326 of 969

RELATED COMMANDS:
R B(word,bit) Status Byte (see page 297)
R Bl Bit, Left Hardware Limit, Historical (see page 316)
R Bm Bit, Left Hardware Limit, Real-Time (see page 320)
R Br Bit, Right Hardware Limit, Historical (see page 329)
EIGN(...) Enable as Input for General-Use (see page 412)
EILP Enable Input as Limit Positive (see page 417)
R W(word) Report Specified Status Word (see page 833)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Bp

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 327 of 969

Bps
Bit, Right Software Limit, Real-Time

APPLICATION: System

DESCRIPTION: Right (positive) software limit state flag

EXECUTION: Real time, sampled each PID update

CONDITIONAL TO: SLD, SLM, SLE, SLP, motor actual position (RPA)

LIMITATIONS: N/A

READ/REPORT: RBps

RB(1,14)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Binary flag

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0= Right/positive limit switch not active, or pin not assigned as a limit
switch
1= Right/positive limit switch is active

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

Bps indicates if the right/positive software limit is currently active. The software limits are an
indication that the motor's actual position has exceeded the set range. When Bps is set to 1, the
historical right limit flag (Brs) is set to one.

The right/positive software limit position can be set through the SLP command. The left and right
software-limit functionality can be enabled and disabled with the SLE and SLD commands, respectively.

EXAMPLE:
IF Brs

PRINT("SOFTWARE RIGHT LIMIT PRESENTLY ACTIVE")
ELSEIF Bps

PRINT("SOFTWARE RIGHT LIMIT PREVIOUSLY CONTACTED")
ELSE

PRINT("SOFTWARE RIGHT LIMIT NEVER REACHED")
ENDIF

Part 2: Commands: Bps

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 328 of 969

RELATED COMMANDS:
R B(word,bit) Status Byte (see page 297)
R Bls Bit, Left Software Limit, Historical (see page 318)
R Bms Bit, Left Software Limit, Real-Time (see page 322)
R Brs Bit, Right Software Limit, Historical (see page 341)
FSA(cause,action) Fault Stop Action (see page 465)
SLD Software Limits, Disable (see page 740)
SLE Software Limits, Enable (see page 742)
R SLM(mode) Software Limit Mode (see page 748)
R SLP=formula Software Limit, Positive (see page 752)
R W(word) Report Specified Status Word (see page 833)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Bps

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 329 of 969

Br
Bit, Right Hardware Limit, Historical

APPLICATION: System

DESCRIPTION: Hardware right travel limit

EXECUTION: Historical, sampled each PID update until latched

CONDITIONAL TO: EIGN(2), OUT(2)=, EILP

LIMITATIONS: N/A

READ/REPORT: RBr

RB(0,12)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Binary flag

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0= Right/positive limit has not been active
1= Right /positive limit has been active

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

Br is the historical right limit flag. If the right limit is found to be active during any servo sample, Br is
set to 1, and it remains at 1 until you reset it. In addition, depending on the value of the F function, the
motion will stop and the motor will either servo or turn the amplifier OFF. The historical right/positive
limit flag Br provides a latched limit value, in case the limit was already reached or exceeded but is not
currently active.

The real-time right/positive limit flag is Bp; it remains at 1 only while there is an active signal level on
user pin 2. When Bp is set to 1, Br is set to 1.

If the pin’s function is assigned as general-purpose I/O through the EIGN(2) command, neither Bp nor Br
will be affected by the pin state. Changing pin states will not elicit limit behavior from the motor. It will
be necessary to issue the EILP command to assign the pin’s function to being a limit switch for the pin
to again elicit limit behavior, including the setting of Br.

The Br bit is reset by any of these methods:
l Power reset

l Z command (total reset of software)

l Z(0,12) command

l ZS command

l Zr command

Part 2: Commands: Br

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 330 of 969

EXAMPLE:
IF Br

PRINT("RIGHT LIMIT PRESENTLY ACTIVE")
ELSEIF Bp

PRINT("RIGHT LIMIT PREVIOUSLY CONTACTED")
ELSE

PRINT("RIGHT LIMIT NEVER REACHED")
ENDIF

RELATED COMMANDS:
R B(word,bit) Status Byte (see page 297)
R Bl Bit, Left Hardware Limit, Historical (see page 316)
R Bm Bit, Left Hardware Limit, Real-Time (see page 320)
R Bp Bit, Right Hardware Limit, Real-Time (see page 325)
EIGN(...) Enable as Input for General-Use (see page 412)
EILP Enable Input as Limit Positive (see page 417)
R W(word) Report Specified Status Word (see page 833)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
Zr Reset Right Limit Flag, Historical (see page 855)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Br

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 331 of 969

BREAK
Break from CASE or WHILE Loop

APPLICATION: Program execution and flow control

DESCRIPTION: Causes immediate exit from a WHILE or SWITCH control block (loop)

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: For downloaded code only; cannot be used through a serial port!

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

BREAK is used by the WHILE...LOOP and SWITCH...ENDS flow-control blocks (loops). In both structures,
if BREAK is encountered, the program jumps out of that particular WHILE loop or SWITCH structure. If
the control blocks are nested, BREAK only exits the WHILE loop or SWITCH structure that it is
currently in.

The most common use of BREAK is to end each CASE of a SWITCH control structure. Without the
BREAK statement, the program would continue to execute into the next CASE, even if it is not true.

EXAMPLE:
SWITCH a

CASE 1
PRINT("Hiya!",#13)

CASE 2
PRINT("Lo there!",#13)
BREAK

CASE 3
 PRINT("Me here!",#13)

BREAK
DEFAULT

 PRINT("Urp!",#13)
BREAK

ENDS

If a=2, the SmartMotor™ will print "Lo there!" However, if a=1, the SmartMotor will print both "Hiya!"
and "Lo there!" There is no BREAK statement to stop the program from running into case 2.

Part 2: Commands: BREAK

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 332 of 969

The BREAK statement can always be replaced by a GOTO statement, and this is how it is actually
executed using the precompiled program location. BREAK has the advantage of not requiring a
statement label to define the program branch location and, therefore, not conforming to structured
programming methodology.

BREAK is not a valid terminal command; it is only valid from within a user program. If you want to be
able to "break out of" a control block by remote (terminal) commands, you will need to use GOTO# or
GOSUB# with appropriate statement labels. The next example illustrates this concept.

EXAMPLE:
a=1
WHILE a

PRINT("I am still here …",#13)
WAIT=12000
IF a==100

BREAK 'a=100 could be sent through serial command
ENDIF

LOOP
GOTO20

C10
PRINT("EXITED with a==100",#13)

END

C20
PRINT("EXITED with a<0",#13)

END

RELATED COMMANDS:

CASE formula Case Label for SWITCH Block (see page 360)
DEFAULT Default Case for SWITCH Structure (see page 388)
ENDS End SWITCH Structure (see page 443)
LOOP Loop Back to WHILE Formula (see page 553)
SWITCH formula Switch, Program Flow Control (see page 766)
WHILE formula While Condition Program Flow Control (see page 841)

Part 2: Commands: BREAK

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 333 of 969

BRKENG
Brake Engage

APPLICATION: Motion control

DESCRIPTION: Immediately engages the hardware brake

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: Hardware brake option is required

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: See BRKSRV on page 337

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: BRKENG:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

CAUTION: It is important to turn the servo off when the brake is engaged.
Otherwise, the motor could drive against the brake and overheat. When the
SmartMotor™ powers up or comes out of a soft reset, the brake control is set to
BRKSRV, by default, to automatically enforce this safety rule.

The SmartMotor™ may be purchased with optional, internal, zero-backlash brakes, which are used to
hold a load for safety purposes. They are fail-safe, magnetic-clutch, disk brakes. The default power-on
state is to disengage the brake when the drive stage is turned on. When power is lost, the brake
engages. The brake takes from 3 to 5 milliseconds to actuate or release.

When BRKENG is issued, the brake is de-energized, which allows the magnetic brake to lock the shaft in
place.

BRKENG terminates the brake control modes BRKSRV, BRKTRJ and BRKRLS.

NOTE: BRKENG is a manual override for the BRKSRV and BRKTRJ commands. When BRKENG is
used, you must subsequently issue a BRKSRV, BRKTRJ or BRKRLS command to resume shaft
movement.

EXAMPLE:
OFF 'Turn motor off
WHILE VA 'Wait for zero velocity
LOOP ' before
BRKENG ' applying the brake (shaft locked)

Part 2: Commands: BRKENG

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 334 of 969

RELATED COMMANDS:

BRKRLS Brake Release (see page 335)
BRKSRV Brake Servo, Engage When Not Servoing (see page 337)
BRKTRJ Brake Trajectory, Engage When No Active Trajectory (see page 339)
EOBK(IO) Enable Output, Brake Control (see page 445)

Part 2: Commands: BRKENG

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 335 of 969

BRKRLS
Brake Release

APPLICATION: Motion control

DESCRIPTION: Immediately release hardware brake

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: Hardware brake option is required

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: See BRKSRV on page 337

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: BRKRLS:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

CAUTION: It is important to turn the servo off when the brake is engaged.
Otherwise, the motor could drive against the brake and overheat. When the
SmartMotor™ powers up or comes out of a soft reset, the brake control is set to
BRKSRV, by default, to automatically enforce this safety rule.

The SmartMotor™ may be purchased with optional, internal, zero-backlash brakes, which are used to
hold a load for safety purposes. They are fail-safe, magnetic-clutch, disk brakes. The default power-on
state is to disengage the brake when the drive stage is turned on. When power is lost, the brake
engages. The brake takes from 3 to 5 milliseconds to actuate or release.

When BRKRLS is issued, the brake is energized (disengaged), which allows full shaft movement.

BRKRLS terminates the brake control modes BRKSRV, BRKTRJ and BRKENG.

To release MTB mode even if no brake is installed, manually "freewheel" the motor by issuing a BRKRLS
command and then an OFF command (in that order). Those two commands do not need to be in
immediate sequence—i.e., other commands, except MTB, can be between them. For details on MTB
mode, see MTB on page 622.

NOTE: To ensure the motor remains in “freewheel” state, issue the FSA command (with action 1,
servo off / freewheel) before issuing the BRKRLS OFF command sequence. For details, see FSA
(cause,action) on page 465.

Part 2: Commands: BRKRLS

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 336 of 969

EXAMPLE:
BRKENG 'Assuming motion has stopped
OFF ' or almost stopped
WAIT=1000
VT=0 'Set buffered velocity
ADT=0 'Set buffered accel/decel
MP 'Set buffered mode
PT=PA 'Set Target position to current position
G 'Begin servo at current position
BRKRLS 'Release (disengage brake)

EXAMPLE: (Shows use of "freewheel")

PT=PA 'Set Target position to current position
G 'Holds position
OFF 'Drive stage off, but MTB (dynamic braking) active
G 'Holds again
BRKRLS 'No change seen yet
OFF 'Now motor freewheels
G 'Motor holds in place again
OFF 'Motor freewheels
MTB 'Motor has dynamic braking
G 'Motor holds position
OFF 'Motor off but WITH dynamic braking
BRKRLS 'No change seen yet
G 'Motor holds position
OFF 'Motor freewheels
G 'Motor holds position
OFF 'Motor freewheels
MTB 'Returns back to default of dynamic braking when OFF is issued

RELATED COMMANDS:

BRKENG Brake Engage (see page 333)
BRKSRV Brake Servo, Engage When Not Servoing (see page 337)
BRKTRJ Brake Trajectory, Engage When No Active Trajectory (see page 339)
EOBK(IO) Enable Output, Brake Control (see page 445)
FSA(cause,action) Fault Stop Action (see page 465)
MTB Mode Torque Brake (see page 622)
OFF Off (Drive Stage Power) (see page 636)

Part 2: Commands: BRKRLS

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 337 of 969

BRKSRV
Brake Servo, Engage When Not Servoing

APPLICATION: Motion control

DESCRIPTION: Release hardware brake while motor is on;
engage hardware brake while motor is off

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: Hardware brake option is required

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: This is the default brake command at power up

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: BRKSRV:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

CAUTION: It is important to turn the servo off when the brake is engaged.
Otherwise, the motor could drive against the brake and overheat. When the
SmartMotor™ powers up or comes out of a soft reset, the brake control is set to
BRKSRV, by default, to automatically enforce this safety rule.

The SmartMotor™ may be purchased with optional, internal, zero-backlash brakes, which are used to
hold a load for safety purposes. They are fail-safe, magnetic-clutch, disk brakes. The default power-on
state is to disengage the brake when the drive stage is turned on. When power is lost, the brake
engages. The brake takes from 3 to 5 milliseconds to actuate or release.

BRKSRV terminates the brake control modes BRKRLS, BRKTRJ and BRKENG.

NOTE: A position error will terminate both the trajectory in progress state and servo on state. In
this instance, the brake would then be asserted automatically.

EXAMPLE:
BRKSRV 'Set brake mode assuming it is safe
MP 'Set buffered mode
ADT=100 'Set buffered accel/decel
VT=100000 'Set buffered maximum velocity
PT=1000 'Set target
G 'Servo on, brake release, go to target

Part 2: Commands: BRKSRV

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 338 of 969

RELATED COMMANDS:

BRKENG Brake Engage (see page 333)
BRKRLS Brake Release (see page 335)
BRKTRJ Brake Trajectory, Engage When No Active Trajectory (see page 339)
EOBK(IO) Enable Output, Brake Control (see page 445)

Part 2: Commands: BRKSRV

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 339 of 969

BRKTRJ
Brake Trajectory, Engage When No Active Trajectory

APPLICATION: Motion control

DESCRIPTION: Release hardware brake while a trajectory is in progress; engage hard-
ware brake while no trajectory is in progress

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: Hardware brake option is required

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: See BRKSRV on page 337

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: BRKTRJ:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The SmartMotor™ may be purchased with optional, internal, zero-backlash brakes, which are used to
hold a load for safety purposes. They are fail-safe, magnetic-clutch, disk brakes. The default power-on
state is to disengage the brake when the drive stage is turned on. When power is lost, the brake
engages. The brake takes from 3 to 5 milliseconds to actuate or release.

BRKTRJ automatically coordinates movement and brake application. When a trajectory is started by a G
command, the brake is released. When the trajectory completes, the brake is engaged and the servo is
simultaneously turned off. In this mode, and whenever the motor is not performing a trajectory, the
brake is automatically engaged and the servo is turned off for any reason that clears the Bt (Busy
Trajectory) bit.

As a result, any non-trajectory mode, like Torque mode, will not result in motion because the brake will
be engaged and the servo will be off. Because the motor-off flag Bo is 0 (false), this behavior could be
confusing to a user who is unaware of the function of BRKTRJ. However, from an operation/control
perspective, the motor has not changed modes to OFF, which would be coincidental with Bo set to 1.
When running in Torque mode or some other non-trajectory mode, it is more appropriate to use
BRKSRV. For details, see BRKSRV on page 337.

BRKTRJ terminates the brake control modes BRKRLS, BRKENG and BRKSRV.

BRKTRJ immediately resets the trajectory flag to zero when the trajectory generator declares the
trajectory has completed. At that instant, the BRKTRJ will engage (de-energize) the brake.

Part 2: Commands: BRKTRJ

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 340 of 969

EXAMPLE:
BRKTRJ 'Set brake mode to respond to Bt bit
MP 'Set buffered mode
ADT=100 'Set buffered accel/decel
VT=100000 'Set buffered maximum velocity
C1 'Program statement label
PT=1000 'Set buffered target position
G 'Servo on, start trajectory
'The brake will automatically be energized and released
TWAIT 'Wait for trajectory to end,

' now brake will be on and servo off
WAIT=1000 'Brake on for ~one second
PT=0 'Set new buffered target position
G 'Servo on, brake off, trajectory
WAIT=1000
GOTO1 'Effective loop forever

NOTE: A position error will terminate the trajectory-in-progress state. In this case, the brake would
then be asserted.

When in BRKTRJ mode, the brake will click on at the beginning of each move and click off at the end of
each move. The clicking sound is normal and indicates proper operation.

RELATED COMMANDS:

BRKENG Brake Engage (see page 333)
BRKRLS Brake Release (see page 335)
BRKSRV Brake Servo, Engage When Not Servoing (see page 337)
EOBK(IO) Enable Output, Brake Control (see page 445)

Part 2: Commands: BRKTRJ

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 341 of 969

Brs
Bit, Right Software Limit, Historical

APPLICATION: System

DESCRIPTION: Software right travel limit

EXECUTION: Historical, sampled each PID update until latched

CONDITIONAL TO: SLD, SLM, SLE, SLP, motor actual position (RPA)

LIMITATIONS: N/A

READ/REPORT: RBrs

RB(1,12)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Binary flag

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0= Right/positive limit has not been active
1= Right /positive limit has been active

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

Brs is the historical software right-limit flag. Brs provides a latched value in case the software limit
was already reached or exceeded but is not currently active.

The software limits are an indication that the motor's actual position has exceeded the set range. If the
software right limit is found to be active during any servo sample, Brs is set to 1 and remains 1 until
you reset it. In addition, the motion will stop, and the motor will either servo in place or turn off the
amplifier, depending on the value of the SLM and/or FSA function.

The right/positive software limit position can be set through the SLP command. The left and right
software-limit functionality can be enabled and disabled with the SLE and SLD commands, respectively.

The real-time software right/positive limit flag is Bps, which only remains set to 1 while the motor is
past the software limit. When Bps is set to 1, Brs is set to 1.

The Brs bit is reset by any of these methods:
l Power reset

l Z command (total reset of software)

l Z(1,12) command

l ZS command

l Zrs command

Part 2: Commands: Brs

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 342 of 969

EXAMPLE:
IF Brs

PRINT("SOFTWARE RIGHT LIMIT PRESENTLY ACTIVE")
ELSEIF Bps

PRINT("SOFTWARE RIGHT LIMIT PREVIOUSLY CONTACTED")
ELSE

PRINT("SOFTWARE RIGHT LIMIT NEVER REACHED")
ENDIF

RELATED COMMANDS:
R B(word,bit) Status Byte (see page 297)
R Bls Bit, Left Software Limit, Historical (see page 318)
R Bms Bit, Left Software Limit, Real-Time (see page 322)
R Bps Bit, Right Software Limit, Real-Time (see page 327)
FSA(cause,action) Fault Stop Action (see page 465)
SLD Software Limits, Disable (see page 740)
SLE Software Limits, Enable (see page 742)
R SLM(mode) Software Limit Mode (see page 748)
R SLP=formula Software Limit, Positive (see page 752)
R W(word) Report Specified Status Word (see page 833)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
Zrs Reset Right Software Limit Flag, Historical (see page 856)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Brs

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 343 of 969

Bs
Bit, Syntax Error

APPLICATION: System

DESCRIPTION: Command syntax error occurred state

EXECUTION: Immediate

CONDITIONAL TO: Syntax error found while executing commands

LIMITATIONS: N/A

READ/REPORT: RBs

RB(2,14)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Binary flag

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0 = Syntax error has not occurred
1 = Syntax error has occurred

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

If a syntax error is encountered in either a serial command or user program, the Bs flag is set to 1. This
flag only indicates that a syntax error was encountered. The most common syntax errors are
misspellings of commands, but the improper use of variables is also flagged. For example, trying to
access the array element aw[20000] will produce a syntax error. The command that contains the syntax
error is ignored.

The Bs bit is reset by any of these methods:
l Power reset

l Z command (total reset of software)

l Z(2,14) command

l ZS command

l Zs command

EXAMPLE:

Suppose the host should have transmitted ADT=100 but actually transmitted ADT=L00 due to noise in
transmission. Bs would be set.

IF Bs
PRINT("Syntax Error",#13)

ENDIF

Part 2: Commands: Bs

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 344 of 969

RELATED COMMANDS:
R ERRC Error Code, Command (see page 451)
R ERRW Communication Channel of Most Recent Command Error (see page 453)
Z(word,bit) Reset Specified Status Bit (see page 848)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Bs

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 345 of 969

Bt
Bit, Trajectory In Progress

APPLICATION: System

DESCRIPTION: Trajectory in progress state flag

EXECUTION: Updated each PID sample

CONDITIONAL TO: Trajectory in progress

LIMITATIONS: N/A

READ/REPORT: RBt

RB(0,2)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Binary flag

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0 = No trajectory in progress
1 = Trajectory in progress

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The flag Bt is set to 1 when the motor performs a calculated trajectory path from one point to another.
After the trajectory generator has requested the final target position, the Bt flag is reset to zero. At
this point, the PID positioning control takes over the motion — this means the motor shaft may still be
moving due to mechanical settling.

Mode Torque (MT) will set the Bt bit to 1 only when the torque slope (TS) is active. When the torque
reaches a constant value, the Bt will be 0.

Mode Velocity (MV) will maintain the Bt bit to 1 regardless of commanded velocity or acceleration,
even they are set to zero.

Mode Follow (MFR) and Mode Step (MSR) will maintain the Bt bit to 1 even if there is no change to
incoming counts.

If a relative or absolute move is commanded in Mode Position (MP), and there is no (zero) commanded
acceleration or velocity, the Bt bit will be set to 1 and the motor shaft will not move. In other words, if
ADT=0 and VT=0, then the motor shaft will not move, but the Bt bit will show a trajectory in progress.

EXAMPLE:
WHILE Bt 'While trajectory in progress
LOOP
WHILE VA 'While still settling or while velocity not zero
LOOP
OFF 'Motor off
BRKENG 'Brake engage

Part 2: Commands: Bt

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 346 of 969

EXAMPLE:
MP 'Buffer a position move request
ADT=10
VT=440000
PT=10000
G 'Start the first buffered move
WHILE Bt 'Wait for first trajectory to be done
LOOP 'NOTE: TWAIT could have been used!
ADT=20 'Buffer another move
VT=-222000
PT=20000
G 'Now begin the second move

EXAMPLE: (Routine changes speed on digital input)

EIGN(W,0) 'Disable hardware limit IO
KD=10010 'Changing KD value in tuning
F 'Accept new KD value
O=0 'Reset origin
ADT=100 'Set maximum accel/decel
VT=10000 'Set maximum velocity
PT=40000 'Set final position
MP 'Set Position mode
G 'Start motion
WHILE Bt 'Loop while motion continues
 IF IN(0)==0 'If input is low
 IF VT==10000 'Check VT so change happens once
 VT=12000 'Set new velocity
 G 'Initiate new velocity
 ENDIF
 ENDIF
LOOP 'Loop back to WHILE
END

RELATED COMMANDS:

BRKTRJ Brake Trajectory, Engage When No Active Trajectory (see page 339)
G Start Motion (GO) (see page 473)
OFF Off (Drive Stage Power) (see page 636)
X Decelerate to Stop (see page 844)

Part 2: Commands: Bt

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 347 of 969

Bv
Bit, Velocity Limit

APPLICATION: System

DESCRIPTION: Velocity limit reached

EXECUTION: Historical, latched by PID sample

CONDITIONAL TO: VL=

LIMITATIONS: N/A

READ/REPORT: RBv

RB(0,7)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Binary flag

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0= Velocity limit not reached
1= Velocity limit reached

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

Bv reports the status of the velocity limit fault. It returns a 1 if the velocity limit was reached or a 0 if
not. It is reported by the RBv command. The equivalent reporting PRINT() command is PRINT(Bv,#13).

When this bit is indicated, the motor has exceeded the speed set in the VL command. The motor will
stop according to the fault action. This bit must be cleared to resume motion.

The Bv bit is reset by any of these methods:
l Power reset

l Z command (total reset of software)

l Z(0,7) command

l ZS command

l Zv command

EXAMPLE:
C1 'Subroutine C1
IF Bv==1 'If Bv (Velocity Limit) is true

PRINT("VELOCITY LIMIT EXCEEDED",#13)
ENDIF
RETURN

Part 2: Commands: Bv

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 348 of 969

RELATED COMMANDS:
R B(word,bit) Status Byte (see page 297)
R VL=formula Velocity Limit (see page 818)
R W(word) Report Specified Status Word (see page 833)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
ZS Global Reset System State Flag (see page 858)
Zv Reset Velocity Limit Fault (see page 860)

Part 2: Commands: Bv

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 349 of 969

Bw
Bit, Wrapped Encoder Position

APPLICATION: System

DESCRIPTION: Encoder overflow or underflow occurred

EXECUTION: Historical, latched by PID sample

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RBw

RB(3,3)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Binary flag

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0= No encoder wrap around occurred
1= Encoder wrap around occurred by position mode move

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

If Bw is 1, it indicates that the encoder position has exceeded or "wrapped" beyond the maximum value
for the 32-bit position register. Specifically, the position has gone outside of the range -2147483648
to 2147483647.

This does not mean that the SmartMotor™ has lost its position information — it is still tracking its
position.

The Bw bit can be set during any type of motion, it is not a fault and will not stop motion.

The Bw bit is reset by any of these methods:
l Power reset

l Z command (total reset of software)

l Z(3,3) command

l ZS command

l Zw command

EXAMPLE: (Test for wraparound and then reset flag)

IF Bw 'Test flag
PRINT("Wraparound Occurred")
Zw 'Reset flag

ENDIF

Part 2: Commands: Bw

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 350 of 969

RELATED COMMANDS:
R B(word,bit) Status Byte (see page 297)
R W(word) Report Specified Status Word (see page 833)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
ZS Global Reset System State Flag (see page 858)
Zw Reset Encoder Wrap Status Flag (see page 861)

Part 2: Commands: Bw

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 351 of 969

Bx(enc)
Bit, Index Input, Real-Time

APPLICATION: System

DESCRIPTION: Index input state

EXECUTION: Updated each PID sample

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RBx(enc)

RBx(0), RB(1,8)

RBx(1), RB(1,9)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Binary flag

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0 = Index capture input is not in contact (low)
1 = Index capture input is in contact (high)

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

Bx(enc) indicates the real-time state of the index input level. The Bx bit is set to 1 only while the motor
is sitting on the index marker. Note that the index marker is only one encoder count wide. Therefore,
this function is mainly used to verify the exact position of the index. For other uses, it is more efficient
to use the functions like Bi and I.

The value of enc determines which encoder is being referred to:
l Bx(0) specifies the internal encoder

l Bx(1) specifies the external encoder

Part 2: Commands: Bx(enc)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 352 of 969

EXAMPLE: (Fast Index Find, Report Bx)

MP 'Set buffered velocity mode
ADT=1000 'Set fast accel/decel
VT=4000000 'Set fast velocity
PRT=RES*1.1 'Set relative distance just beyond one shaft turn
Ai(0) 'Clear and arm index capture
O=0 'Force change to position register
G 'Start fast move
TWAIT 'Wait till end of trajectory
PT=I(0) 'Go back to index
G 'Start motion
TWAIT 'Wait until end of trajectory
O=0 'Set origin at index
IF Bx(0)

PRINT("On Index Pulse",#13)
ENDIF

RELATED COMMANDS:
R Bi(enc) Bit, Index Capture, Rising (see page 309)
R I(enc) Index, Rising-Edge Position (see page 502)

Part 2: Commands: Bx(enc)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 353 of 969

C{number}
Command Label

APPLICATION: Program execution and flow control

DESCRIPTION: Program statement label

EXECUTION: N/A

CONDITIONAL TO: N/A

LIMITATIONS: Labels C0…C999 are permitted

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

C{number} is a statement label, where "number" is a value between 0 and 999. Statement labels provide
the internal addressing required to support the GOSUB{number} and GOTO{number} language
commands. For example, GOTO1 directs the program to label C1, whereas GOSUB37 directs the
program to the subroutine that starts at label C37. You can also use labels to simply enhance program
clarity. Statement labels may be placed anywhere within a program except in the middle of an
expression.

NOTE: Program labels work by using a jump table in the header of the compiled program. The header
contains the location of every label from 0 up to the highest label value used.

EXAMPLE: (consider these two programs)

C0
END

and
C999
END

Both programs behave exactly the same. However, the first compiled program (C0...END) will be much
smaller than the second (C999...END) because the second contains all the label locations from 0-999.

The program header is read whenever the SmartMotor™ powers up or is reset. This means that the
SmartMotor knows how to jump to any label location, even if the program has never been run, and start
executing the program from there. This is a common means of making a single program with several
routines that can be invoked on demand from a host.

Part 2: Commands: C{number}

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 354 of 969

EXAMPLE:
END
C0

PRINT("Routine 0",#13)
END

C1
PRINT("Routine 1",#13)

END
C2

PRINT("Routine 2",#13)
END

To run routine 1, the host simply issues GOTO1 to the SmartMotor. If the host issues GOTO2, the
motor runs routine 2. You can use a similar technique to allow the host to control where the program
starts.

Using GOTOnnn to jump to a location within a SWITCH block may be syntactically valid. However, it can
yield unexpected runtime program execution when a CASE number is encountered.

RELATED COMMANDS:

GOSUB(label) Subroutine Call (see page 480)
GOTO(label) Branch Program Flow to a Label (see page 482)

Part 2: Commands: C{number}

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 355 of 969

CADDR=formula
CAN Address

APPLICATION: Communications control; supports the DS2020 Combitronic system

DESCRIPTION: Set and read the CAN address (also used for DeviceNet and
PROFIBUS); it can be different from the serial address. Value is
retained in EEPROM between power cycles.

EXECUTION: Requires reboot of motor for change to take effect

CONDITIONAL TO: N/A

LIMITATIONS: Requires reboot of motor for change to take effect

READ/REPORT: PRINT(CADDR), <variable>=CADDR,

RCADDR

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: 1 to 127, -1 and 255 available for SL17 motor only

TYPICAL VALUES: 1 to 127

DEFAULT VALUE: 63 (factory EEPROM setting)

FIRMWARE VERSION: 5.x (D/M); 6.4.2.x (D); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The CADDR command is used to set and read the CAN address of the motor. The CAN address can be
different from the serial address. The PROFIBUS firmware will also use this to set/read the PROFIBUS
address.

The SmartMotor supports different protocols over the optional CAN port. CANopen and DeviceNet are
popular industrial networks that use CAN. If a controller is communicating to a group of SmartMotors
as follower devices under either of these standard protocols, the Combitronic protocol can still
function, and it will not be detected by the CANopen or DeviceNet controller.

NOTE: To operate properly, the CAN network must have all devices set to the same baud rate.

The next command sets up and supports the CAN port of the motor:

CADDR=formula

where formula may be from 1 to 127. The setting is stored in the EEPROM, but you must reboot the
motor to activate the setting.

CBAUD=formula

where formula may be one of these: 1000000, 800000, 500000, 250000, 125000, 50000 or 20000.

Part 2: Commands: CADDR=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 356 of 969

To set the SL17 SmartMotor to "auto address" (automatically assign the CAN address), use this
CADDR command:

CADDR=-1

(CADDR=255 has the same effect.) Note that this setting is for the SL17 SmartMotor only; if used with
any other motor, it will have no effect.

To read the CAN address, use this CADDR command:

var=CADDR

where var is any variable. Then you can use the PRINT(var) command to print the CAN address to the
Terminal window.

RCADDR also reports the current value of the CAN ID either set from EEPROM as static address 1-
127, or from auto-address 1-127. When the CADDR=formula command is issued, it will cause RCADDR
to report the new address even through a reboot is required to actually activate and use the new
address. If CADDR=-1 or 255 (auto-address for the SL17 SmartMotor only), then 255 is reported until
a reboot. Then RCADDR reports a default address of 120. After an auto-address is assigned by a
controller, RCADDR reports the address that the motor was assigned, i.e., 1, 2, 3..., etc.

To set the CAN address to the serial address on all motors, use this CADDR command:

<SerialMotorNumber>CADDR=<address>

For example, 3CADDR=10 sets serial motor 3's CAN address to 10; 0CADDR=ADDR would globally set
every serial motor's CAN address to its serial address.

NOTE: SmartMotor commands like 0CADDR=... or 0ADDR=... with a leading number really send a
corresponding address byte (i.e., "0", which is hex 80 or decimal 128). This can be seen by viewing
the serial data with the Serial Data Analyzer ("sniffer") tool, which is available on the SMI software
View menu.

EXAMPLE: (Code sets CAN address to motor address and resets all motors. Motors should be
addressed on serial RS-232 chain first.)

NOTE: Issue these commands at serial port (SMI Terminal window) only. The "0" in front of these
commands will not be recognized by a user program.

0CADDR=ADDR 'Set if not same as motor address
0Z 'Reset all motors to enable CAN address

RELATED COMMANDS:
R ADDR=formula Address (for RS-232 and RS-485) (see page 261)
CANCTL(function,value) CAN Control (see page 359)
R CBAUD=formula CAN Baud Rate (see page 363)

Part 2: Commands: CADDR=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 357 of 969

CAN, CAN(arg)
CAN Bus Status

APPLICATION: Communications control

DESCRIPTION: Get CAN bus error or status information

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RCAN, RCAN(arg)

See the detailed description for values of arg

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: See the detailed description

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M) requires CAN option; 6.4.2.x (D)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The CAN command is used to get (read) an error or other status information about the CAN bus. The
user should not assume an error is indicated simply because a value greater than 0 is reported. Several
of the bits are for information only and do not indicate an error.

If an error condition exists, then status word 2, bit 4 will indicate so. A user program or a manual report
using RCAN provides further detail about the error condition after the CAN error status bit is indicated
in status word 2, bit 4. RCAN also indicates information about the homing operation.

The SmartMotor supports different protocols over the optional CAN port. CANopen and DeviceNet are
popular industrial networks that use CAN. If a controller is communicating to a group of SmartMotors
as follower devices under either of these standard protocols, the Combitronic protocol can still
function, and it will not be detected by the CANopen or DeviceNet controller.

NOTE: To operate properly, the CAN network must have all devices set to the same baud rate.

The next command sets up and supports the CAN port of the motor:

CADDR=formula

where formula may be from 1 to 127. The setting is stored in the EEPROM, but you must reboot the
motor to activate the setting.

CBAUD=formula

where formula may be one of these: 1000000, 800000, 500000, 250000, 125000, 50000 or 20000.

Specific features are based on the fieldbus network being used. See the corresponding SmartMotor
fieldbus guide for more details.

Part 2: Commands: CAN, CAN(arg)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 358 of 969

Homing commands (MH, HM_MTHD, etc.) rely on RCAN(3) to get feedback on the current state of the
homing process. Bit 13 (value 8192) indicates homing error. While bits 10 (value 1024) and 12 (value
4096) indicate complete.

For more details on SmartMotor homing operations, see the SmartMotor Homing Procedures and
Methods Application Note.

EXAMPLE:
C1 'Subroutine C1
IF CAN&16 'Test CAN word at value 16 (position 5)

PRINT("USER TRIED COMBITRONIC READ FROM BROADCAST ADDRESS",#13)
ENDIF
RETURN

RELATED COMMANDS:
R CADDR=formula CAN Address (see page 355)
CANCTL(function,value) CAN Control (see page 359)
R CBAUD=formula CAN Baud Rate (see page 363)

Part 2: Commands: CAN, CAN(arg)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 359 of 969

CANCTL(function,value)
CAN Control

APPLICATION: Communications control

DESCRIPTION: Sets the CAN attributes for industrial network protocols (CANopen,
DeviceNet, etc.)

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Input: CANCTL(function,value)
 function: >= 0
 value: -2147483648 to 2147483647

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M) requires CAN option; 6.4.2.x (D)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The CANCTL command is used to control CAN network features. Commands execute based on the
function argument to control CAN functions. For example:

l function = 1: Reset the CAN MAC and all errors. Resets the CANopen stack, PROFIBUS stack or
DeviceNet stack depending on firmware type. Value is ignored.

l function = 5: Set timeout for Combitronic. Value is in milliseconds; the default is 30.

Specific features are based on the fieldbus network being used. See the corresponding SmartMotor
fieldbus guide for more details.
For more details on SmartMotor homing operations, see the SmartMotor Homing Procedures and Meth-
ods Application Note.

EXAMPLE:
EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
CANCTL(5,100) 'Set Combitronic timeout to 100ms
END

RELATED COMMANDS:
R CADDR=formula CAN Address (see page 355)
R CAN, CAN(arg) CAN Bus Status (see page 357)
R CBAUD=formula CAN Baud Rate (see page 363)

Part 2: Commands: CANCTL(function,value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 360 of 969

CASE formula
Case Label for SWITCH Block

APPLICATION: Program execution and flow control

DESCRIPTION: CASE label for SWITCH program control block

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: Can only be executed from within user program

REPORT VALUE: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The CASE command provides a label for defining a specific block of code that is referred to from a
SWITCH formula.

The execution time is similar to the equivalent IF formula control block. Therefore, placing the most
likely CASE values at the top of the CASE list will yield faster program execution times.

At execution time, the program interpreter evaluates the SWITCH formula value and then tests the
CASE numbers for an equal value in the programmed order.

l If the SWITCH formula value does equal the CASE number, then program execution continues
with the command immediately after.

l If the SWITCH formula value does not equal the CASE number, then the next CASE statement is
evaluated.

l If the SWITCH formula value does not equal any CASE number, then the DEFAULT entry point is
used.

l If the SWITCH formula value does not equal any CASE number and there is no DEFAULT case,
then program execution passes through the SWITCH to the ENDS without performing any
commands.

If a BREAK is encountered, then program execution branches to the instruction or label after the ENDS
of the SWITCH control block. BREAK can be used to isolate CASEs. Without BREAK, the CASE number
syntax is transparent and program execution continues at the next instruction. That is, you will run into
the next CASE number code sequence.

Each SWITCH control block must have at least one CASE number defined plus one, and only one, ENDS
statement. SWITCH is not a valid terminal command — it is only valid within a user program.

Part 2: Commands: CASE formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 361 of 969

EXAMPLE:

Consider this code fragment:

SWITCH v
CASE 1

 PRINT(" v = 1 ",#13)
BREAK
CASE 2

 PRINT(" v = 2 ",#13)
BREAK
CASE 3

 PRINT(" v = -23 ",#13)
BREAK

DEFAULT
 PRINT("v IS NOT 1, 2 OR -23",#13)

BREAK
ENDS

The first line, SWITCH v, lets the SmartMotor™ know that it is checking the value of the variable v. Each
subsequent CASE begins the section of code that tells the SmartMotor what to do if v is equal to that
case.

EXAMPLE:
a=-3 'Assign a value
WHILE a<4

PRINT(#13,"a=",a," ")
SWITCH a 'Test the value

CASE 3
PRINT("MAX VALUE",#13)

BREAK
CASE -1 'Negative test values are valid
CASE -2 'Note no BREAK here
CASE -3

PRINT("NEGATIVE")
BREAK 'Note use of BREAK
CASE 0 'Zero test value is valid

PRINT("ZERO") 'Note order is random
DEFAULT 'The default case
PRINT("NO MATCH VALUE")

BREAK
ENDS 'Need not be numerical
a=a+1

LOOP
END

Part 2: Commands: CASE formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 362 of 969

Program output is:

a=-3 NEGATIVE
a=-2 NEGATIVE
a=-1 NEGATIVE
a=0 ZERO
a=1 NO MATCH VALUE
a=2 NO MATCH VALUE
a=3 MAX VALUE

RELATED COMMANDS:

BREAK Break from CASE or WHILE Loop (see page 331)
DEFAULT Default Case for SWITCH Structure (see page 388)
ENDS End SWITCH Structure (see page 443)
SWITCH formula Switch, Program Flow Control (see page 766)

Part 2: Commands: CASE formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 363 of 969

CBAUD=formula
CAN Baud Rate

APPLICATION: Communications control; supports the DS2020 Combitronic system

DESCRIPTION: Gets/sets the CAN baud rate (not used for PROFIBUS); value is
retained in EEPROM between power cycles

EXECUTION: Requires reboot of motor for change to take effect

CONDITIONAL TO: N/A

LIMITATIONS: Requires reboot of motor for change to take effect

READ/REPORT: RCBAUD

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Baud

RANGE OF VALUES: 20000, 50000, 125000, 250000, 500000, 800000,1000000

TYPICAL VALUES: 20000, 50000, 125000, 250000, 500000, 800000,1000000

DEFAULT VALUE: 125000 (Factory EEPROM setting)

FIRMWARE VERSION: 5.x (D/M); 6.4.2.x (D); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The CBAUD command is used to get (read) and set the CAN baud rate:
l =CBAUD

Get CAN baud rate.
l CBAUD=

Set CAN baud rate.

The SmartMotor supports different protocols over the optional CAN port. CANopen and DeviceNet are
popular industrial networks that use CAN. If a controller is communicating to a group of SmartMotors
as follower devices under either of these standard protocols, the Combitronic protocol can still
function, and it will not be detected by the CANopen or DeviceNet controller.

NOTE: To operate properly, the CAN network must have all devices set to the same baud rate.

The next command sets up and supports the CAN port of the motor:

CADDR=formula

where formula may be from 1 to 127. The setting is stored in the EEPROM, but you must reboot the
motor to activate the setting.

CBAUD=formula

where formula may be one of these: 1000000, 800000, 500000, 250000, 125000, 50000 or 20000.

NOTE: Unlike the CADDR command, the CBAUD value has no effect on PROFIBUS, where the baud
rate is auto-detected.

Part 2: Commands: CBAUD=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 364 of 969

EXAMPLE:
EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
CBAUD=1000000 'Set CAN network baud rate to 1,000,000 bps
END

RELATED COMMANDS:
R CADDR=formula CAN Address (see page 355)
R CAN, CAN(arg) CAN Bus Status (see page 357)
CANCTL(function,value) CAN Control (see page 359)

Part 2: Commands: CBAUD=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 365 of 969

CCHN(type,channel)
Close Communications Channel (RS-232 or RS-485)

APPLICATION: Communications control

DESCRIPTION: Close a communications channel

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Type= RS2, RS4
Channel = 0 or 1

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)
CCHN channel 1 requires: 5.x (D/M); 6.4.2.x (D)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

CCHN(type,channel) closes the specified communications channel, where "type" is the communications
mode, and "channel" is the COM port to close. This command flushes the serial port buffer — any
characters in the buffer will be lost.

For a D-style motor, the channel 0 COM port (COM0) is opened by default at power-up; that COM port
can only be RS-232 or RS-485, while channel 1 (COM1) can only be RS-485.

These are valid CCHN commands:

CCHN(RS2,0) 'Close the channel 0 RS-232 port
CCHN(RS4,1) 'Close the channel 1 RS-485 port

After power up or a Z reset command, channel 0 is opened as RS-232 by default.

For an M-style motor, only the channel 0 COM port can be opened. It is only RS-485 and is opened by
default at power-up.

These are valid CCHN commands:

CCHN(RS4,0) 'Close the channel 0 RS-485 port

After power up or a Z reset command, channel 0 is opened as RS-485 by default.

For systems using DMX, these CCHN commands are used to close a DMX channel:
l CCHN(DMX,1) for Class 5 and Class 6 D-style motors

l CCHN(DMX,0) for Class 5 and Class 6 M-style motors

Part 2: Commands: CCHN(type,channel)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 366 of 969

EXAMPLE:
EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
CCHN(RS2,0) 'Close main RS-232 communications port 0
END

RELATED COMMANDS:

OCHN(...) Open Channel (see page 632)
Z Total CPU Reset (see page 846)

Part 2: Commands: CCHN(type,channel)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 367 of 969

CHN(channel)
Communications Error Flag

APPLICATION: Communications control

DESCRIPTION: Get the communications error flags from the specified channel:

CHN(0): RS-232 communications error flag
CHN(1): RS-485 communications error flag

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RCHN(channel)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Set of four binary state flags

RANGE OF VALUES: Channel = 0 or 1

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The read-only function, CHN, holds binary-code, historical error information for serial channels 0 or 1
on the SmartMotor™, which are specified as:

l CHN(0): Channel 0 communications error flag

l CHN(1): Channel 1 communications error flag

The command gives the 5-bit status of either serial port channels 0 or 1:
l Bit 0 = 1: Receive buffer has overflowed on the specified channel

l Bit 1 = 1: Framing error occurred on the specified channel

l Bit 2 = 1: N/A

l Bit 3 = 1: Parity error occurred on the specified channel

l Bit 4 = 1: Timeout occurred in command mode on the specified channel

CHN is read only. It can be reported through RCHN. For example, if RCHN(0) returns an 8, it means that
a parity error was detected on channel 0; if RCHN(0) equals zero, no error has been detected since
opening channel 0.

Part 2: Commands: CHN(channel)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 368 of 969

EXAMPLE: (test individual flags)

IF CHN(0)&8
PRINT("HOST CHANNEL - parity error occurred")

ELSEIF CHN(0)&1
PRINT("HOST CHANNEL - buffer overflow")

ENDIF

EXAMPLE: (test all flags)

IF CHN(0)!=0
PRINT("SERIAL ERROR !!")

ENDIF

RELATED COMMANDS:

CCHN(type,channel) Close Communications Channel (RS-232 or RS-485) (see page 365)
OCHN(...) Open Channel (see page 632)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: CHN(channel)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 369 of 969

CLK=formula
Millisecond Clock

APPLICATION: System

DESCRIPTION: Value (in milliseconds) of the firmware system clock

EXECUTION: N/A

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RCLK

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Number

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: N/A

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: CLK:3=1234, a=CLK:3, RCLK:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

CLK is an independent, free-running, read/write counter. It is reset to zero on a hardware or software
reset, and it counts once per millisecond.

The user may assign a value to this counter at any time. The size of CLK is 32 bits (signed). At the value
2147483647, it will roll over to the value -2147483648 and continue counting up. The time required to
start from 0 and reach the roll-over value is 24.8 days.

EXAMPLE: The next example pauses for one second.

WAIT=1000 'Pause for one sec

EXAMPLE:

This example uses code within a WHILE loop that executes during the pause.

CLK=0 'Initialize clock
WHILE CLK<1000 'Loop one sec
LOOP

RELATED COMMANDS:

WAIT=formula Wait for Specified Time (see page 835)

Part 2: Commands: CLK=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 370 of 969

COMCTL(function,value)
Serial Communications Control

APPLICATION: Communications control

DESCRIPTION: Special configuration options for communications channels

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Input: COMCTL(function,value)
 function: >= 1
 value: See details in next table

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The COMCTL(function, value) command is used for serial communications control with the
DMX protocol. The next table provides details on the possible action settings, their corresponding
functions and allowed value settings.

'function' 'value' Comm.
protocol Description

1 1 to
512

DMX Set base DMX slot/channel; default is 1 at power-up.

2 1 to
102

DMX Set number of DMX slots/channels to accept; default is 1 at power-up.

3 1 to
512

DMX Sync on DMX slot/channel; default is 512 at power-up.

4 0 to
101

DMX Allows for the selection of the aw[] register where the DMX data
begins loading; default is 0 at power-up.

For more details on using the SmartMotor with the DMX protocol, see the Moog Animatics
SmartMotor™ DMX Guide.

Part 2: Commands: COMCTL(function,value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 371 of 969

EXAMPLE:
'Variables for DMX control:
b=1 'Set DMX base address Valid Address: 1 thru 512.
n=3 'Set number of DMX channels to use.
'NOTE: max that may be summed is 3 or 24 bit position unsigned int.
s=0 'First motor array variable index to use starting with aw[s].

'Configure DMX data usage and motor variable storage:
IF n>3 PRINT("n too large.",#13) END ENDIF

'Limit "n" based on a max of 3 bytes.
IF b>(513-n) PRINT("b too large.",#13) END ENDIF

'Limit "b" based on max data slot.
IF s>(102-n) PRINT("s too large.",#13) END ENDIF

'Limit "s" to max array value.
q=b+n-1 'Last data channel used (will be trigger when data received).
COMCTL(1,b) 'Set base DMX channel to value from CADDR.
COMCTL(2,n) 'Accept 1 DMX channel of data.
COMCTL(3,q) 'Status word 12 bit 2 will be set to 1 when

'channel "q" arrives.
COMCTL(4,s) 'Set start of array index storage (good for

'bypassing Cam mode dynamic array).
OCHN(DMX,1,N,250000,2,8,D) 'Open DMX channel: COM 1 (Class 5/6 D), no parity,

'250 kBd, 2 stop, 8 data, datamode.

RELATED COMMANDS:

OCHN(...) Open Channel (see page 632)

Part 2: Commands: COMCTL(function,value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 372 of 969

COS(value)
Cosine

APPLICATION: Math function

DESCRIPTION: Gets the cosine of the input value

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RCOS(value)

WRITE: N/A

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Degrees input

RANGE OF VALUES: Input in degrees (floating-point): 0.0 to 360.0 (larger values can be
used, but it is not recommended; user should keep range within mod-
ulo 360)

Output: +/- 1.0 (floating-point)

TYPICAL VALUES: Input in degrees (floating-point): 0.0 to 360.0 (larger values can be
used, but it is not recommended; user should keep range within mod-
ulo 360)

Output: +/- 1.0 (floating-point)

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

COS takes an input angle in degrees and returns a floating-point cosine:

af[1]=COS(arg)

where arg is in degrees, and may be an integer (i.e., a, aw[0]) or floating-point variable (i.e., af[0]).
Integer or floating-point constants may also be used (i.e., 23 or 23.7, respectively).

This command cannot have within the parenthesis: math operators, other parenthetical functions, or a
Combitronic request from another motor. For example, x=FABS(PA) is allowed, but x=FABS(PA:3) is not
allowed.

The result of this function is a floating-point type. If used in an equation, the operations in the equation
that are processed after this function are automatically promoted to a float. This is dependent on the
mathematical order of operations in the equation. As with other equations (e.g., x=a+b), the variable to
the left of "=" may be an integer variable to accept the result. However, the value will be truncated to
fit to that integer type. For example, the assignment "aw[0]=" will drop any fractional amount and
truncate the result to the range -32768 to 32767 (aw[0]=100.5 will report as 100, and aw[0]=40000.0
will report as -25536).

Part 2: Commands: COS(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 373 of 969

Although the floating-point variables and their standard binary operations conform to IEEE-754 double
precision, the floating-point square root and trigonometric functions only produce IEEE-754 single-
precision results. For more details, see Variables and Math on page 198.

EXAMPLE:
af[0]=COS(57.3) 'Set array variable = COS(57.3)
Raf[0] 'Report value of af[0] variable
RCOS(57.3) 'Report COS(57.3)
af[1]=42.3 '42.3 degrees
af[0]=COS(af[1]) 'Variables may be put in the parenthesis.
Raf[0]
END

Program output is:

0.540240287
0.540240287
0.739631056

RELATED COMMANDS:
R ACOS(value) Arccosine (see page 259)
R ASIN(value) Arcsine (see page 284)
R ATAN(value) Arctangent (see page 289)
R SIN(value) Sine (see page 738)
R TAN(value) Tangent (see page 775)

Part 2: Commands: COS(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 374 of 969

CP
Cam Pointer for Cam Table

APPLICATION: Motion control

DESCRIPTION: Reads the current cam pointer for the Cam table

EXECUTION: Immediate

CONDITIONAL TO: Cam mode active

LIMITATIONS: N/A

READ/REPORT: RCP

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Cam segments (not controller counts)

RANGE OF VALUES: 0-65536

TYPICAL VALUES: 0-750 (maximum storage capacity of data points in EEPROM)

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The CP command reads the current Cam pointer used by the Cam table. When running in Cam mode, the
trajectory interpolates between the points entered in the Cam table. These segments in between are
numbered starting from 0. For example, segment 0 has point 0 at the low end of the segment and point
1 at the high end.

Point 1
Segment 1

Point 0

Segment 0F
o

ll
o

w
e

r
P

o
si

ti
o

n

Input Counts

Note that CP reports the segment and not the controller input value to the Cam table. Segments are
typically many controller counts long. The length of segments can either be fixed or variable depending
on the initial configuration used when the table is created. In either case, the length of segments in
terms of controller counts is specified when writing the table.

The number of segments is primarily limited by the amount of storage available in the Cam table.

Part 2: Commands: CP

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 375 of 969

EXAMPLE:
EIGN(W,0)
ZS
MF0
O=0
CTE(1) 'Erase all cam tables
CTA(5,1000) 'Add cam table, 5 points, 1000 counts apart
CTW(0) '1st cam point
CTW(500)
CTW(4000)
CTW(2000)
CTW(0)
SRC(1) 'Use external encoder input
MCE(1) 'Spline cam table
MFMUL=1 'Numerator
MFDIV=1 'Denominator
MC 'Mode: Cam
G 'Go
WHILE CP<3 LOOP 'While we are below cam point 3, loop
OS(4) 'After cam point 3 is passed, turn on output 4
END

RELATED COMMANDS:

CTA(points,seglen[,location]) Cam Table Attribute (see page 376)
CTE(table) Cam Table Erase (see page 378)
R CTT Cam Table Total in EEPROM (see page 382)
CTW(pos[,seglen][,user]) Cam Table Write Data Points (see page 383)
MC Mode Cam (Electronic Camming) (see page 555)
MCE(arg) Mode Cam Enable () (see page 558)
MCW(table,point) Mode Cam Where (Start Point) (see page 562)

Part 2: Commands: CP

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 376 of 969

CTA(points,seglen[,location])
Cam Table Attribute

APPLICATION: Motion control

DESCRIPTION: Creates a new Cam table in memory: number of records, segment
length, memory area (volatile or nonvolatile)

EXECUTION: Immediate

CONDITIONAL TO: Any pre-existing tables in nonvolatile memory

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Input:
 points: 2-2147483647
 seglen: 0-65535
 location: 0, 1

TYPICAL VALUES: Input:
 points: 2-750
 seglen: 0-65535
 location: 0, 1

DEFAULT VALUE: See details.
Parameter 3 (location) is optional; if omitted, then location 1 is used.

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

This command adds a Cam table to memory with the supplied parameters. The table can use either
EEPROM memory (default) or the data variable space. After this table has been added, the CTW
command will write data points into it (CTW writes to the most recent table).

l Parameter 1 "points": Specifies the number of points in the table.

l Parameter 2 "Segment length": Specifies the controller encoder distance between each point. If
exp2 is set to 0, then the distance is specified per data record through the CTW command.

l Parameter 3 (Optional): Specifies if this is a table in user variables or EEPROM. By default, if
parameter 3 is omitted or set to 1, then EEPROM is chosen. Up to ten tables (numbered from 1
through 10) can exist in EEPROM location. The tables are added sequentially after any existing
tables in EEPROM.

If parameter 3 is 0, then the user array location is chosen (al[0] through al[50]). Only one table
can exist in the user variables.

Part 2: Commands: CTA(points,seglen[,location])

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 377 of 969

EXAMPLE: (Subroutine erases EEPROM tables and sets up Cam table)

C40
CTE(1) 'Erase all EEPROM tables
CTA(15,8000)
CTW(0) 'CP=0 {cam pointer or cam index pointer}
CTW(500) 'CP=1
CTW(4000) 'CP=2
CTW(20000)
CTW(45000)
CTW(50000)
CTW(60000)
CTW(65000)
CTW(55000,0,1) 'Turn on Bit 0 Status Word 8
CTW(46000) 'Will turn off at this point
CTW(45000,0,2) 'Turn on Bit 1 Status Word 8
CTW(8000) 'Will turn off at this point
CTW(4000)
CTW(500)
CTW(0) 'CP=14

RETURN

RELATED COMMANDS:
R CP Cam Pointer for Cam Table (see page 374)
CTE(table) Cam Table Erase (see page 378)
R CTT Cam Table Total in EEPROM (see page 382)
CTW(pos[,seglen][,user]) Cam Table Write Data Points (see page 383)
MC Mode Cam (Electronic Camming) (see page 555)
MCE(arg) Mode Cam Enable () (see page 558)
MCW(table,point) Mode Cam Where (Start Point) (see page 562)

Part 2: Commands: CTA(points,seglen[,location])

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 378 of 969

CTE(table)
Cam Table Erase

APPLICATION: Motion control

DESCRIPTION: Erase the Cam tables

EXECUTION: Immediate

CONDITIONAL TO: Existence of tables in nonvolatile memory

LIMITATIONS: Tables cannot be individually deleted

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Input:
 table: 1-10

TYPICAL VALUES: 1

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

CTE is used to erase the Cam tables. To erase all EEPROM tables, choose CTE(1).

By choosing a number higher than 1, lower table numbers can be preserved. If, for example, there were
three tables stored, CTE(2) would erase tables 2 and 3, but not table 1.

NOTE: The feature that allows partial erasure may not be available in future generations of motors.

CTE(0) is not defined; therefore, it will not change the table in RAM memory.

Part 2: Commands: CTE(table)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 379 of 969

EXAMPLE: (Subroutine erases EEPROM tables and sets up Cam table)

C40
CTE(1) 'Erase all EEPROM tables
CTA(15,8000)
CTW(0) 'CP=0 {cam pointer or cam index pointer}
CTW(500) 'CP=1
CTW(4000) 'CP=2
CTW(20000)
CTW(45000)
CTW(50000)
CTW(60000)
CTW(65000)
CTW(55000,0,1) 'Turn on Bit 0 Status Word 8
CTW(46000) 'Will turn off at this point
CTW(45000,0,2) 'Turn on Bit 1 Status Word 8
CTW(8000) 'Will turn off at this point
CTW(4000)
CTW(500)
CTW(0) 'CP=14

RETURN

RELATED COMMANDS:
R CP Cam Pointer for Cam Table (see page 374)
CTA(points,seglen[,location]) Cam Table Attribute (see page 376)
R CTT Cam Table Total in EEPROM (see page 382)
CTW(pos[,seglen][,user]) Cam Table Write Data Points (see page 383)
MC Mode Cam (Electronic Camming) (see page 555)
MCE(arg) Mode Cam Enable () (see page 558)
MCW(table,point) Mode Cam Where (Start Point) (see page 562)

Part 2: Commands: CTE(table)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 380 of 969

CTR(enc)
Counter, Encoder, Step and Direction

APPLICATION: Motion control

DESCRIPTION: Encoder counter reading: CTR(0)=internal encoder counter;
CTR(1)=external encoder counter

EXECUTION: Updated once each PID sample

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RCTR(enc)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Encoder counts

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: 0

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: RCTR(0):3, x=CTR(0):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The CTR command can be used as shown:
l The CTR(enc) command allows access to the internal or external encoders

l The CTR(0) command will always access the internal encoder

l The CTR(1) command will always access the external encoder

If the ENC0 or ENC1 commands are used, the CTR commands will still access the encoders as described
above.

Note that the O= or OSH= commands will affect the encoder selected by the ENC0 (internal encoder) or
ENC1 (external encoder) command. Therefore, if ENC0 is commanded, then O= and OSH= commands
will affect CTR(0). However, if ENC1 is commanded, then O= or OSH= will affect CTR(1) because the
external encoder is being used to measure the motor's position and to close the PID loop.

MF0 and MS0 will both set CTR(1) to zero in addition to selecting the type of input (quadrature or
step/direction, respectively). However, those commands will only have an effect in ENC0 mode (the
default mode at power-up).

Part 2: Commands: CTR(enc)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 381 of 969

EXAMPLE:
EIGN(W,0)
ZS
WHILE CTR(1)==0 LOOP 'Wait for motion on external encoder
PRINT("INPUT ENCODER HAS MOVED",#13)
END

RELATED COMMANDS:

ENC0 Encoder Zero (Close Loop on Internal Encoder) (see page 432)
ENC1 Encoder Zero (Close Loop on External Encoder) (see page 433)
MC Mode Cam (Electronic Camming) (see page 555)
MF0 Mode Follow, Zero External Counter (see page 578)
MFR Mode Follow Ratio (see page 600)
MS0 Mode Step, Zero External Counter (see page 616)
MSR Mode Step Ratio (see page 618)
O=formula, O(trj#)=formula Origin (see page 628)
OSH=formula, OSH(trj#)=formula Origin Shift (see page 642)

Part 2: Commands: CTR(enc)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 382 of 969

CTT
Cam Table Total in EEPROM

APPLICATION: Motion control

DESCRIPTION: Gets the total number of Cam tables in EEPROM

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RCTT

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: Output: 0-10

TYPICAL VALUES: Output: 0-10

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The CTT command reports the number of Cam tables stored in EEPROM. The table in RAM memory is
not included in that number.

EXAMPLE:
C1 'Cam check subroutine
IF CTT==0 'If no cam tables have been created

GOSUB2 'Go to cam creation subroutine
ENDIF
RETURN

C2 'Cam creation subroutine code here
RETURN

RELATED COMMANDS:
R CP Cam Pointer for Cam Table (see page 374)
CTA(points,seglen[,location]) Cam Table Attribute (see page 376)
CTE(table) Cam Table Erase (see page 378)
CTW(pos[,seglen][,user]) Cam Table Write Data Points (see page 383)
MC Mode Cam (Electronic Camming) (see page 555)
MCE(arg) Mode Cam Enable () (see page 558)
MCW(table,point) Mode Cam Where (Start Point) (see page 562)

Part 2: Commands: CTT

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 383 of 969

CTW(pos[,seglen][,user])
Cam Table Write Data Points

APPLICATION: Motion control

DESCRIPTION: Writes data points into Cam table

EXECUTION: Immediate

CONDITIONAL TO: CTA command must be called before CTW

LIMITATIONS: Data points (pos) cannot exceed a difference of -8388608 or
+8388607 from one to the next.

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Input:
 pos: -2147483648 to 2147483647
 seglen (segment length): 0 to 65535
 user (user bits): 0 to 255

TYPICAL VALUES: Input:
 pos: -2147483648 to 2147483647
 seglen (segment length): 0 to 65535
 user (user bits): 0 to 255

DEFAULT VALUE: See details.
The seglen (segment length) and user (user bits) parameters are
optional; if omitted, then segment length must have been defined in
CTA command; user bits assume 0 if omitted.

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The CTW command writes to the table addressed by the most recent CTA command. CTW writes to
either the tables stored in the EEPROM or the user array.

NOTE: Typically, the actual Cam table would not be part of the program that executes the mode. The
SMI software contains an Import Cam tool to facilitate Cam table generation.

l pos (position): The position coordinate of the motor for that data point. The first point in the
table should be set to 0 to avoid confusion. When the table is run, the currently commanded
motor position seamlessly becomes the starting point of the table. The first point of the table is
kept at 0, which makes it easier to see that all of the data points are relative to that starting
point.

Part 2: Commands: CTW(pos[,seglen][,user])

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 384 of 969

l seglen (segment length): If the Cam table was specified as variable length in the CTA command,
then parameter 2 is required for each data point. It is optional when using a fixed-length Cam
table (specified in the CTA command). This parameter represents the absolute distance of the
encoder source beginning from the start of the table. For reasons similar to pos, seglen should
also be 0 for the first data point specified.

If you wish to use the optional user parameter, then the seglen parameter must be used (set to
the default: 0).

l user (user bits): (Optional) Defines Cam user bits and Spline mode override. It is an 8-bit binary
value where:

l Bit 0-5: User may apply as desired to Cam status bits 0-5 of status word 8; the segment
between the previous point and this point will apply these bits.

l Bit 6: Factory reserved — user should leave as 0.

l Bit 7: When set to 0, there is no special override of Spline mode; when set to 1, the
segment between the previous point and this point are forced into linear interpolation. Bit
7 has no effect when MCE has chosen linear mode.

When loading Cam tables, it is important to note the table capacity. As mentioned previously:
l When a Cam table is stored in user array memory (al[0]-al[50]), 52 points can be stored as fixed-

length segments; 35 points are possible when variable-length segments are used.
l When Cam tables are written to EEPROM memory, significantly more data can be written:

l For fixed-length segments, there is space for at least 750 points.

l For variable length segments, at least 500 points can be written.

EXAMPLE: (Subroutine erases EEPROM tables and sets up Cam table)

C40
CTE(1) 'Erase all EEPROM tables
CTA(15,8000)
CTW(0) 'CP=0 {cam pointer or cam index pointer}
CTW(500) 'CP=1
CTW(4000) 'CP=2
CTW(20000)
CTW(45000)
CTW(50000)
CTW(60000)
CTW(65000)
CTW(55000,0,1) 'Turn on Bit 0 Status Word 8
CTW(46000) 'Will turn off at this point
CTW(45000,0,2) 'Turn on Bit 1 Status Word 8
CTW(8000) 'Will turn off at this point
CTW(4000)
CTW(500)
CTW(0) 'CP=14

RETURN

Part 2: Commands: CTW(pos[,seglen][,user])

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 385 of 969

RELATED COMMANDS:
R CP Cam Pointer for Cam Table (see page 374)
CTA(points,seglen[,location]) Cam Table Attribute (see page 376)
CTE(table) Cam Table Erase (see page 378)
R CTT Cam Table Total in EEPROM (see page 382)
MC Mode Cam (Electronic Camming) (see page 555)
MCE(arg) Mode Cam Enable () (see page 558)
MCW(table,point) Mode Cam Where (Start Point) (see page 562)

Part 2: Commands: CTW(pos[,seglen][,user])

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 386 of 969

DEA
Derivative Error, Actual

APPLICATION: Motion control

DESCRIPTION: Read actual derivative error value

EXECUTION: Updated once each PID sample

CONDITIONAL TO: Servo active (MP, MV, etc., but not MT mode)

LIMITATIONS: N/A

READ/REPORT: RDEA

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Units of position error per PID cycle *65536

RANGE OF VALUES: Output: -2147483648 to 2147483647

TYPICAL VALUES: N/A

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: RDEA:3, x=DEA:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The DEA command is used to read back the rate of change of the PID position error. This value is
averaged over four consecutive PID cycles and is in units of position error per PID cycle *65536. This
measured value is used in dE/dt limiting, which can be set through the DEL command.

DEL (Derivative Error Limit) provides the safest and quickest method to fault a motor on sudden
changes in load or detection of human interference.

The purpose of this limit is to act as a look-ahead on position error. Instead of just triggering on a raw
position error based on how far behind the motor may be in a move, the processor is looking at how
fast that position error changes.

dE/dt refers to the dynamic rate of change of position error. This results in an instant release of energy
and less chance of damage to equipment or injury to machine operator. Under normal servo control
position error limits, if the load collides against an object, the motor will not fault until the position
error limit is reached. As a result, applied current and torque will increase until that condition is met. By
adding an additional derivative limit on position error, the servo will fault within milliseconds of contact
with an object.

Part 2: Commands: DEA

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 387 of 969

EXAMPLE:
EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
MV 'Mode Velocity
VT=500000 'Velocity target
ADT=50 'Accel/Decel target
G 'Go
WHILE DEA <32768 & Bt LOOP
PRINT("Possible collision",#13)
END

RELATED COMMANDS:
R DEL=formula Derivative Error Limit (see page 390)
DELM(arg) Derivative Error Limit Mode (see page 392)

Part 2: Commands: DEA

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 388 of 969

DEFAULT
Default Case for SWITCH Structure

APPLICATION: Program execution and flow control

DESCRIPTION: Default for SWITCH program control block

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: Must reside within a SWITCH and ENDS structure

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

DEFAULT allows controlled code execution in a SWITCH structure for results that are not evaluated by
CASE. There can only be one DEFAULT statement per SWITCH control block.

DEFAULT is not a valid terminal command. It is only valid within a user program.

In the next example, DEFAULT is used when no CASE can be executed for the value of "v".

EXAMPLE:
SWITCH x

CASE 1
 PRINT(" x = 1 ",#13)

BREAK
CASE 2

 PRINT(" x = 2 ",#13)
BREAK
CASE 3

 PRINT(" x = -23 ",#13)
BREAK

DEFAULT
 PRINT("x IS NOT 1, 2 OR -23",#13)

BREAK
ENDS

The first line, SWITCH x, tells the SmartMotor™ that it is checking the value of the variable x. The
second line, CASE 1, begins the section of code that tells the SmartMotor what to do if x is equal to 1.

Part 2: Commands: DEFAULT

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 389 of 969

Similarly, the eighth line, CASE 3, tells what to do if x=3. Finally, DEFAULT tells what to do if none of
the CASEs match the value of x.

EXAMPLE:
a=20
WHILE a

SWITCH a-12
CASE -4 PRINT("-4 ") BREAK
CASE -3 PRINT("-3 ") BREAK
CASE -2 PRINT("-2 ") BREAK
CASE -1 PRINT("-1 ") BREAK
CASE 0 BREAK
CASE 1 PRINT("+1 ") BREAK
CASE 2 PRINT("+2 ") BREAK
CASE 3 PRINT("+3 ") BREAK
CASE 4 PRINT("+4 ") BREAK
DEFAULT PRINT("D ")

ENDS
a=a-1
LOOP

Program output is:

D D D D +4 +3 +2 +1 -1 -2 -3 -4 D D D D D D D

RELATED COMMANDS:

BREAK Break from CASE or WHILE Loop (see page 331)
CASE formula Case Label for SWITCH Block (see page 360)
ENDS End SWITCH Structure (see page 443)
SWITCH formula Switch, Program Flow Control (see page 766)

Part 2: Commands: DEFAULT

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 390 of 969

DEL=formula
Derivative Error Limit

APPLICATION: Motion control

DESCRIPTION: Get/set the derivative error limit

EXECUTION: Immediate

CONDITIONAL TO: Servo active (MP, MV, etc., not MT mode)

LIMITATIONS: N/A

READ/REPORT: RDEL

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Units of position error per PID cycle *65536

RANGE OF VALUES: Input: 0 to 2147483647

TYPICAL VALUES: N/A

DEFAULT VALUE: 2147483647

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: DEL:3=1234, a=DEL:3, RDEL:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The DEL command is used to get (read) or set the dE/dt fault limit:
l =DEL

Gets the setting for dE/dt fault limit
l DEL=frm

Sets the dE/dt fault limit

When the actual dE/dt reaches the value of this setting, then the dE/dt fault is tripped and the motor
will perform the fault reaction. The absolute value of the actual value is used so that both positive and
negative values of dE/dt will be compared against the DEL setting. Also, the DELM command can
modify the functionality to behave differently depending on direction of dE/dt relative to motor
direction.

DEL (Derivative Error Limit) provides the safest and quickest method to fault a motor on sudden
changes in load or detection of human interference.

The purpose of this limit is to act as a look-ahead on position error. Instead of just triggering on a raw
position error based on how far behind the motor may be in a move, the processor is looking at how
fast that position error changes.

dE/dt refers to the dynamic rate of change of position error. This results in an instant release of energy
and less chance of damage to equipment or injury to machine operator. Under normal servo control
position error limits, if the load collides against an object, the motor will not fault until the position
error limit is reached. As a result, applied current and torque will increase until that condition is met. By

Part 2: Commands: DEL=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 391 of 969

adding an additional derivative limit on position error, the servo will fault within milliseconds of contact
with an object.

EXAMPLE:
DEL=VT 'Set limit to commanded speed

If dE/dt equals commanded velocity, then the motor just hit a hard stop. Normally, the motor would
have to continue applying torque until the normal position error is exceeded. However, if DEL (dE/dt
limit) is set to target velocity (VT), then as soon as contact is made with a hard stop, the controller will
immediately fault without any wind up.

RELATED COMMANDS:
R DEA Derivative Error, Actual (see page 386)
DELM(arg) Derivative Error Limit Mode (see page 392)

Part 2: Commands: DEL=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 392 of 969

DELM(arg)
Derivative Error Limit Mode

APPLICATION: Motion control

DESCRIPTION: Derivative error limit mode

EXECUTION: Immediate

CONDITIONAL TO: Servo active (MP, MV, etc., but not MT mode)

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: Assignment

UNITS: N/A

RANGE OF VALUES: 0, 1

TYPICAL VALUES: 0, 1

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The DELM command allows the dE/dt fault limit to be reconfigured. By default, DELM is set to the
value 0. This means that the absolute value of DEA is compared to DEL when determining if the dE/dt
limit has been exceeded. This means that a disturbance to the motor in either direction can potentially
lead to a fault if the disturbance is large enough.

This behavior can be changed by setting DELM(1). When that value is issued, the DEL limit is only
reactive to disturbances that block the commanded direction of motion (i.e., something that attempts
to cause the motor to run slower). Disturbances that attempt to cause the motor to run faster are
ignored.

EXAMPLE:
EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear
IF IN(6)==0 'Check Input 6

DELM(1) 'Set derivative error limit mode to 1
ELSE DELM(0) 'Otherwise, set to 0
ENDIF
END

RELATED COMMANDS:
R DEA Derivative Error, Actual (see page 386)
R DEL=formula Derivative Error Limit (see page 390)

Part 2: Commands: DELM(arg)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 393 of 969

DFS(value)
Dump Float, Single

APPLICATION: Data conversion

DESCRIPTION: Get the af[index] variable in its raw 32-bit IEEE format

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RDFS(value)

WRITE: N/A

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: Input: Any float value within 32-bit float range:
±1x1038

Output: 32-bit integer -2147483648 to 2147483647

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The DFS(value) command allows the creation of a 32-bit value in IEEE-754 format. This allows export
of floating-point values to external systems. This format may be needed for interchange.

The 32-bit value output by this function is not the integer rounded off from the input. It is an encoded
number that includes the exponent of the floating point value. The output of this function does not
have any usefulness within the SmartMotor programming language.

EXAMPLE:
af[0]=(a+b)/3.0 'Create a floating-point result.
al[0]=DFS(af[0]) 'Dump the IEEE-754 32-bit representation

'into al[0].
PRINT(#ab[0],#ab[1],#ab[2],#ab[3]) 'Print the 4 bytes (32-bits)

'of this result to the serial port for the
'host PLC to interpret.

RELATED COMMANDS:
R af[index]=formula Array Float [index] (see page 267)
R ATOF(index) ASCII to Float (see page 291)
R HEX(index) Decimal Value of a Hex String (see page 489)
R LFS(value) Load Float Single (see page 547)

Part 2: Commands: DFS(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 394 of 969

DITR(int)
Disable Interrupts

APPLICATION: Program execution and flow control

DESCRIPTION: Disable the specified interrupt or combination of interrupts

EXECUTION: Immediate

CONDITIONAL TO: Interrupts configured and enabled; ITR, EITR and ITRE

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Input:
 DITR(interrupt), where interrupt is 0–7
 DITR(W,mask), where mask is 0–255

TYPICAL VALUES: Input:
 DITR(interrupt), where interrupt is 0–7
 DITR(W,mask), where mask is 0–255

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: DITR(1):3 or DITR(W,7):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The DITR (Disable Interrupts) command is used to disable one or more interrupts.

NOTE: Use DITR() or EITR() before the STACK command to stop any pending interrupt events from
reoccurring. Additionally, DITR() will prevent future calls.

DITR is written as:
l DITR(interrupt)

Where interrupt is used to specify an interrupt (0–7).
l DITR(W,mask)

A literal "W" is used as the first argument; the mask argument can select a combination of
interrupts.

NOTE: The (W,mask) input requires this firmware:
for Class 5: 5.x.4.46 and later; for Class 6: 6.0.2.37 and later.

For an interrupt to work, it must be enabled at two levels: first, enable individual interrupts with the
EITR() command using the interrupt number from 0 to 7 in the parentheses; second, enable all
interrupts with the ITRE command. Similarly, individual interrupts can be disabled with the DITR()

Part 2: Commands: DITR(int)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 395 of 969

command, and all interrupts can be disabled with the ITRD command. For more details, see the
corresponding command-description pages.

NOTE: The user program must also be running for interrupts to take effect, the END and RUN
commands will reset the state of the interrupts to defaults.

For more details on interrupt programming, see Interrupt Programming on page 195.

EXAMPLE: (Subroutine shows use of DITR, EITR, TMR and TWAIT)

C10 'Place a label
IF PA>47000 'Just before 12 moves

DITR(0) 'Disable interrupt
TWAIT 'Wait till reaches 48000
p=0 'Reset variable p
PT=p 'Set target position
G 'Start motion
TWAIT 'Wait for move to complete
EITR(0) 'Re-enable interrupt
TMR(0,1000) 'Restart timer

ENDIF
GOTO10 'Go back to label

RELATED COMMANDS:

EISM(x) E-Configure Input as Sync Controller (see page 423)
EITR(int) Enable Interrupts (see page 424)
ITR(Int#,StatusWord,Bit#,BitState,Label#) Interrupt Setup (see page 517)
ITRD Interrupt Disable, Global (see page 520)
ITRE Enable Interrupts, Global (see page 522)
RETURNI Return Interrupt (see page 708)

Part 2: Commands: DITR(int)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 396 of 969

DT=formula
Deceleration Target

APPLICATION: Motion control; supports the DS2020 Combitronic system

DESCRIPTION: Get/set target deceleration only (does not change acceleration)

EXECUTION: Buffered until a G command is issued

CONDITIONAL TO: MP, MV, ADT=, AT=, G, X, PIDn (sample rate), encoder resolution

LIMITATIONS: Must not be negative; effective value is rounded down to next even
number

READ/REPORT: RDT

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: (encoder counts / (sample²)) * 65536
DS2020 Combitronic system: user increments / sec², see FD=e-
expression on page 461

RANGE OF VALUES: 0 to 2147483647
DS2020 Combitronic system: 0 to 4294967295

TYPICAL VALUES: 2 to 5000
DS2020 Combitronic system: depends on FD

DEFAULT VALUE: 0 (for firmware 5.x.4.x and newer, default is set to 4)
DS2020 Combitronic system: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: DT:3=1234, a=DT:3, RDT:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEA command. For details, see SCALEA(m,d) on page
724. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

Setting the buffered DT value determines the deceleration that will be used by subsequent position or
velocity moves to calculate the required trajectory. Changing DT during a move will not alter the
current trajectory unless a new G or X command is issued.

Acceleration is pre-scaled by 65536 and may range from 2 to 2147483647. A value of 0 is not valid.
Due to internal calculations, odd values for this command are rounded up to an even value.

If the value for DT has not been set since powering up the motor, the value of AT= will be automatically
applied to DT=. However, this should be avoided. Instead, always use the ADT= command to specify the
value for AT and DT when they are the same. If the value needed for DT is different than AT, specify it
with the DT= command.

Equations for Real-World Units:

Part 2: Commands: DT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 397 of 969

Encoder resolution and sample rate can vary. Therefore, the general equations in the next table can be
used to convert the real-world units of deceleration to a value for DT, where af[0] is already set with
the real-world unit value. These equations force floating-point calculations to avoid overflow and
maintain resolution. They can be placed in a user program, or they can be precalculated if the values of
SAMP and RES are known (SAMP and RES can be reported from the terminal using the RSAMP and
RRES commands, respectively). SAMP can change if the PID command is used. The value of RES can
differ between motor models.

Input as value
in af[0] Equation

Radians/(Sec2) DT=((af[0]*RES)/(PI*2*((SAMP*1.0)*SAMP)))*65536
DS2020 Combitronic system: DT=((af[0]*FD)/(PI*2))

Encoder Counts/(Sec2)
DS2020 Combitronic system:
User Increments/(Sec^2)

DT=(af[0]/((SAMP*1.0)*SAMP))*65536
DS2020 Combitronic system: AT=(af[0])

Rev/(Sec2) DT=((af[0]*RES)/((SAMP*1.0)*SAMP))*65536
DS2020 Combitronic system: DT=(af[0]*FD)

RPM/Sec DT=((af[0]*RES)/(60.0*((SAMP*1.0)*SAMP)))*65536
DS2020 Combitronic system: DT=((af[0]*FD)/60)

RPM/Min DT=((af[0]*RES)/(3600.0*((SAMP*1.0)*SAMP)))*65536
DS2020 Combitronic system: DT=((af[0]*FD)/3600)

A useful Scale Factor Multiplier code example, which also illustrates the use of af[], SAMP and RES, is
shown in RES on page 702 and SAMP on page 722.

EXAMPLE:
MP 'Set position mode
DT=5000 'Set target deceleration
PT=20000 'Set absolute position
VT=500 'Set velocity
G 'Start motion

EXAMPLE:
DT=100 'Set buffered deceleration
VT=750 'Set buffered velocity
MV 'Set buffered velocity mode
G 'Start motion

Part 2: Commands: DT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 398 of 969

RELATED COMMANDS:

ADT=formula Acceleration/Deceleration Target (see page 263)
ADTS=formula Acceleration/Deceleration Target, Synchronized (see page 265)
R AT=formula Acceleration Target (see page 286)
ATS=formula Acceleration Target, Synchronized (see page 292)
DTS=formula Deceleration Target, Synchronized (see page 399)
R EL=formula Error Limit (see page 426)
R FD=expression Resolution to Set Units of Position/Velocity/Acceleration (see page 461)
G Start Motion (GO) (see page 473)
MP Mode Position (see page 613)
MV Mode Velocity (see page 624)
PID# Proportional-Integral-Differential Filter Rate (see page 654)
R PT=formula Position, (Absolute) Target (see page 690)
R RES Resolution (see page 702)
R SAMP Sampling Rate (see page 722)
R VT=formula Velocity Target (see page 828)
X Decelerate to Stop (see page 844)

Part 2: Commands: DT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 399 of 969

DTS=formula
Deceleration Target, Synchronized

APPLICATION: Motion control

DESCRIPTION: Sets the synchronized (path) deceleration for a move

EXECUTION: Immediate

CONDITIONAL TO: PIDn

LIMITATIONS: Must not be negative; 0 is not valid; effective value is rounded up to
next even number

READ/REPORT: None

WRITE: Write only

LANGUAGE ACCESS: Assignment

UNITS: (encoder counts / (sample²)) * 65536

RANGE OF VALUES: 0 to 2147483647

TYPICAL VALUES: 0 to 5000

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M), not ver. 5.32.x.x; 6.x (D/M), M requires EIP option

COMBITRONIC: N/A

DETAILED DESCRIPTION:

NOTE: This command requires a Combitronic-supported motor. Although this command does not
support Combitronic syntax, it does use Combitronic communication to pass information between
other motors.

NOTE: This command is affected by the SCALEA command. For details, see SCALEA(m,d) on page
724. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

Setting the synchronized (path) DTS value determines the deceleration that will be used by subsequent
position or velocity moves to calculate the required trajectory. Changing DTS during a move will not
alter the current trajectory unless a new G command is issued.

Acceleration is pre-scaled by 65536 and may range from 2 to 2147483647. A value of 0 is not valid.
Due to internal calculations, odd values for this command are rounded up to an even value.

Equations for Real-World Units:

Encoder resolution and sample rate can vary. Therefore, the general equations in the next table can be
used to convert the real-world units of acceleration to a value for DTS, where af[0] is already set with
the real-world unit value. These equations force floating-point calculations to avoid overflow and
maintain resolution. They can be placed in a user program, or they can be precalculated if the values of
SAMP and RES are known (SAMP and RES can be reported from the terminal using the RSAMP and
RRES commands, respectively). SAMP can change if the PID command is used. The value of RES can
differ between motor models.

Part 2: Commands: DTS=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 400 of 969

Input as value
in af[0] Equation

Radians/(Sec2) DTS=((af[0]*RES)/(PI*2*((SAMP*1.0)*SAMP)))*65536
Encoder Counts/(Sec2) DTS=(af[0]/((SAMP*1.0)*SAMP))*65536
Rev/(Sec2) DTS=((af[0]*RES)/((SAMP*1.0)*SAMP))*65536
RPM/Sec DTS=((af[0]*RES)/(60.0*((SAMP*1.0)*SAMP)))*65536
RPM/Min DTS=((af[0]*RES)/(3600.0*((SAMP*1.0)*SAMP)))*65536

A useful Scale Factor Multiplier code example, which also illustrates the use of af[], SAMP and RES, is
shown in RES on page 702 and SAMP on page 722.

EXAMPLE: (Shows use of ATS, DTS and VTS)

EIGN(W,0) 'Set all I/O as general inputs.
ZS 'Clear errors.
ATS=100 'Set synchronized acceleration target.
DTS=500 'Set synchronized deceleration target.
VTS=100000000 'Set synchronized target velocity.
PTS(500;1,1000;2,10000;3) 'Set synchronized target position

'on motor 1, 2 and 3.
GS 'Initiate synchronized move.
TSWAIT 'Wait until synchronized move ends.
END 'Required END.

RELATED COMMANDS:

ATS=formula Acceleration Target, Synchronized (see page 292)
ADTS=formula Acceleration/Deceleration Target, Synchronized (see page 265)
PID# Proportional-Integral-Differential Filter Rate (see page 654)
PRTS(...) Position, Relative Target, Synchronized (see page 685)
PRTSS(...) Position, Relative Target, Synchronized, Supplemental (see page 688)
PTS(...) Position Target, Synchronized (see page 692)
R PTSD Position Target, Synchronized Distance (see page 695)
PTSS(...) Position Target, Synchronized Supplemental (see page 696)
R PTST Position Target, Synchronized Time (see page 698)
VTS=formula Velocity Target, Synchronized Move (see page 831)

Part 2: Commands: DTS=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 401 of 969

EA
Error Actual

APPLICATION: Motion control

DESCRIPTION: Get current position error in real time

EXECUTION: Updated once each PID sample

CONDITIONAL TO: Servo active (MP, MV, etc., not MT mode)

LIMITATIONS: N/A

READ/REPORT: REA
; supports the DS2020 Combitronic system

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Encoder counts
DS2020 Combitronic system: user increments / sec², see FD=e-
expression on page 461

RANGE OF VALUES: Output: -2147483648 to 2147483647

TYPICAL VALUES: Magnitude limited to user set value of EL

DEFAULT VALUE: 1000

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: REA:3, x=EA:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The EA command provides the current position error in real time. Position error is the difference in
encoder counts between the desired trajectory position and the measured position. If the absolute
value of EA exceeds the user value EL, the fault reaction is performed and Be (Position Error) status
bits will be set to 1, within that PID servo sample. When the servo is off, EA reverts to zero because
there is no longer a desired position.

NOTE: As acceleration (AC) is increased, a larger value of EL may be required. EL is unsigned, but EA
may be positive or negative.

EXAMPLE:
IF EA<1234 'test value of EA

'then do something
ENDIF

WHILE EA<1234 LOOP 'Loop while EA is less than 1234
'Then continue with program

Part 2: Commands: EA

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 402 of 969

EXAMPLE: (Routine homes motor against a hard stop)

MDS 'Using Sine mode commutation
KP=3200 'Increase stiffness from default
KD=10200 'Increase damping from default
F 'Activate new tuning parameters
AMPS=100 'Lower current limit to 10%
VT=-10000 'Set maximum velocity
ADT=100 'Set maximum accel/decel
MV 'Set Velocity mode
G 'Start motion
WHILE EA>-100 'Loop while position error is small
LOOP 'Loop back to WHILE
O=-100 'While pressed, declare home offset
S 'Abruptly stop trajectory
MP 'Switch to Position mode
VT=20000 'Set higher maximum velocity
PT=0 'Set target position to be home
G 'Start motion
TWAIT 'Wait for motion to complete
AMPS=1023 'Restore current limit to maximum
END 'End program

RELATED COMMANDS:
R EL=formula Error Limit (see page 426)
R FD=expression Resolution to Set Units of Position/Velocity/Acceleration (see page 461)

Part 2: Commands: EA

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 403 of 969

ECHO
Echo Incoming Data on Communications Port 0

APPLICATION: Communications control; supports the DS2020 Combitronic system

DESCRIPTION: Enable motor echo of received channel 0 serial data

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: N/A

LIMITATIONS: Not for use with an RS-485 port such as an M-style motor, or a
D-style motor with the RS485-ISO adapter

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: Motor defaults to ECHO_OFF (non-echo)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The ECHO command causes the SmartMotor™ to retransmit (or echo out) all serial bytes on the
transmit line that were received on the receive line of COM port 0. This retransmission occurs when the
SmartMotor reads these bytes from the buffer, regardless of whether these bytes are command or
individual data bytes. ECHO_OFF terminates the echo capability.

ECHO is required to pass serial bytes though a motor to the next motor in an RS-232 serial daisy-chain
configuration, such as when the Add-A-Motor cables are used. Also, it is often used in single-motor
applications for transmit verification.

NOTE: It is not recommended to use ECHO when the communications channel is an RS-485 port
such as an M-style motor or a D-style motor with the RS485-ISO adapter. This mode of
communication is half-duplex and is not compatible with the ECHO command.

Part 2: Commands: ECHO

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 404 of 969

EXAMPLE:

SADDR1 'Address the first motor
ECHO 'Echo for host data
PRINT(#128,"SADDR2",#13) '0SADDR2
WAIT=10 'Allow time
PRINT(#130,"ECHO",#13) '2ECHO
WAIT=10
PRINT(#130,"SLEEP",#13) '2SLEEP
WAIT=10
PRINT(#128,"SADDR3",#13) '0SADDR3
WAIT=10
PRINT(#131,"ECHO",#13) '3ECHO
WAIT=10
PRINT(#128,"WAKE",#13) '0WAKE
WAIT=10

RELATED COMMANDS:

ECHO1 Echo Incoming Data on Communications Port 1 (see page 406)
ECHO_OFF Turn Off Echo on Communications Port 0 (see page 407)
ECHO_OFF1 Turn Off Echo on Communications Port 1 (see page 409)

Part 2: Commands: ECHO

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 405 of 969

ECHO0
Echo Incoming Data on Communications Port 0

APPLICATION: Communications control

DESCRIPTION: Enable motor echo of received channel 0 serial data

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: Motor defaults to ECHO_OFF0 (non-echo)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The ECHO0 command causes the SmartMotor™ to retransmit (or echo out) all serial bytes on the
transmit line that were received on the receive line of COM port 0. This retransmission occurs when the
SmartMotor reads these bytes from the buffer, regardless of whether these bytes are command or
individual data bytes. ECHO_OFF0 terminates the echo capability.

NOTE: It is not recommended to use ECHO when the communications channel is an RS-485 port
such as an M-style motor or a D-style motor with the RS485-ISO adapter. This mode of
communication is half-duplex and is not compatible with the ECHO command.

EXAMPLE:
EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
OCHN(RS4,0,N,9600,1,8,D) 'Open com port 0
ECHO0 'Enable echo on com port 0

RELATED COMMANDS:

ECHO Echo Incoming Data on Communications Port 0 (see page 403)
ECHO1 Echo Incoming Data on Communications Port 1 (see page 406)
ECHO_OFF Turn Off Echo on Communications Port 0 (see page 407)
ECHO_OFF1 Turn Off Echo on Communications Port 1 (see page 409)
ECHO_OFF1 Turn Off Echo on Communications Port 1 (see page 409)

Part 2: Commands: ECHO0

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 406 of 969

ECHO1
Echo Incoming Data on Communications Port 1

APPLICATION: Communications control

DESCRIPTION: Enable motor echo of received channel 1 serial data

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: Motor defaults to ECHO_OFF1 (non-echo)

FIRMWARE VERSION: 5.x (D/M); 6.4.2.x (D)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The ECHO1 command causes the SmartMotor™ to retransmit (or echo out) all serial bytes on the
transmit line that were received on the receive line of COM port 1. This retransmission occurs when the
SmartMotor reads these bytes from the buffer, regardless of whether these bytes are command or
individual data bytes. ECHO_OFF1 terminates the echo capability.

NOTE: It is not recommended to use ECHO when the communications channel is an RS-485 port
such as an M-style motor or a D-style motor with the RS485-ISO adapter. This mode of
communication is half-duplex and is not compatible with the ECHO command.

EXAMPLE:
EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
OCHN(RS4,1,N,9600,1,8,D) 'Open auxiliary com port
ECHO1 'enable echo on aux com port

RELATED COMMANDS:

ECHO Echo Incoming Data on Communications Port 0 (see page 403)
ECHO_OFF Turn Off Echo on Communications Port 0 (see page 407)
ECHO_OFF1 Turn Off Echo on Communications Port 1 (see page 409)

Part 2: Commands: ECHO1

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 407 of 969

ECHO_OFF
Turn Off Echo on Communications Port 0

APPLICATION: Communications control; supports the DS2020 Combitronic system

DESCRIPTION: Disable motor echo of received channel 0 serial data

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: Motor defaults to ECHO_OFF (non-echo)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The ECHO_OFF command causes the SmartMotor™ channel 0 COM port to stop echoing. This is the
default power-up state of any SmartMotor. No incoming channel 0 characters are retransmitted.

In order to automatically detect and differentiate between multiple motors on a serial daisy-chain
cable, the ECHO state can be alternately turned on and off to ensure the motors are properly
addressed.

NOTE: It is not possible to maintain communications on a serial chain without issuing ECHO.

EXAMPLE:
ECHO_OFF 'Remove echo from channel 0
EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors

RELATED COMMANDS:

ECHO Echo Incoming Data on Communications Port 0 (see page 403)
ECHO1 Echo Incoming Data on Communications Port 1 (see page 406)
ECHO_OFF1 Turn Off Echo on Communications Port 1 (see page 409)

Part 2: Commands: ECHO_OFF

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 408 of 969

ECHO_OFF0
Turn Off Echo on Communications Port 0

APPLICATION: Communications control

DESCRIPTION: Disable motor echo of received channel 0 serial data

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: Motor defaults to ECHO_OFF0 (non-echo)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The ECHO_OFF0 command causes the SmartMotor™ channel 0 serial port to stop echoing. No incoming
channel 0 characters are retransmitted.

EXAMPLE: (Shows use of ECHO_OFF0 and OCHN)

EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
OCHN(RS4,0,N,9600,1,8,C) 'Open communications channel 0
ECHO_OFF0 'Turn echo off for communications channel 0
END

RELATED COMMANDS:

ECHO Echo Incoming Data on Communications Port 0 (see page 403)
ECHO0 Echo Incoming Data on Communications Port 0 (see page 405)
ECHO1 Echo Incoming Data on Communications Port 1 (see page 406)
ECHO_OFF Turn Off Echo on Communications Port 0 (see page 407)
ECHO_OFF1 Turn Off Echo on Communications Port 1 (see page 409)

Part 2: Commands: ECHO_OFF0

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 409 of 969

ECHO_OFF1
Turn Off Echo on Communications Port 1

APPLICATION: Communications control

DESCRIPTION: Disable motor echo of received channel 1 serial data

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: Motor defaults to ECHO_OFF1 (non-echo)

FIRMWARE VERSION: 5.x (D/M); 6.4.2.x (D)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The ECHO_OFF1 command causes the SmartMotor™ channel 1 serial port to stop echoing. No incoming
channel 1 characters are retransmitted.

EXAMPLE: (Shows use of ECHO_OFF1 and OCHN)

EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
OCHN(RS4,1,N,9600,1,8,C) 'Open aux communications channel
ECHO_OFF1 'Turn echo off for aux communications channel
END

RELATED COMMANDS:

ECHO Echo Incoming Data on Communications Port 0 (see page 403)
ECHO1 Echo Incoming Data on Communications Port 1 (see page 406)
ECHO_OFF Turn Off Echo on Communications Port 0 (see page 407)

Part 2: Commands: ECHO_OFF1

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 410 of 969

ECS(counts)
Encoder Count Shift

APPLICATION: Motion control

DESCRIPTION: External encoder counter shift

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: None

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: Encoder counts

RANGE OF VALUES: Input
counts: -2147483648 to 2147483647

TYPICAL VALUES: -100 to +100

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: ECS(100):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The ECS(value) command immediately shifts the external encoder counter by the specified value. In
Follow mode or Cam mode this is interpreted as incoming controller counts, so motion may result. In
other words, ECS adds the specified value to the incoming controller counts as if they actually had an
instantaneous change in value.

NOTE: When issued, ECS is dynamic and immediate! It is not buffered. No G command is required.

For example, if the external encoder count is 4000 and ECS(1234) is issued, the count would
immediately shift to 5234. It is instantaneously shifted by 1234 counts, as seen by the trajectory
generator.

ECS accounts for changes in material width on traverse and take up winding applications to allow for
full placement of material onto spools. These applications require the means to dynamically detect
material width as close as possible to where it is being wound onto the controller spool.

This command works on top of any gear or Cam mode. It should be used with care because it can cause
abrupt changes to position.

Part 2: Commands: ECS(counts)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 411 of 969

EXAMPLE:
C1 'Instant step routine
WHILE 1 'Forever loop

IF IN(1)==0 'Check input 1 for low state
ECS(100) 'Instantly add 100 counts to CTR(1)
WHILE IN(1)==0 LOOP 'Hold while input is triggered

ENDIF
LOOP
RETURN
END

RELATED COMMANDS:
R CTR(enc) Counter, Encoder, Step and Direction (see page 380)
MFCTP(arg1,arg2) Mode Follow Control Traverse Point (see page 583)
MFH(distance[,m/s]) Mode Follow, High Ascend/Descend Rate (see page 590)
R MFHTP=formula Mode Follow, High Traverse Point (see page 592)
MFL(distance[,m/s]) Mode Follow, Low Ascend/Descend Rate (see page 594)
R MFLTP=formula Mode Follow, Low Traverse Point (see page 596)

Part 2: Commands: ECS(counts)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 412 of 969

EIGN(...)
Enable as Input for General-Use

APPLICATION: I/O control; supports the DS2020 Combitronic system

DESCRIPTION: Configure I/O as general-use input

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Input:
 EIGN(IO)
 EIGN(W,word)
 EIGN(W,word[,mask])

See details for range of IO, word and mask — depends on motor
series

TYPICAL VALUES: N/A

DEFAULT VALUE: See details — depends on motor series

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: EIGN(0):3, EIGN(W,0):3, or EIGN(W,0,m):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The EIGN command is used to configure I/O pins for general-use input as shown:
l EIGN(IO)

Sets the specified I/O port to or back to an input with no function attached. In other words, to
remove the travel-limit function from I/O port 2, execute the instruction EIGN(2). See the next
table for allowed range of IO.

l EIGN(W,word)
Sets all I/O in the specified I/O word back to inputs. A literal "W" is used as the first argument.
See the next table for allowed values for "word".

l EIGN(W,word[,mask])
Set all I/O in the specified I/O word back to input if mask bit is set. A literal "W" is used as the
first argument. See the next table for allowed values for "word" and for the mask range.

NOTE: The range of IO and word depends on the motor series:

Part 2: Commands: EIGN(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 413 of 969

Motor
Type

word
Allowed
Values

IO
Allowed
Range

Word 0
Bitmask Range

Word 1
Bitmask

Range
D-style 0 0-6 0 to 127 N/A
D-style with AD1 option 0,1 0-6, 16-25 0 to 127 0 to 1023
M-style 0 0-10 0 to 2047 N/A
DS2020 Combitronic system N/A 0, 2, 3 N/A N/A

Ports 2 and 3 are travel limit inputs by default. However, the EIGN() commands can change them to
general-purpose I/O points. They can be returned to travel limits with the EILN and EILP commands.

EXAMPLE:
EIGN(6) 'Assigns a single I/O point (I/O 6) as

'general-use input.
EIGN(W,0) 'Assigns all local I/O in word 1 as general-use

'inputs and disables the travel limits.
EIGN(W,0,12) 'Assigns inputs 2 and 3 as general-use inputs at

'once (disabling overtravel limits).
EIGN(W,0,m) 'Assign a masked word-sized set of local I/O as

'general-use inputs at once.

EXAMPLE: (assign inputs 2 and 3 as general-use inputs at once; disable overtravel limits)

x=12
y=0
EIGN(W,y,x) 'EIGN(W,y)&x will also do the same thing

EXAMPLE: (configuring individual ports as inputs)

EIGN(0) 'Set User port 0 as Input
EIGN(1) 'Set User port 1 as Input
EIGN(2) 'Set User port 2 as Input
EIGN(3) 'Set User port 3 as Input
EIGN(4) 'Set User port 4 as Input
EIGN(5) 'Set User port 5 as Input
EIGN(6) 'Set User port 6 as Input

Part 2: Commands: EIGN(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 414 of 969

EXAMPLE: (disabling left and right limits)

EIGN(2) 'Disable left limit
EIGN(3) 'Disable right limit
ZS 'Clear faults
VT=700000 'Set Target Velocity
ADT=100 'Set accel/decel
MV 'Set Mode Velocity
ITR(0,3,15,1,20) 'Set interrupt
EITR(0) 'Enable interrupt zero
ITRE 'Enable all interrupts
G 'Start motion
C10 'Place a label
GOTO10 'Loop..., required for interrupt operation
END 'End (never reached)

C20 'Interrupt subroutine code here
RETURNI 'Return from interrupt subroutine

RELATED COMMANDS:

EILN Enable Input as Limit Negative (see page 415)
EILP Enable Input as Limit Positive (see page 417)
EISM(x) E-Configure Input as Sync Controller (see page 423)
EOBK(IO) Enable Output, Brake Control (see page 445)
R IN(...) Specified Input (see page 509)
R INA(...) Specified Input, Analog (see page 512)
SLD Software Limits, Disable (see page 740)
SLE Software Limits, Enable (see page 742)

Part 2: Commands: EIGN(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 415 of 969

EILN
Enable Input as Limit Negative

APPLICATION: I/O control; supports the DS2020 Combitronic system

DESCRIPTION: Activate left/negative hardware limit

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: Limit switch

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: EILN:3
where ":3" is the motor address — use the actual address or a
variable

DETAILED DESCRIPTION:

The EILN command activates the left/negative hardware limit.

The EILN command sets I/O port 3 as the negative overtravel limit. User I/O port 3 can be a general-
purpose analog or digital input, output or act as the negative-limit input (which is the default state).
EILN explicitly defines I/O port 3 as the negative limit, while the EIGN command configures it as a
general-purpose input, which disables the limit behavior.

NOTE: I/O port 3 cannot be set as an output until the EIGN command is issued first (i.e., the OR, OS
or OUT command will not change I/O 3 until EIGN is issued to set I/O 3 as an input).

Ports 2 and 3 are travel limit inputs by default. However, the EIGN() commands can change them to
general-purpose I/O points. They can be returned to travel limits with the EILN and EILP commands.

EXAMPLE: (Subroutine enables negative hardware limit)

C1
c=0
PRINT("Enter c=1 to enable negative HW limit...",#13)
WHILE c==0 LOOP 'Wait for user to change variable c
EILN 'Enable negative hardware limit
PRINT("Negative HW limit enabled!",#13)
RETURN

Part 2: Commands: EILN

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 416 of 969

Program output is:

Enter c=1 to enable negative HW limit...

(The user enters c=1)
Negative HW limit enabled!

RELATED COMMANDS:

EIGN(...) Enable as Input for General-Use (see page 412)
EILP Enable Input as Limit Positive (see page 417)
EIRE Enable Index Register, Encoder Capture (see page 419)
EIRI Enable Index Register, Input Capture (see page 421)
EISM(x) E-Configure Input as Sync Controller (see page 423)
EOBK(IO) Enable Output, Brake Control (see page 445)
OR(value) Output, Reset (see page 638)
OS(...) Output, Set (see page 640)
OUT(...)=formula Output, Activate/Deactivate (see page 644)

Part 2: Commands: EILN

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 417 of 969

EILP
Enable Input as Limit Positive

APPLICATION: I/O control; supports the DS2020 Combitronic system

DESCRIPTION: Activate right/positive hardware limit

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: Limit switch

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: EILP:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The EILP command activates the right/positive hardware limit.

The EILP command sets I/O port 2 as the positive overtravel limit. User I/O port 2 can be a general-
purpose analog or digital input, output or act as the positive-limit input (which is the default state).
EILP explicitly defines I/O port 2 as the positive limit, while the EIGN command configures it as a
general-purpose input, which disables the limit behavior.

NOTE: I/O port 2 cannot be set as an output until the EIGN command is issued first (i.e., the OR, OS
or OUT command will not change I/O 2 until EIGN is issued to set I/O 2 as an input).

Ports 2 and 3 are travel limit inputs by default. However, the EIGN() commands can change them to
general-purpose I/O points. They can be returned to travel limits with the EILN and EILP commands.

EXAMPLE: (Subroutine enables positive hardware limit)

C1
c=0
PRINT("Enter c=1 to enable positive HW limit...",#13)
WHILE c==0 LOOP 'Wait for user to change variable c
EILP 'Enable positive hardware limit
PRINT("Positive HW limit enabled!",#13)
RETURN

Part 2: Commands: EILP

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 418 of 969

Program output is:

Enter c=1 to enable positive HW limit...

(The user enters c=1)
Positive HW limit enabled!

RELATED COMMANDS:

EIGN(...) Enable as Input for General-Use (see page 412)
EILN Enable Input as Limit Negative (see page 415)
EIRE Enable Index Register, Encoder Capture (see page 419)
EIRI Enable Index Register, Input Capture (see page 421)
EISM(x) E-Configure Input as Sync Controller (see page 423)
EOBK(IO) Enable Output, Brake Control (see page 445)
OR(value) Output, Reset (see page 638)
OS(...) Output, Set (see page 640)
OUT(...)=formula Output, Activate/Deactivate (see page 644)

Part 2: Commands: EILP

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 419 of 969

EIRE
Enable Index Register, Encoder Capture

APPLICATION: I/O control

DESCRIPTION: Capture internal encoder using its index; capture external encoder
from input.

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: Motor defaults to EIRE (external input captures the external encoder)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

Captures the external or internal encoder's position as described in the next table. This is also known
as index capture, registration or touch probes.

Class 5 D-Style Class 5 M-Style Class 6 D- and M-style
Internal encoder capture using
internal encoder index

Internal encoder capture using
internal encoder index

Internal encoder capture using
internal encoder index

External encoder captured from
input 6

External encoder captured from
input 5

External encoder capture using
input 4

Refer to the next figure for more details.

Part 2: Commands: EIRE

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 420 of 969

Class 5
D- and M-Style

EIRE

EIRI

Phase A

Phase B

Index (Z)

External

Encoder

EIRE

EIRI

Phase A

Phase B

Index (Z)

Encoder
Counter(0)

Captured Value

Capture Event

RCTR(0)

RI(0) RJ(0)

Encoder
Counter(1)

Captured Value

Capture Event

RCTR(1)

RI(1) RJ(1)

Ai(0) Aj(0) Aij(0) Aji(0)

Ai(1) Aj(1) Aij(1) Aji(1)

Rising

Edge

Falling

Edge

Pulse High Pulse Low
(Capture is on tail end of pulse)

Input 6 (D-Style)

Input 5 (M-Style)

SmartMotor

NOTE: EIRE is the default setting.

Internal Counter Arming Commands

External Counter Arming Commands

Class 6
D- and M-Style

EIRE

EIRI

Phase A

Phase B

Index (Z)

External

Encoder

Phase A

Phase B

Index (Z)

Encoder
Counter(0)

Captured Value

Capture Event

RCTR(0)

RI(0) RJ(0)

Encoder
Counter(1)

Captured Value

Capture Event

RCTR(1)

RI(1) RJ(1)

SmartMotor

NOTE: EIRE is the default setting.

Input 5

Input 4

Encoder Capture Diagrams for EIRE

EXAMPLE:
EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
EIRE 'Use external IO to capture external encoder position
END

RELATED COMMANDS:

Ai(enc) Arm Index Rising Edge (see page 270)
Aj(enc) Arm Index Falling Edge (see page 274)
EIGN(...) Enable as Input for General-Use (see page 412)
EIRI Enable Index Register, Input Capture (see page 421)
R I(enc) Index, Rising-Edge Position (see page 502)
R J(enc) Index, Falling-Edge Position (see page 524)

Part 2: Commands: EIRE

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 421 of 969

EIRI
Enable Index Register, Input Capture

APPLICATION: I/O control

DESCRIPTION: Capture internal encoder using input; external encoder behavior may
change depending on model

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: Motor defaults to EIRE (external input captures the external encoder)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

Captures the internal encoder using an input; external encoder behavior may change depending on
model as described in the next table. This is also known as index capture, registration or touch probes.

Class 5 D-Style Class 5 M-Style Class 6 D- and M-style
Internal encoder capture using
input 6

Internal encoder capture using
input 5

Internal encoder capture using
input 5

External encoder capture is dis-
abled

External encoder capture is dis-
abled

External encoder capture using
input 4

Refer to the next figure for more details.

Part 2: Commands: EIRI

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 422 of 969

Class 5
D- and M-Style

EIRE

EIRI

Phase A

Phase B

Index (Z)

External

Encoder

EIRE

EIRI

Phase A

Phase B

Index (Z)

Encoder
Counter(0)

Captured Value

Capture Event

RCTR(0)

RI(0) RJ(0)

Encoder
Counter(1)

Captured Value

Capture Event

RCTR(1)

RI(1) RJ(1)

Ai(0) Aj(0) Aij(0) Aji(0)

Ai(1) Aj(1) Aij(1) Aji(1)

Rising

Edge

Falling

Edge

Pulse High Pulse Low
(Capture is on tail end of pulse)

Input 6 (D-Style)

Input 5 (M-Style)

SmartMotor

NOTE: EIRE is the default setting.

Internal Counter Arming Commands

External Counter Arming Commands

Class 6
D- and M-Style

EIRE

EIRI

Phase A

Phase B

Index (Z)

External

Encoder

Phase A

Phase B

Index (Z)

Encoder
Counter(0)

Captured Value

Capture Event

RCTR(0)

RI(0) RJ(0)

Encoder
Counter(1)

Captured Value

Capture Event

RCTR(1)

RI(1) RJ(1)

SmartMotor

NOTE: EIRE is the default setting.

Input 5

Input 4

Encoder Capture Diagrams for EIRI

EXAMPLE:
EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
EIRI 'Use external IO to capture internal encoder position
END

RELATED COMMANDS:

Ai(enc) Arm Index Rising Edge (see page 270)
Aj(enc) Arm Index Falling Edge (see page 274)
EIRE Enable Index Register, Encoder Capture (see page 419)
EIGN(...) Enable as Input for General-Use (see page 412)
R I(enc) Index, Rising-Edge Position (see page 502)
R J(enc) Index, Falling-Edge Position (see page 524)

Part 2: Commands: EIRI

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 423 of 969

EISM(x)
E-Configure Input as Sync Controller

APPLICATION: I/O control; supports the DS2020 Combitronic system - see Details

DESCRIPTION: Configure specified I/O as the start-motion input

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: By default, this feature is not enabled

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The EISM(x) command configures the specified input as the start-motion input. For example, EISM(6)
issues a G command when input 6 is asserted.

NOTE: For systems using the DS2020 Combitronic system, always use EISM(0).
l For D-style motors, the input must be driven low, EISM(6)

l For M-style motors, the input must be driven high, EISM(6)

Refer to Connecting the System in your motor's user guide for the location of pin I/O-6 on your motor.

EXAMPLE:
EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
EISM(6) 'Configure motor to receive G when I/O 6 is triggered
MV 'Mode Velocity
ADT=100 'Set accel/decel
VT=100000 'Set target velocity
WHILE 1 LOOP 'Hold program here

RELATED COMMANDS:

EIGN(...) Enable as Input for General-Use (see page 412)
G Start Motion (GO) (see page 473)

Part 2: Commands: EISM(x)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 424 of 969

EITR(int)
Enable Interrupts

APPLICATION: Program execution and flow control

DESCRIPTION: Enable the specified interrupt or a combination of interrupts

EXECUTION: Immediate

CONDITIONAL TO: Interrupts configured and globally enabled (with ITR and ITRE)

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Input:
 EITR(interrupt), where interrupt is 0–7
 EITR(W,mask) where mask is 0–255

TYPICAL VALUES: Input:
 EITR(interrupt), where interrupt is 0–7
 EITR(W,mask), where mask is 0–255

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: EITR(1):3 or EITR(W,7):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The EITR (Enable Interrupts) command is used to enable one or more interrupts.

NOTE: Use DITR() or EITR() before the STACK command to stop any pending interrupt events from
reoccurring. Additionally, DITR() will prevent future calls.

EITR is written as:
l EITR(interrupt)

Where interrupt is used to specify an interrupt (0–7).
l EITR(W,mask)

A literal "W" is used as the first argument; the mask argument can select a combination of
interrupts.

NOTE: The (W,mask) input requires this firmware:
for Class 5: 5.x.4.46 and later; for Class 6: 6.0.2.37 and later.

For an interrupt to work, it must be enabled at two levels: first, enable individual interrupts with the
EITR() command using the interrupt number from 0 to 7 in the parentheses; second, enable all
interrupts with the ITRE command. Similarly, individual interrupts can be disabled with the DITR()

Part 2: Commands: EITR(int)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 425 of 969

command, and all interrupts can be disabled with the ITRD command. For more details, see the
corresponding command-description pages.

NOTE: The user program must also be running for interrupts to take effect, the END and RUN
commands will reset the state of the interrupts to defaults.

For more details on interrupt programming, see Interrupt Programming on page 195.

EXAMPLE:
EIGN(2) 'Disable left limit
EIGN(3) 'Disable right limit
ZS 'Clear faults
VT=700000 'Set target velocity
ADT=100 'Set target accel/decel
MV 'Set Mode Velocity
ITR(0,3,15,1,10) 'Set interrupt
EITR(0) 'Enable interrupt zero
ITRE 'Enable all interrupts
G 'Start motion
PAUSE 'Pause here so program doesn't end
END 'End would disable interrupts

EXAMPLE: (Subroutine shows use of DITR, EITR, TMR and TWAIT)

C10 'Place a label
IF PA>47000 'Just before 12 moves

DITR(0) 'Disable interrupt
TWAIT 'Wait till reaches 48000
p=0 'Reset variable p
PT=p 'Set target position
G 'Start motion
TWAIT 'Wait for move to complete
EITR(0) 'Re-enable interrupt
TMR(0,1000) 'Restart timer

ENDIF
GOTO10 'Go back to label

RELATED COMMANDS:

DITR(int) Disable Interrupts (see page 394)
EISM(x) E-Configure Input as Sync Controller (see page 423)
ITR(Int#,StatusWord,Bit#,BitState,Label#) Interrupt Setup (see page 517)
ITRD Interrupt Disable, Global (see page 520)
ITRE Enable Interrupts, Global (see page 522)
RETURNI Return Interrupt (see page 708)

Part 2: Commands: EITR(int)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 426 of 969

EL=formula
Error Limit

APPLICATION: Motion control; supports the DS2020 Combitronic system

DESCRIPTION: Set maximum allowable position error (the error limit)

EXECUTION: Immediate; enforced each PID sample

CONDITIONAL TO: Servo active (MP, MV, etc., not MT mode)

LIMITATIONS: Torque mode has no position error

READ/REPORT: REL

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Encoder counts
DS2020 Combitronic system: user increments, see FD=expression on
page 461

RANGE OF VALUES: 0 to 262143
DS2020 Combitronic system: 0 to 4294967295

TYPICAL VALUES: 1000
DS2020 Combitronic system: fraction of FD value

DEFAULT VALUE: 1000
DS2020 Combitronic system: 8192

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: EL:3=1234, a=EL:3, REL:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The EL command is used to set the maximum allowable position error in encoder counts. Position error
is the difference between the calculated trajectory position (PC), at any instant in time, and the actual
position (PA). The SmartMotor™ uses the position error to generate a torque by means of the PID filter.
The greater the error or deflection, the more torque the motor applies in attempt to correct it.

CAUTION: An EL setting that is greater than the expected move distance may
result in drive saturation and severely limit the life of the SmartMotor.

EL is primarily used as a safety measure. It is a programmable, allowable error beyond which the motor
recognizes it is outside of the domain of control being enforced. If EL=100 is commanded and a
position error of greater than 100 encoder counts occurs, the motor will perform its fault reaction and
the Be (Position Error bit) will be set to 1. All closed-loop modes are bound by this EL value. Non-
closed-loop modes, such as Torque mode, ignore the value of EL.

Part 2: Commands: EL=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 427 of 969

For the DS2020 Combitronic system, position error is strongly related to the FD value. When the
absolute value of the position error is greater than EL/FD motor shaft rotations, the error limit is
reached. For example, if EL=8192 and FD=65536, as default, the fault is signaled if the position error is
greater than 1/8 shaft rotation. Also, note that the position error limit, set by EL, is a RAM (volatile)
parameter on the DS2020. This means the user setting will be lost whenever the DS2020 Combitronic
system is reset, and it will revert to its default value (8192).

For the DS2020 Combitronic system, the position error timeout can be set through a CANopen
command (0x6066). See the SmartMotor™ CANopen Guide for details on sending commands over the
CANopen network.

This limit triggers fault 45 (shown in the DS2020 Combitronic system status word 0, bit 6); its reaction
can be set by FSAD(45) and read by RFSAD(45). By default, this reaction is 2: when position error EA is
greater than the limit EL, the drive is disabled.

EXAMPLE:
EL=1234 'Set maximum allowable error to 1234

If the motor dynamically exceeds 1234, it immediately faults on position error.

RELATED COMMANDS:
R EA Error Actual (see page 401)
R FD=expression Resolution to Set Units of Position/Velocity/Acceleration (see page 461)
R FSAD(n,m) Set Reaction to Fault (see page 467)
G Start Motion (GO) (see page 473)
MP Mode Position (see page 613)
MV Mode Velocity (see page 624)
R PA Position, Actual (see page 646)
R PC, PC(axis) Position, Commanded (see page 650)

Part 2: Commands: EL=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 428 of 969

ELSE
IF-Structure Command Flow Element

APPLICATION: Program execution and flow control

DESCRIPTION: Alternate action of IF formula or ELSEIF formula within
IF...ELSE...ENDIF control block

EXECUTION: Immediate

CONDITIONAL TO: Value of previous IF formula or ELSEIF formula.

LIMITATIONS: Must reside with IF formula...ENDIF program control block; can be
executed only from within a user program

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

An IF formula...ENDIF control block may optionally include an ELSE statement to control execution
when none of the test conditions are true. As illustrated in the next example, an IF formula can be used
when you want the SmartMotor™ to do one thing if the variable g=43 and another if it does not equal
that value.

EXAMPLE:
IF g==43

PRINT("Gee...43!",#13)
ELSE
 PRINT("No 43 for me.",#13)
ENDIF

The first line checks to see if g is equal to 43. If so, the string "Gee...43!" is sent out the primary serial
port. The ELSE in line 3 tells the SmartMotor what to do otherwise.

An IF control block can have only one ELSE statement. When the language interpreter evaluates the IF
formula as false (zero), an ELSE exists and there are no ELSEIF statements, the program branches
immediately to the statement after the ELSE. If there are ELSEIF formula clauses within the control
block, all the ELSEIF clauses must precede the ELSE clause. In these cases, the ELSE clause is only
executed when both the IF formula is false (zero) and all ELSEIF formulas are false (zero).

ELSE is analogous to the DEFAULT case for a SWITCH control block.

ELSE is not a valid terminal command; it is only valid within a user program.

Part 2: Commands: ELSE

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 429 of 969

EXAMPLE:
a=1 'PRINT("FALSE") is always executed
IF a==2

PRINT("TRUE")
ELSE
 PRINT("FALSE")
ENDIF

EXAMPLE:
IF a==1 'Only if a is NOT 1, 2, or 3

'will GOSUB5 be executed.
 GOSUB2
ELSEIF a==2

GOSUB3
ELSEIF a==3

GOSUB4
ELSE
 GOSUB5
ENDIF

C2 'Some subroutine code here
C3 'Some subroutine code here
C4 'Some subroutine code here
C5 'Some subroutine code here

RELATED COMMANDS:

ELSEIF formula IF-Structure Command Flow Element (see page 430)
ENDIF End IF Statement (see page 441)
IF formula Conditional Program Code Execution (see page 506)

Part 2: Commands: ELSE

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 430 of 969

ELSEIF formula
IF-Structure Command Flow Element

APPLICATION: Program execution and flow control

DESCRIPTION: Alternate evaluation of IF...ENDIF control block

EXECUTION: Immediate

CONDITIONAL TO: Value of formula and previous IF formula or ELSEIF formula

LIMITATIONS: Must reside with IF formula...ENDIF program control block; can be
executed only from within user program

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

An IF formula's control block may optionally include any number of ELSEIF formulas to perform
multiple evaluations in a specified order. For example, ELSEIF would be used when you want the
SmartMotor™ to do one thing if the variable g=43, another if g=43000, and another if g=-2.

For more detail about valid formulas that can be used, see IF formula on page 506.

EXAMPLE:
IF g==43

PRINT("Gee...43!",#13)
ELSEIF g==43000
 PRINT("43 grand for me.",#13)
ELSEIF g==-2
 PRINT("2?",#13)
ENDIF

The first line checks to see if g is equal to 43. If so, the string "Gee...43!" is sent out the primary serial
port and the IF control block terminates. If g is not 43, the program goes on to test if g is 43000. If it
is, then "43 grand for me." is sent out the primary serial port and the IF control block terminates.
Similarly, if g is not 43000, then the program goes on to test if g is -2. If it is, then "-2?" is sent out the
primary serial port and the IF control block terminates.

An IF control block can have multiple ELSEIF statements. If such an ELSEIF clause exists and the
language interpreter evaluates the IF formula to be false (zero), then the program will branch
immediately to first ELSEIF formula.

Part 2: Commands: ELSEIF formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 431 of 969

If the associated formula is true, then the subsequent clause is executed until an ELSEIF, ELSE or
ENDIF is encountered, and then execution branches to the ENDIF of the current IF control block. If the
first ELSEIF clause is not executed, then program execution continues at the next ELSEIF formula, and
so on, until all the ELSEIF formulas have been tested. In the case all ELSEIFs have false formulas and
an ELSE clause exists, that clause will be executed.

The ELSEIF statement is similar to the CASE number in a SWITCH control block. Note the difference—
ELSEIF handles formulas, but CASE only handles a fixed number.

ELSEIF is not a valid terminal command. It is only valid within a user program.

EXAMPLE:
a=3 'Will be found false
IF a==2

PRINT("222")
ELSEIF a==3 'Will be found true
 PRINT("333") 'so "333" will be printed.
ENDIF

EXAMPLE:
IF a==1 'Only if a is NOT 1, 2, or 3

'will GOSUB5 be executed.
 GOSUB2
ELSEIF a==2

GOSUB3
ELSEIF a==3

GOSUB4
ELSE
 GOSUB5
ENDIF

RELATED COMMANDS:

ELSE IF-Structure Command Flow Element (see page 428)
ENDIF End IF Statement (see page 441)
IF formula Conditional Program Code Execution (see page 506)

Part 2: Commands: ELSEIF formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 432 of 969

ENC0
Encoder Zero (Close Loop on Internal Encoder)

APPLICATION: Motion control

DESCRIPTION: Use internal encoder for the PID, actual position, actual velocity

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: Motor defaults to ENC0 (use internal encoder for PID, actual position)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: ENC0:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The SmartMotor™ can accept inputs from either the internal integrated encoder or an external source.
ENC0 causes the SmartMotor to read its position from the internal encoder; ENC1 uses the secondary
(external) encoder. When ENC0 is active, PA (position actual) will track the internal encoder. For more
details, see PA on page 646.

EXAMPLE:
ENC1 'Servo from external encoder
ENC0 'Restore default encoder behavior

RELATED COMMANDS:
R CTR(enc) Counter, Encoder, Step and Direction (see page 380)
ENCD(in_out) Set Encoder Bus Port as Input or Output (see page 437)
ENC1 Encoder Zero (Close Loop on External Encoder) (see page 433)
MS0 Mode Step, Zero External Counter (see page 616)
MF0 Mode Follow, Zero External Counter (see page 578)

Part 2: Commands: ENC0

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 433 of 969

ENC1
Encoder Zero (Close Loop on External Encoder)

APPLICATION: Motion control

DESCRIPTION: Use external encoder for the PID, actual position, actual velocity

EXECUTION: Immediate

CONDITIONAL TO: External encoder attached to motor

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: Motor defaults to ENC0 (use internal encoder for PID, actual position)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: ENC1:3
where ":3" is the motor address — use the actual address or a variable

DETAILED DESCRIPTION:

WARNING: If the ENC1 command is issued without an external encoder properly
electrically connected to the A and B encoder inputs and physically connected to
the shaft, the motor will run away with full speed and torque.

The SmartMotor™ can accept position information from either the internal integrated encoder or an
external source. The ENC1 command will cause the SmartMotor to servo from the secondary (external)
encoder channel instead of the internal encoder. When ENC1 is active, PA (Position Actual) will track
the external encoder.

The default mode of operation (accept position information from the internal encoder) is restored with
the ENC0 command.

NOTE: Always issue either MS0 or MF0 to select the input mode of the external encoder. Do not
assume one mode or the other.

l MS0 will set step/direction (and clear the position to 0)

l MF0 will set quadrature input (and clear the position to 0)

If the external encoder is not connected or is incorrectly connected, the motor may run away. In this
case, use the RPA command to check the position. If you can change the position by rotating the shaft,
then the encoder is connected but the A and B signals need to be swapped, which reverses the direction
described by the quadrature phasing of the A and B signals.

Part 2: Commands: ENC1

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 434 of 969

EXAMPLE:
MSO 'Set external encoder to step/direction (zero external encoder)
ENC1 'Servo from external encoder
ENC0 'Restore default encoder behavior

RELATED COMMANDS:
R CTR(enc) Counter, Encoder, Step and Direction (see page 380)
ENC0 Encoder Zero (Close Loop on Internal Encoder) (see page 432)
ENCD(in_out) Set Encoder Bus Port as Input or Output (see page 437)
MS0 Mode Step, Zero External Counter (see page 616)
MF0 Mode Follow, Zero External Counter (see page 578)

Part 2: Commands: ENC1

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 435 of 969

ENCCTL(function,value)
Encoder Control

APPLICATION: Motion control

DESCRIPTION: Special configuration options for encoder

EXECUTION: Immediate

CONDITIONAL TO: Depends on sub-command; certain specific encoders apply

LIMITATIONS: Command is not available for Class 6 M-series SmartMotors

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Input: ENCCTL(function,value)
 function: >= -1
 value: See details in next table

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.97.x / 5.98.x (D/M); 6.4.2.x (D)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The ENCCTL(function,value) command is used to set special configuration options for the encoder. It
has two input parameters:

l function: specifies the configuration setting for the encoder

l value: (where applicable) specifies the value to apply to the selected action

This command requires the absolute encoder option for the M-style motor. It does not apply to the
typical optical incremental encoder found in most SmartMotors.

NOTE: The D-style motor does not offer an ABS option.

Refer to the next table for details.

'function' 'value'
range

Encoder
type Description

-1 N/A ABS*, C6D** Removes the effect of the ENCCTL(0,value) command.
PA offset is then set as shipped from the factory.

0 -2147483648
to

2147483647

ABS*, C6D** Sets the current absolute position to 'value'. This cal-
culates the offset required and stores it in nonvolatile
memory. Motor firmware will adjust absolute position
with offset on every power up.

5 N/A ABS* Reset error flags.

Part 2: Commands: ENCCTL(function,value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 436 of 969

'function' 'value'
range

Encoder
type Description

6 0,1,2 ABS* Report encoder firmware version to the terminal.
value 0: Report lowest byte (minor rev)
value 1: Report mid byte (major rev)
value 2: Report high byte (firmware type)

11 -2 to 2 C6D** Selection of encoder resolution relative to 12-bit (4096
counts per revolution). Positive value increases res-
olution as a bit shift by that value; negative value
decreases resolution as a bit shift by that value. This set-
ting is non-volatile.
NOTE: The motor must be rebooted for this resolution
change to take effect.

12 0 C6D** Reload position (RPA) with absolute data from encoder.
*Requires the absolute encoder option for the Class 5 M-series motor.
**Requires the Class 6 D-series motor with batteryless absolute multiturn encoder (no battery backup
needed).

EXAMPLE:
EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
ENCCTL(0,0) 'Set absolute encoder to zero

RELATED COMMANDS:

ENCD(in_out) Set Encoder Bus Port as Input or Output (see page 437)

Part 2: Commands: ENCCTL(function,value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 437 of 969

ENCD(in_out)
Set Encoder Bus Port as Input or Output

APPLICATION: I/O control

DESCRIPTION: Set M-style motor Encoder Bus port as an input or output

EXECUTION: Immediate

CONDITIONAL TO: M-style SmartMotor

LIMITATIONS: Not available for Class 6 D-style

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: Motor defaults to ENCD(0) where encoder is input

FIRMWARE VERSION: 5.97.x / 5.98.x (D/M); 6.0.x (M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The M-style SmartMotor™ is equipped with a bidirectional Encoder Bus port, which can be configured
as an input or an output for use as a follower or controller, respectively, in an "electronic line shaft"
configuration.

NOTE: The D-style motor does not support this command and will return an error.

Using the Encoder Bus port along with Moog Animatics encoder bus cables and ENCD commands, you
can create a daisy-chained series of M-style motors. In this configuration:

l One motor will have ENCD(1) issued — this will be the controller.

l All other motors will have ENCD(0) (default) issued — these will be the follower devices.

ENCODER OUTPUT

For Class 6 M-style motors, the internal encoder is conditioned with error correction and resolution
adjustments when used normally for positioning (i.e., as seen in the RPA command “actual position”).
However, when directed as an output and received into another motor for the purposes of Follow mode,
there are several things to be aware of at the receiving motor:

l The resolution seen at the receiving motor will be 4096 instead of 4000. MFMUL and MFDIV will
need to compensate accordingly.

l The direction will be negative (assuming a straight-through connection of the 8-pin “Y” cable).

l There are non-accumulating, single-turn errors that are not compensated.

Part 2: Commands: ENCD(in_out)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 438 of 969

EXAMPLE:
ENCD(1) 'Encoder bus port set as output (controller)
ENCD(0) '(Default) Encoder bus port set as input (follower)

RELATED COMMANDS:
R CTR(enc) Counter, Encoder, Step and Direction (see page 380)
MC Mode Cam (Electronic Camming) (see page 555)
MF0 Mode Follow, Zero External Counter (see page 578)
MFR Mode Follow Ratio (see page 600)
MS0 Mode Step, Zero External Counter (see page 616)
MSR Mode Step Ratio (see page 618)

Part 2: Commands: ENCD(in_out)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 439 of 969

END
End Program Code Execution

APPLICATION: Program execution and flow control

DESCRIPTION: Terminates execution of the user program

EXECUTION: Immediate

CONDITIONAL TO: Valid whether issued by host or user program

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: END:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The END command terminates execution of a user program if there is one running. END may be issued
through serial communications channels or from within the user program. Each program must have a
minimum of at least one END statement.

NOTE: The SMI program will not compile a source file without at least one END present.

END only terminates the user program and internally resets the program pointer to the beginning of the
program; no other state, variable, mode or trajectory is affected.

User program interrupts will stop functioning when the END is encountered in a program or issued from
the serial communication channel.

The SMI program provides several toolbar buttons that send an END command. This is especially useful
when something prevents you from entering the END command at the terminal screen. For more details,
see the SMI software's online help file, which can be accessed from the Help menu or by pressing the
F1 key.

EXAMPLE:
IF Be END ENDIF 'Terminate user program
 'on position error

Part 2: Commands: END

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 440 of 969

EXAMPLE: (Routine homes motor against a hard stop)

MDS 'Using Sine mode commutation
KP=3200 'Increase stiffness from default
KD=10200 'Increase damping from default
F 'Activate new tuning parameters
AMPS=100 'Lower current limit to 10%
VT=-10000 'Set maximum velocity
ADT=100 'Set maximum accel/decel
MV 'Set Velocity mode
G 'Start motion
WHILE EA>-100 'Loop while position error is small
LOOP 'Loop back to WHILE
O=-100 'While pressed, declare home offset
S 'Abruptly stop trajectory
MP 'Switch to Position mode
VT=20000 'Set higher maximum velocity
PT=0 'Set target position to be home
G 'Start motion
TWAIT 'Wait for motion to complete
AMPS=1023 'Restore current limit to maximum
END 'End program

RELATED COMMANDS:

RCKS Report Checksum (see page 701)
RUN Run Program (see page 714)
RUN? Halt Program Execution Until RUN Received (see page 716)
Z Total CPU Reset (see page 846)

Part 2: Commands: END

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 441 of 969

ENDIF
End IF Statement

APPLICATION: Program execution and flow control

DESCRIPTION: IF formula... ENDIF control block terminator

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: Requires corresponding IF formula; can be executed only from within
a user program

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

Each control block beginning with an IF formula must have a corresponding ENDIF block exit statement.
Regardless of the execution path through the control block at run time, the program statement after
ENDIF is the common exit point branched to after processing the IF...ENDIF control block.

NOTE: There can only be one ENDIF statement for each IF statement; every IF structure must be
terminated with an ENDIF statement.

The common exit point after ENDIF is branched to when:
l Processing a true IF formula clause and encountering ELSEIF, ELSE or ENDIF

l Processing a true ELSEIF formula and encountering another ELSEIF, ELSE or ENDIF

l Processing an ELSE clause and encountering ENDIF

l All IF and ELSEIF formulas are false, and there is no ELSE clause

ENDIF is not a valid terminal command; it is only valid within a user program.

EXAMPLE:
a=1 'PRINT("FALSE") is always executed
IF a==2

PRINT("TRUE")
ELSE
 PRINT("FALSE")
ENDIF

Part 2: Commands: ENDIF

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 442 of 969

RELATED COMMANDS:

ELSE IF-Structure Command Flow Element (see page 428)
ELSEIF formula IF-Structure Command Flow Element (see page 430)
IF formula Conditional Program Code Execution (see page 506)

Part 2: Commands: ENDIF

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 443 of 969

ENDS
End SWITCH Structure

APPLICATION: Program execution and flow control

DESCRIPTION: SWITCH formula...ENDS control block terminator

EXECUTION: N/A

CONDITIONAL TO: N/A

LIMITATIONS: Requires corresponding SWITCH formula; can be executed only from
within a user program

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

Each SWITCH formula must have a corresponding ENDS block exit statement. Regardless of the
execution path through the control block at run time, any program statement immediately after ENDS
is the common exit point branched to when processing the SWITCH...ENDS control block.

NOTE: There can only be one ENDS statement for each SWITCH statement.

The common exit point after ENDS is branched to when:
l Encountering a BREAK

l Encountering ENDS

l The SWITCH formula value is not equal to any CASE number value, and there is no DEFAULT
statement label for the control block

ENDS is not a valid terminal command; it is only valid within a user program.

EXAMPLE:
SWITCH x
 CASE 1 PRINT("x=1",#13) BREAK
 CASE 2 PRINT("x=2",#13) BREAK
 CASE 3 PRINT("x=3",#13) BREAK

ENDS
'This is the exit point for SWITCH...ENDS code block

Part 2: Commands: ENDS

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 444 of 969

RELATED COMMANDS:

BREAK Break from CASE or WHILE Loop (see page 331)
CASE formula Case Label for SWITCH Block (see page 360)
DEFAULT Default Case for SWITCH Structure (see page 388)
SWITCH formula Switch, Program Flow Control (see page 766)

Part 2: Commands: ENDS

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 445 of 969

EOBK(IO)
Enable Output, Brake Control

APPLICATION: I/O control

DESCRIPTION: Configure a specified output to control an external brake

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: See below for range of IO — depends on motor series

TYPICAL VALUES: See below for range of IO — depends on motor series

DEFAULT VALUE: Class 5 motors default to disabled: EOBK(-1)
For Class 6 motors, the default is EOBK(8)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: EOBK(-1):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

WARNING: For Class 5 D-series motors, certain special features may override the
brake function. In particular, the MFR, MSR, MF0, MS0 commands, or any similar
feature from a network interface (including CANopen modes of operation: -1, -3, -
11), may interfere with a brake assignment to I/O 0 or 1). Therefore, use of I/O 0 or
1 is not recommended for the brake in the Class 5 D-series if follow or step modes
are used, regardless of SRC setting. For a programming example, refer to
Programming Note on page 446.

If an external brake is used instead of the optional internal brake, the EOBK(IO) command allows
automatic control of the external brake through a selectable I/O port pin.

EOBK(-1) disables the brake output from any I/O pin.

The logic state corresponds with the current brake-control method (i.e., BRKRLS, BRKENG, BRKSRV or
BRKTRJ).

Part 2: Commands: EOBK(IO)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 446 of 969

Motor Type IO Range
Brake

Engaged
Voltagea

Brake
Released
Voltageb

Class 5 D-style 0-6 5 0
Class 5 D-style with AD1
option

0-6 5 0
16-25 0 24

Class 5 M-style 0-10 0c 24c

Class 6 D-style, M-style 8 0 24
aCommanded to lock the motor shaft.
bCommanded to allow the motor to rotate.
cRequires firmware 5.x.3.60 or newer for Class 5 M-style motor.

Programming Note

NOTE: When using the EOBK command in programs with follow or step modes commands, be aware
of the information in this section.

In situations where EOBK(0) is used before follow or step modes commands, for example, MFR, note
that these commands interfere with I/O 0 and 1. This defeats, for example, EOBK(0), from working
properly when it is placed before MFR.

To program this correctly:
l Choose an output value for EOBK that is something other than 0 or 1, e.g., EOBK(2):

EOBK(2)
…
MFR
G

OR
l If EOBK(0) (or EOBK(1)) must be used, be sure to reissue EOBK after MFR but before the G

command:

MFR
EOBK(0)
G

EXAMPLE:
EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
EOBK(22) 'Set output 22 to brake control

RELATED COMMANDS:

BRKENG Brake Engage (see page 333)
BRKRLS Brake Release (see page 335)
BRKSRV Brake Servo, Engage When Not Servoing (see page 337)
BRKTRJ Brake Trajectory, Engage When No Active Trajectory (see page 339)

Part 2: Commands: EOBK(IO)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 447 of 969

EOFT(IO)
Enable Output, Fault Indication

APPLICATION: I/O control

DESCRIPTION: Configure a specified output for the fault indication.

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: N/A

LIMITATIONS: Class 5 motors are not supported.

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: See details for range of I/O — depends on motor series.

TYPICAL VALUES: See details for range of I/O — depends on motor series.

DEFAULT VALUE: For Class 6 motors, the factory EEPROM default is EOFT(9). Power-
on behavior depends on most recent setting of this command.

FIRMWARE VERSION: 6.0.2.35 (M); 6.4.2.x (D); no Class 5

COMBITRONIC: EOFT(-1):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

EOFT(-1) disables the fault indication from the assigned I/O pin and returns that pin to a user-
controlled state. This allows the "not fault" pin to be used as ordinary user I/O.

To return the "not fault" output function to the intended pin, issue EOFT(9) to set logical I/O 9 as the
assigned output for that feature.

NOTE: This command is non-volatile due to the potential for a glitch on start-up when used as user-
controlled output because this feature is enabled by default. In other words, if EOFT(-1) is issued to
disable this feature, it will stay disabled through a power-cycle so that the user-controlled
application of that I/O pin won't initially output the "not fault" signal.

Class Motor Type I/O Range
Class 5 D-style N/A

D-style with AD1 option N/A
M-style N/A

Class 6 M-style 9
D-style 9

Part 2: Commands: EOFT(IO)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 448 of 969

EXAMPLE:
EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
EOFT(9) 'Set output 9 as to "not fault" indication

RELATED COMMANDS:
OR(value) Output, Reset (see page 638)
OS(...) Output, Set (see page 640)
OUT(...)=formula Output, Activate/Deactivate (see page 644)

Part 2: Commands: EOFT(IO)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 449 of 969

EOIDX(number)
Encoder, Output Index

APPLICATION: I/O control

DESCRIPTION: Output encoder index to specified logical I/O

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: Command is not available for any Class 6 motors

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Depends on the motor model (see details)

TYPICAL VALUES: Depends on the motor model (see details)

DEFAULT VALUE: -1 (disabled)

FIRMWARE VERSION: 5.x.4.42 or later; no Class 6

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The EOIDX() command is used to output the encoder's index to the output specified by the number
parameter, where number=

l -1 to disable (this is the default state on power-up), or

l a valid logical I/O number is specified based on the motor style:
l For Class 5 D-Style:

number=6 to use logical I/O 6 (pin 7 on DA-15 15-pin connector)
l For Class 5 M-Style:

number=7 to use logical I/O 7 (pin 6 on circular M12 12-pin connector)

EXAMPLE: (enabling and disabling)

EOIDX(6) 'Enable for an SM23165D motor

EOIDX(-1) 'Disable

RELATED COMMANDS:

EIRE Enable Index Register, Encoder Capture (see page 419)
EIRI Enable Index Register, Input Capture (see page 421)

Part 2: Commands: EOIDX(number)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 450 of 969

EPTR=formula
EEPROM Pointer

APPLICATION: EEPROM (Nonvolatile Memory)

DESCRIPTION: Set user data EEPROM pointer

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: REPTR

WRITE: Read/write EPTR auto incremented as used

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: EEPROM address pointer (bytes)

RANGE OF VALUES: 0 to 32767

TYPICAL VALUES: 0 to 32767

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

EPTR sets the address location (pointer) within the nonvolatile, user-data EEPROM for the
data-retrieval read VLD(variable, number) function, and data-storage write VST(variable, number)
function. EPTR auto-increments by 1, 2 or 4 with each read or write access to the physical EEPROM
device according to the current data type.

EXAMPLE:
EPTR=4000 'Set EPTR = 4000
VST(hh,1) 'Store a 32-bit value; EPTR is now 4004
VST(ab[7],1) 'Store an 8-bit value; EPTR is now 4005
VST(aw[7],1) 'Store a 16-bit value; EPTR is now 4007
VST(x,3) 'Store three consecutive variables: x, y, z

'EPTR is now 4007+(3*4) or 4019
VST(x,4) 'INVALID !!! EPTR remains 4019 !!!

NOTE: You cannot store consecutive variables past their group range (i.e., consecutive variables a-z,
aa-zz or aaa-zzz must be stored within their groups).

VST(aa,26) 'Perfectly valid !!!
VST(aa,27) 'INVALID !!!

RELATED COMMANDS:

VLD(variable,number) Variable Load (see page 820)
VST(variable,number) Variable Save (see page 824)

Part 2: Commands: EPTR=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 451 of 969

ERRC
Error Code, Command

APPLICATION: System

DESCRIPTION: Get code for most recent command error

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RERRC

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: Output: 0-65535

TYPICAL VALUES: 0-33

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The ERRC command reports the most recent command error. Command errors originate from
SmartMotor commands through a user program, serial port or command encapsulation such as
CANopen object 2500h. The command error bit status word 2, bit 14 will be indicated when a new error
has occurred. The ERRC command can be used to determine which error has occurred. Refer to the next
table.

Code Description Notes
0 NO_ERROR
1 BAD_LENGTH A command is too long, or contains too many parameters if a variable list of

parameters is allowed.
2 BAD_ARGUMENT One or more of the values given to a command was out of range, so the com-

mand was aborted.
3 BAD_PACKET Command was not recognized. Check the command name and syntax.
4 BAD_OPERATION General error, command not allowed in the current state of the motor.
5 MISSING_ARGUMENT Incomplete formula
6 Reserved Reserved
7 ERROR_PARENTHESIS Reserved
8 Reserved Reserved
9 LENGTH_VIOLATION Embedded address in a user program was not found within the 64-character

buffer for IF, SWITCH, GOTO, etc.
10 BAD_ARRAY_ADDR Array index outside the defined range.
11 DIVIDE_BY_ZERO Attempt to divide by 0.
12 STACK_OVERFLOW No room on stack for another 10 GOSUB and INTERRUPTS use the same

stack.
13 STACK_UNDERFLOW RETURN or RETURNI with no place to return.

Part 2: Commands: ERRC

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 452 of 969

Code Description Notes
14 BAD_LABEL Label does not exist for GOSUB or GOTO.
15 NESTED_SWITCH Reserved
16 BAD_FORMULA Formula used in an assignment, IF, or SWITCH is improperly formatted.

Check syntax, parenthesis, operators, etc.
17 BAD_WRITE_LENGTH VST command amount written too long
18 NOT_USED Reserved
19 BAD_BIT Z{letter} command issued for a bit that cannot be reset; ITR command may

also show this error if incorrect bit number is specified.
20 INVALID_INTERRUPT EITR command for interrupt not defined.
21 NO_PERMISSION Operation or memory range is not user-accessible.
22 OPERATION_FAILED General error
23 MATH_OVERFLOW A math operation (add, multiply, etc.) overflowed, or an assignment to a vari-

able where the value is outside of the allowable range.
24 CMD_TIMEOUT Combitronic timeout
25 IO_NOT_PRESENT Attempt to access an I/O point that does not exist.
26 NO_CROSS_AXIS_SUPPORT Attempt to use Combitronic on a command that does not support it.
27 BAD_MOTOR_STATE Reserved
28 BAD_CROSS_AXIS_ID Combitronic command issued to an invalid remote device address (greater

than 127); requires firmware version 5.x.4.55 or later.
29 BAD_COMBITRONIC_FCODE The remote Combitronic does not support the command called, possibly due

to older firmware or different motor series.
30 BAD_COMBITRONIC_SFCODE The remote Combitronic does not support the command called, possibly due

to older firmware or different motor series.
31 EE_WRITE_QUEUE_FULL EEPROM in the motor was not able to save data as requested.
32 CAM_FULL Cam table cannot fit a table of the specified size (CTA command).
33 GOSUB_GOTO_BLOCKED GOSUB attempted but motor cannot process it. This could happen when

another command source (such as CANopen) attempts a GOSUB during a
user program upload/download.

EXAMPLE:
x=ERRC 'Assign error value to the variable x

ERRC may be used in SWITCH CASE code:

SWITCH ERRC
CASE 2 PRINT("BAD_ARGUMENT",#13) BREAK
CASE 11 PRINT("DIVIDE_BY_ZERO",#13) BREAK

ENDS

RELATED COMMANDS:
R ERRW Communication Channel of Most Recent Command Error (see page 453)

Part 2: Commands: ERRC

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 453 of 969

ERRW
Communication Channel of Most Recent Command Error

APPLICATION: System

DESCRIPTION: Get communication channel of most recent command error

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RERRW

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: Output: 0-65535

TYPICAL VALUES: 0-3

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The ERRW command reports the command source of the most recent command error. Command errors
originate from SmartMotor commands through a user program, serial port or command encapsulation
such as CANopen object 2500h. The command error bit status word 2, bit 14 will be indicated when a
new error has occurred. The ERRW command can be used to determine the source of the error. Refer to
the next table.

Code Description Notes
0 Com 0 Communications port 0 (RS-232 for D-style, RS-485 for M-style)
1 Com 1 Communications port 1 (RS-485 for D-style only)
2 Program From user program running in the motor
3 Reserved NOTE: Class 6 firmware 6.0.2.36 and previous reported code 3 for program.

This has been corrected in newer Class 6 firmware versions.
4 CANopen encapsulation Object 0x2500 encapsulation (CANopen or EtherCAT/CoE)
5 Modbus encapsulation 0 Serial command encapsulation over Modbus RTU attached to Com 0.
6 Modbus encapsulation 1 Serial command encapsulation over Modbus RTU attached to Com 1.
7 TCP encapsulation Class 6 only, EtherNet/IP firmware only. Introduced firmware version

6.0.2.37.
8 USB Class 6 only
9 Special system use

Part 2: Commands: ERRW

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 454 of 969

EXAMPLE:
x=ERRW 'Assign error value to the variable x

ERRW may be used in SWITCH CASE code:

SWITCH ERRW
CASE 0 PRINT("Command Error on Com Channel 0",#13) BREAK
CASE 1 PRINT("Command Error on Com Channel 1",#13) BREAK
CASE 2 PRINT("Command Error in User Program",#13) BREAK

ENDS

RELATED COMMANDS:
R ERRC Error Code, Command (see page 451)

Part 2: Commands: ERRW

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 455 of 969

ETH(arg)
Get Ethernet Status and Errors

APPLICATION: Communications control

DESCRIPTION: Assign the result to a variable, or report errors and certain status
information for the industrial Ethernet (IE) bus

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RETH(arg)

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 6.x (D/M); no Class 5

COMBITRONIC: EtherNet/IP supports Combitronic addressing for RETH(5) and RETH
(45) through RETH(49). E.g., RETH(5):3, a=ETH(5):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The ETH command is used to gather specific error or status information relating to the industrial
Ethernet (IE) bus interface.

l Assign the result to a program variable: x=ETH(arg)

l As a report: RETH(arg)

Specific features are based on the fieldbus network being used. See the corresponding SmartMotor
fieldbus guide for more details.

EXAMPLE:
x=ETH(0) 'Get the Ethernet status and assign it to x.

RELATED COMMANDS:

ETHCTL(function,value) Control Industrial Ethernet Network Features (see page 456)
IPCTL(function,"string") Set IP Address, Subnet Mask or Gateway (see page 515)
SNAME("string") Set PROFINET Station Name (see page 754)

Part 2: Commands: ETH(arg)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 456 of 969

ETHCTL(function,value)
Control Industrial Ethernet Network Features

APPLICATION: Communications control

DESCRIPTION: Control features of the industrial Ethernet (IE) network

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: See below

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 6.x (D/M); no Class 5

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The ETHCTL command is used to control the industrial Ethernet (IE) network features. Commands
execute based on the action argument, which controls Ethernet functions. After issuing an ETHCTL
command, the Ethernet error codes will be checked to determine the state of Object 2304h, sub-index
3, bit 6 (Ethernet error).

Specific features are based on the fieldbus network being used. See the corresponding SmartMotor
fieldbus guide for more details.

EXAMPLE:
ETHCTL(13,0) 'Disables 402 profile (motion) commands in EtherCAT
ETHCTL(13,1) 'Enables 402 profile (motion) commands in EtherCAT

RELATED COMMANDS:

IPCTL(function,"string") Set IP Address, Subnet Mask or Gateway (see page 515)
SNAME("string") Set PROFINET Station Name (see page 754)

Part 2: Commands: ETHCTL(function,value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 457 of 969

F
Force Into PID Filter

APPLICATION: Motion control; supports the DS2020 Combitronic system

DESCRIPTION: Load buffered PID values into PID filter

EXECUTION: Next PID sample

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: F:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The servo tuning parameters KA, KD, KG, KI, KL, KP, KS, and KV are all buffered parameters. Once
requested, these parameters take effect only when the F command is issued. This allows several
parameters to be changed simultaneously without intermediate tuning states causing disruptions.
Tuning parameters can be changed during a move profile, although caution is urged.

CAUTION: Use caution when changing the servo tuning parameters during a move
profile.

Different motor sizes have different optimal PID default gain values. A default set of tuning
parameters is in effect at power up or reset of the motor. However, the default tuning parameters are
optimized for an unloaded shaft.

EXAMPLE:
KP=100 'Initialize KP to a some value
F 'Load into present PID filter
G 'Start motion
WAIT=40000
KP=KP+10 'Increment the present KP gain value
F 'Change into filter
END

Part 2: Commands: F

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 458 of 969

EXAMPLE: (Routine homes motor against a hard stop)

MDS 'Using Sine mode commutation
KP=3200 'Increase stiffness from default
KD=10200 'Increase damping from default
F 'Activate new tuning parameters
AMPS=100 'Lower current limit to 10%
VT=-10000 'Set maximum velocity
ADT=100 'Set maximum accel/decel
MV 'Set Velocity mode
G 'Start motion
WHILE EA>-100 'Loop while position error is small
LOOP 'Loop back to WHILE
O=-100 'While pressed, declare home offset
S 'Abruptly stop trajectory
MP 'Switch to Position mode
VT=20000 'Set higher maximum velocity
PT=0 'Set target position to be home
G 'Start motion
TWAIT 'Wait for motion to complete
AMPS=1023 'Restore current limit to maximum
END 'End program

RELATED COMMANDS:
R KA=formula Constant, Acceleration Feed Forward (see page 526)
R KD=formula Constant, Derivative Coefficient (see page 528)
R KG=formula Constant, Gravitational Offset (see page 530)
R KI=formula Constant, Integral Coefficient (see page 532)
R KL=formula Constant, Integral Limit (see page 535)
R KP=formula Constant, Proportional Coefficient (see page 537)
R KS=formula Constant, Velocity Filter Option (for KD) (see page 540)
R KV=formula Constant, Velocity Feed Forward (see page 542)

Part 2: Commands: F

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 459 of 969

FAUSTS(x)
Returns Fault Status Word

APPLICATION: Motion control, specific to the DS2020 Combitronic system

DESCRIPTION: Reports the 32-bit fault status word x

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: Command is not available for Class 6 M-series SmartMotors

READ/REPORT: RFAUSTS(x)

WRITE: Read only

LANGUAGE ACCESS: N/A

UNITS: Number

RANGE OF VALUES: 0 to 2

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.0.4.55/5.98.4.55 (D/M); 6.4.2.x (D); ds2020_sa_1.0.0_combican
(DS2020)

COMBITRONIC: RFAUSTS(x):3, a=FAUSTS(x):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The =FAUSTS(x) command is used to report the 32-bit fault word "x" of the DS2020 Combitronic
system. The syntax of the command is:

a=FAUSTS(x)

where "a" is a variable and "x" is the 32-bit fault word.

The RFAUSTS(x) command is used to report the 32-bit fault word "x" of the DS2020 Combitronic
system. The syntax of the command is:

RFAUSTS(x)

where x is the 32-bit fault word.

The range of values is from 0 to 2:

0 = Fault Word 0

1 = Fault Word 1

2 = Fault Word 2

Note that there is also a set of DS2020 Combitronic system 16-bit status words, which can be
reported and assigned like the SmartMotor status words. For details, see Fault and Status Words -
DS2020 Combitronic System on page 932.

Part 2: Commands: FAUSTS(x)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 460 of 969

EXAMPLE:

RFAUSTS(2)

RELATED COMMANDS:
R B(word,bit) Status Byte (see page 297)
R FSAD(n,m) Set Reaction to Fault (see page 467)
R W(word) Report Specified Status Word (see page 833)

Part 2: Commands: FAUSTS(x)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 461 of 969

FD=expression
Resolution to Set Units of Position/Velocity/Acceleration

APPLICATION: Motion control, specific to the DS2020 Combitronic system

DESCRIPTION: Select the resolution that sets the units of pos-
ition/velocity/acceleration

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: Command is not available for Class 6 M-series SmartMotors

READ/REPORT: RFD

WRITE: Read/write

LANGUAGE ACCESS: Assignment only

UNITS: Number

RANGE OF VALUES: 0 to 4294967295

TYPICAL VALUES: 8192 - 2097152

DEFAULT VALUE: 65536

FIRMWARE VERSION: 5.0.4.55/5.98.4.55 (D/M); 6.4.2.x (D); ds2020_sa_1.0.0_combican
(DS2020)

COMBITRONIC: FD:3=1234, a=FD:3, RFD:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The FD command provides the ability to select the resolution that sets the units of
position/velocity/acceleration (i.e., how many counts there are in one motor revolution for position; how
many counts there are in one motor revolution per second for velocity, and how many counts there are
in one motor revolution per squared second for acceleration).

A report command, RFD, is also available that reads the currently set value.

The value range on the DS2020 Combitronic system is from 0 to 4294967295.

EXAMPLE:

FD=1234

RELATED COMMANDS:

ADT=formula Acceleration/Deceleration Target (see page 263)
R AT=formula Acceleration Target (see page 286)
R DT=formula Deceleration Target (see page 396)
R FAUSTS(x) Returns Fault Status Word (see page 459)
R FSAD(n,m) Set Reaction to Fault (see page 467)
R RES Resolution (see page 702)

Part 2: Commands: FD=expression

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 462 of 969

O=formula, O(trj#)=formula Origin (see page 628)
R PA Position, Actual (see page 646)
R PT=formula Position, (Absolute) Target (see page 690)
R VA Velocity Actual (see page 807)
R VT=formula Velocity Target (see page 828)

Part 2: Commands: FD=expression

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 463 of 969

FABS(value)
Floating-Point Absolute Value of ()

APPLICATION: Math function

DESCRIPTION: Gets the floating-point absolute value of the input value

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RFABS(value)

WRITE: N/A

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: Input: floating-point variable range; integer inputs or literal values
limited are limited to -2147483648 to 2147483647

Output: floating-point value range

TYPICAL VALUES: Input: floating-point variable range; integer inputs or literal values
limited are limited to -2147483648 to 2147483647

Output: floating-point value range

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

FABS takes an input and returns the floating-point absolute value:

af[1]=FABS(arg)

where arg may be an integer (e.g., a or aw[0]) or floating-point variable (e.g., af[0]). Integer or floating-
point constants may also be used (e.g., 23 or 23.7, respectively).

This command cannot have within the parenthesis: math operators, other parenthetical functions, or a
Combitronic request from another motor. For example, x=FABS(PA) is allowed, but x=FABS(PA:3) is not
allowed.

The result of this function is a floating-point type. If used in an equation, the operations in the equation
that are processed after this function are automatically promoted to a float. This is dependent on the
mathematical order of operations in the equation. As with other equations (e.g., x=a+b), the variable to
the left of "=" may be an integer variable to accept the result. However, the value will be truncated to
fit to that integer type. For example, the assignment "aw[0]=" will drop any fractional amount and
truncate the result to the range -32768 to 32767 (aw[0]=100.5 will report as 100, and aw[0]=40000.0
will report as -25536).

Part 2: Commands: FABS(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 464 of 969

EXAMPLE:
af[0]=FABS(-5.545) 'Set array variable = FABS(-5.545)
PRINT(af[0],#13) 'Print value of array variable af[0]
RFABS(-5.545) 'Report FABS(-5.545)
END

Program output is:

5.545000076
5.545000076

RELATED COMMANDS:
R ABS(value) Absolute Value of () (see page 255)

Part 2: Commands: FABS(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 465 of 969

FSA(cause,action)
Fault Stop Action

APPLICATION: Motion control

DESCRIPTION: Fault stop action

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: FSA(0,0)-FSA(1,2)

TYPICAL VALUES: FSA(0,0)-FSA(1,2)

DEFAULT VALUE: FSA(0,0)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: FSA(0,0):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

FSA(cause,action) is used to specify the fault type and fault mode. FSA(0,0) is the default
configuration, which sets the fault action of all types of faults to result in Mode Torque Brake (MTB).

FSA(cause,action) sets the fault stop action, where:

cause: specifies the type of fault that will trigger the action:

0 - All types of faults
1 - Hardware travel limit faults
2 - Soft limit faults (6.0.x.x firmware only)

action: specifies the desired action:

0 - Default action (MTB)
1 - Servo off (freewheel)
2 - X command
3 - Hard stop (6.0.x.x firmware only)

Part 2: Commands: FSA(cause,action)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 466 of 969

EXAMPLE: (Shows various values for the FSA command)

FSA(0,0) 'All Faults: servo will dynamically brake to stop.
FSA(0,1) 'All Faults: servo will turn off (freewheel).
FSA(0,2) 'All Faults: servo will decelerate to stop with "X" command.

FSA(1,0) 'Hardware Travel Limit Faults: servo will dynamically brake to stop.
FSA(1,1) 'Hardware Travel Limit Faults: servo will turn off (freewheel).
FSA(1,2) 'Hardware Travel Limit Faults: servo will decelerate to

'stop with "X" command.

RELATED COMMANDS:

BRKRLS Brake Release (see page 335)
MTB Mode Torque Brake (see page 622)
OFF Off (Drive Stage Power) (see page 636)
X Decelerate to Stop (see page 844)

Part 2: Commands: FSA(cause,action)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 467 of 969

FSAD(n,m)
Set Reaction to Fault

APPLICATION: Motion control, specific to the DS2020 Combitronic system

DESCRIPTION: Set reaction m to fault number n

EXECUTION: Immediate

CONDITIONAL TO: Can be used only when drive is not enabled

LIMITATIONS: Command is not available for Class 6 M-series SmartMotors

READ/REPORT: RFSAD(n)

WRITE: Read/write

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: n: 1 to 73
m: 0 to 4, (127 as report only)

TYPICAL VALUES: Depends on the fault

DEFAULT VALUE: Depends on the fault

FIRMWARE VERSION: 5.0.4.55/5.98.4.55 (D/M); 6.4.2.x (D); ds2020_sa_1.0.0_combican
(DS2020)

COMBITRONIC: FSAD(n,m):3, a=FSAD(n):3, RFSAD(n):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The FSAD(n,m) command is used to set reaction m to fault number n for the DS2020 Combitronic
system. The commands RFSAD(n) and =FSAD(n) are also available that read the currently set value for
fault number n. For fault numbers, refer to the Fault column in Fault Tables on page 932.

During its operation, the DS2020 Combitronic system can signal more than 70 faults, which are
organized into three 32-bit status words (0, 1, 2). For details, see Fault and Status Words - DS2020
Combitronic System on page 932.

To set reaction m to fault number n for the DS2020 Combitronic system, the syntax of the command is:

FSAD(n,m)

where n is the fault number and m is the desired reaction as shown:

m Reaction
0 None
1 Send CANopen emergency message
2 Disable power stage
3 Slow down ramp
4 Quick stop ramp

127 Disable power stage for hard faults (n = 1-8, 12, 13 and 19-21), not selectable or editable

Part 2: Commands: FSAD(n,m)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 468 of 969

l For hard faults, the reaction is always disable power stage. These faults respond to RFSA(n) with
127; they behave exactly like faults with code 2.

l Reactions 2, 3, 4 and 127 also send an emergency message.

l Reactions 3, 4, once the ramp is terminated, disable the drive. These two commands act like X, S
with that difference.

l If the motor has a brake and it is configured, once the drive is disabled (reaction 2, 3, 4, 127), the
brake is engaged.

Understanding Fault Reactions

NOTE: Setting fault reactions must be done carefully and with a precise knowledge of the physical
implications of the possible reactions to a particular fault.

When setting fault reactions, remember:
l Reactions 3, 4 (slow and quick stops) are executed by actively driving the motor, generating

PWM signals to control it
l Only reaction 2 and 127 immediately disables the PWM generation

l Reactions 0 and 1 (none and emergency message) leads to no physical action on the system

The next list describes some typical scenarios:
l Hard faults are locked to reaction 127, because it is impossible, from a hardware point of view,

to supply the PWM signal to control the motor.
l Overvoltage and overtemperature should not lead to an active motor stop, because the current

flow can worsen the situation; therefore, disabling the drive (reaction 2) is the best choice.
l Faults related to the position/velocity transducer should disable the drive, because if the

feedback reports an incorrect position, then an improper magnetic field is created, making the
motor no longer controllable.

l Negative and positive limit switches, if asserted, indicate that the maximum position has been
reached; therefore, the motor should be immediately stopped to avoid a mechanism crash.

EXAMPLE: (Shows various values for the FSAD command)

FSAD(72,2) 'Positive limit switch fault: servo will turn off
FSAD(73,4) 'Negative limit switch fault: servo quickly decelerates to stop

RELATED COMMANDS:

FSA(cause,action) Fault Stop Action (see page 465)

Part 2: Commands: FSAD(n,m)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 469 of 969

FSQRT(value)
Floating-Point Square Root

APPLICATION: Math function

DESCRIPTION: Gets the floating-point square root of the specified variable or num-
ber

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RFSQRT(value)

WRITE: N/A

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Floating-point number

RANGE OF VALUES: Input: Non-negative floating-point variable range, integer inputs or
literal values are limited to 0 to 2147483647

Output: Non-negative floating-point value range

TYPICAL VALUES: Input: Non-negative floating-point variable range, integer inputs or
literal values are limited to 0 to 2147483647

Output: Non-negative floating-point value range

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

FSQRT takes a value and reports the floating-point square root:

af[1]=FSQRT(arg)

where arg may be an integer (e.g., a or aw[0]) or floating-point variable (e.g., af[0]). Integer or floating-
point constants may also be used (e.g., 23 or 23.7, respectively).

This command cannot have within the parenthesis: math operators, other parenthetical functions, or a
Combitronic request from another motor. For example, x=FABS(PA) is allowed, but x=FABS(PA:3) is not
allowed.

The result of this function is a floating-point type. If used in an equation, the operations in the equation
that are processed after this function are automatically promoted to a float. This is dependent on the
mathematical order of operations in the equation. As with other equations (e.g., x=a+b), the variable to
the left of "=" may be an integer variable to accept the result. However, the value will be truncated to
fit to that integer type. For example, the assignment "aw[0]=" will drop any fractional amount and
truncate the result to the range -32768 to 32767 (aw[0]=100.5 will report as 100, and aw[0]=40000.0
will report as -25536).

Although the floating-point variables and their standard binary operations conform to IEEE-754 double
precision, the floating-point square root and trigonometric functions only produce IEEE-754 single-
precision results. For more details, see Variables and Math on page 198.

Part 2: Commands: FSQRT(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 470 of 969

EXAMPLE:
a=9 'Set variable a = 9
af[0]=FSQRT(4) 'Set array variable af[0] = FSQRT(4)
RFSQRT(4)
af[1]=FSQRT(6.5) 'Set array variable af[1] = FSQRT(6.5)
RFSQRT(6.5)
af[2]=FSQRT(8.5) 'Set array variable af[2] = FSQRT(8.5)
RFSQRT(8.5)
af[3]=FSQRT(a) 'Set array variable af[3] = FSQRT(a)
RFSQRT(a)
PRINT(af[0],", ",af[1],", ",af[2],", ",af[3],#13) 'Print variable values
END

Program output is:

2.000000000
2.549509763
2.915475845
3.000000000
2.000000000, 2.549509763, 2.915475845, 3.000000000

RELATED COMMANDS:
R SQRT(value) Integer Square Root (see page 757)

Part 2: Commands: FSQRT(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 471 of 969

FW
Firmware Version

APPLICATION: System

DESCRIPTION: Gets (reads) the firmware version

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RFW

WRITE: Read only

LANGUAGE ACCESS: N/A

UNITS: Long

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: a=FW:3, RFW:3

where ":3" is the motor address — use the actual address or a
variable

DETAILED DESCRIPTION:

The FW command gets (reads) the motor firmware version as a long (32-bit) value. This allows user
programs to inspect the current firmware version. A comparison can be made to check for an exact
version number. This can be a very important part of ensuring the integrity of a system. For instance, a
program can check the firmware version and refuse to operate a machine if an improper firmware
version has been loaded.

CAUTION: If a machine has been tested and certified using a particular firmware
version, then older or newer firmware may produce unexpected results.

The encoding of this 32-bit number uses the format of firmware numbering, but compresses this value
into a single (large) number. For example, firmware version 5.0.3.44 is converted to four individual
bytes: 5, 0, 3 and 44. These four bytes are then assembled into a 32-bit number — the 5 (class)
becomes the most significant byte, and the 44 (minor version) becomes the least significant byte. The
resulting number in decimal format is 83886892.

EXAMPLE:
PRINT(FW,#13) 'Print the motor firmware version as a long
RFW 'Report the motor firmware version as a long
END

Part 2: Commands: FW

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 472 of 969

Program output is:

83886892
83886892

RELATED COMMANDS:
R SP2 Bootloader Version (see page 755)

Part 2: Commands: FW

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 473 of 969

G
Start Motion (GO)

APPLICATION: Motion control; supports the DS2020 Combitronic system

DESCRIPTION: Initiate motion, or change trajectory parameters of existing motion.

EXECUTION: Immediate

CONDITIONAL TO: Drive is ready (status word 0, bit 0)

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: G:3 or G(0):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The G (Go) command is used to start motion or update buffered values such as speed or acceleration.

The G command is required in each of these cases:
l Initiate an Absolute Move in Mode Position (MP):

VT=10000 ADT=100 PT=1234 MP G

l Initiate a Relative Move in Mode Position (MP):

VT=10000 ADT=100 PRT=4000 MP G

l Initiate a Velocity in Mode Velocity (MV):

VT=10000 ADT=100 MV G

l Change to a new Velocity in Mode Position (MP) or Mode Velocity (MV):

VT=10000 ADT=100 MV G WAIT=1000 VT=VT*2 G

l Change to a new Acceleration in Mode Position (MP) or Mode Velocity (MV):

VT=10000 ADT=100 MV G WAIT=1000 ADT=200 G

l Initiate an Electronic Gear Ratio in Mode Follow with Ratio (MFR):

MF0 MFMUL=1 MFDIV=10 MFR G

Part 2: Commands: G

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 474 of 969

l Initiate an Electronic Gear Ratio in Mode Step with Ratio (MSR):

MF0 MFMUL=1 MFDIV=10 MSR G

l Initiate Cam Mode (MC):

MF0 MC G

l Initiate a phase offset move while in Electronic Gear Ratio in either Mode Follow or Mode Step:

MF0 MFMUL=1 MFDIV=10 MFR G MP(1) WAIT=2000 PRT=2000 VT=100 G(1)

NOTE: The MFR (or MSR) command does NOT need to come after the MFMUL and MFDIV
commands. If MFMUL or MFDIV is changed, the G command will enable the corresponding change in
ratio.

l Initiate a homing operation when the MH homing mode is selected, and associated commands
like HM_ADT, etc. have been set. Due to the nature of the homing mode being associated with
the CANopen homing state machine, the firmware remembers when the homing operation was
started from G, so that the S and X commands will know to abort that operation. There is finer
control that is possible by manipulation of the CANopen control word and other homing options
that are not covered here. For more details on SmartMotor homing operations, see the
SmartMotor Homing Procedures and Methods Application Note.

On power-up, the motor defaults to the off state with MP (Mode Position) buffered with no velocity or
acceleration values. As a result, if G is issued, the motor will immediately servo in place.

If a G command is transmitted and no motion results, any of these items may be the cause:
l EL=0 or too small
l ADT=0 or 1
l VT=0 or so small that motion is not visible
l Target position equals current position
l PRT=0
l Bh=1 the motor is hotter than max permitted temperature TH
l AMPS=0 or too small
l T=0 or too small
l Motor is in Torque mode
l Limit input switch(s) asserted
l External encoder signal not present or not changing (in Follow modes)
l Motor is part of a daisy chain that has not been properly configured
l Serial communications are good but target motor is not addressed
l Serial communications at incorrect baud rate
l Serial communications cable not attached or poorly connected
l Motor has no drive power
l Motor has a previous fault that needs to be cleared
l Motor has no connections to limit switch inputs on boot-up and, therefore, has a travel-limit

fault
l Drive enable is not asserted (M-style only)
l Bus voltage is too high or too low

Part 2: Commands: G

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 475 of 969

EXAMPLE:
ADT=100 'Set buffered accel/decel
VT=10000 'Set buffered velocity
PT=1000 'Set buffered position
MP 'Set buffered Position Mode
G 'Load buffered move, start motion

To servo in place:

PT=PA 'Set buffered position = actual position
G 'Set buffered Velocity

EXAMPLE: (Routine homes motor against a hard stop)

MDS 'Using Sine mode commutation
KP=3200 'Increase stiffness from default
KD=10200 'Increase damping from default
F 'Activate new tuning parameters
AMPS=100 'Lower current limit to 10%
VT=-10000 'Set maximum velocity
ADT=100 'Set maximum accel/decel
MV 'Set Velocity mode
G 'Start motion
WHILE EA>-100 'Loop while position error is small
LOOP 'Loop back to WHILE
O=-100 'While pressed, declare home offset
S 'Abruptly stop trajectory
MP 'Switch to Position mode
VT=20000 'Set higher maximum velocity
PT=0 'Set target position to be home
G 'Start motion
TWAIT 'Wait for motion to complete
AMPS=1023 'Restore current limit to maximum
END 'End program

RELATED COMMANDS:

ADT=formula Acceleration/Deceleration Target (see page 263)
R AT=formula Acceleration Target (see page 286)
R DT=formula Deceleration Target (see page 396)
EISM(x) E-Configure Input as Sync Controller (see page 423)
R EL=formula Error Limit (see page 426)
GS Start Synchronized Motion (GO Synchronized) (see page 487)
MC Mode Cam (Electronic Camming) (see page 555)
MFR Mode Follow Ratio (see page 600)
MP Mode Position (see page 613)
MV Mode Velocity (see page 624)
R PRT=formula Position, Relative Target (see page 683)
R PT=formula Position, (Absolute) Target (see page 690)
R VT=formula Velocity Target (see page 828)

Part 2: Commands: G

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 476 of 969

GETCHR
Next Character from Communications Port 0

APPLICATION: Communications control

DESCRIPTION: Get the next character in channel 0 serial input buffer

EXECUTION: Immediate

CONDITIONAL TO: Requires that a character is in the buffer; communications channel 0
must be open in data mode

LIMITATIONS: Maximum buffer length is 31 characters

READ/REPORT: RGETCHR

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: -1 to 255

TYPICAL VALUES: -1 to 255

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

GETCHR (or GETCHR0) reads and removes the next available character in the channel 0 serial receive
buffer. It is recommended to check that LEN>0 before issuing the GETCHR command. Otherwise, it is
possible to read an empty receive buffer.

Alternatively, the value returned from GETCHR can be checked to see if it is -1. However, do not use an
ab[] register to store the value in this case, because the value -1 will be aliased with the character 255.
Instead use an aw[] or al[] register.

Normally, the SmartMotor™ interprets incoming characters on communications channel 0 as commands.
However, it is sometimes useful to prevent that from happening and write a custom command
interpreter. This is accomplished by reopening the input channel in data mode with the OCHN command.
For details see OCHN(...) on page 632.

CAUTION: The OCHN command will cause the SmartMotor to ignore incoming
commands and can lock you out. Therefore, during development, prevent this by
using the RUN? command at the start of each program.

NOTE: If you get locked out and are unable to communicate with the SmartMotor, you may be able
to recover communications using the SMI software's Communication Lockup Wizard. For more
details, see Communication Lockup Wizard on page 31.

Part 2: Commands: GETCHR

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 477 of 969

EXAMPLE:
C20 'Place a label
IF LEN>0 'Check to see that LEN>0

c=GETCHR 'Get character from buffer
IF c==69 'Check to see if it is an E

END 'End the program
ENDIF

ENDIF
GOTO20 'Loop back to C20

RELATED COMMANDS:
R GETCHR1 Next Character from Communications Port 1 (see page 478)
R LEN Length of Character Count in Communications Port 0 (see page 544)
R LEN1 Length of Character Count in Communications Port 1 (see page 545)
OCHN(...) Open Channel (see page 632)

Part 2: Commands: GETCHR

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 478 of 969

GETCHR1
Next Character from Communications Port 1

APPLICATION: Communications control

DESCRIPTION: Get the next character in channel 1 serial input buffer

EXECUTION: Immediate

CONDITIONAL TO: Requires that a character is in the buffer; communications channel 1
must be open in data mode

LIMITATIONS: Maximum buffer length is 31 characters

READ/REPORT: RGETCHR1

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: -1 to 255

TYPICAL VALUES: -1 to 255

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.0.x, 5.16.x or 5.32.x series (D); 6.4.2.x (D)
RGETCHR1 requires: 5.x (D/M); 6.4.2.x (D)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

GETCHR1 reads and removes the next available character in the channel 1 serial receive buffer. It is
recommended to check that LEN1>0 before issuing the GETCHR1 command. Otherwise, it is possible to
read an empty receive buffer.

Alternatively, the value returned from GETCHR1 can be checked to see if it is -1. However, do not use
an ab[] register to store the value in this case, because the value -1 will be aliased with the character
255. Instead use an aw[] or al[] register.

Communications channel 1 can be used to accept special commands and/or data such as those from a
light curtain or a barcode reader. This is done by opening the input channel in data mode with the OCHN
command. For details see OCHN(...) on page 632.

CAUTION: The OCHN command will cause the SmartMotor to ignore incoming
commands and can lock you out. Therefore, during development, prevent this by
using the RUN? command at the start of each program.

NOTE: If you get locked out and are unable to communicate with the SmartMotor, you may be able
to recover communications using the SMI software's Communication Lockup Wizard. For more
details, see Communication Lockup Wizard on page 31.

NOTE: M-style motors do not have the second communications port (COM 1) needed to support the
LEN1 and GETCHR1 commands.

Part 2: Commands: GETCHR1

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 479 of 969

EXAMPLE:
C20 'Place a label
IF LEN1>0 'Check to see that LEN1>0

c=GETCHR1 'Get character from buffer
IF c==69 'Check to see if it is an E

END 'End the program
ENDIF

ENDIF
GOTO20 'Loop back to C20

RELATED COMMANDS:
R GETCHR Next Character from Communications Port 0 (see page 476)
R LEN Length of Character Count in Communications Port 0 (see page 544)
R LEN1 Length of Character Count in Communications Port 1 (see page 545)
OCHN(...) Open Channel (see page 632)

Part 2: Commands: GETCHR1

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 480 of 969

GOSUB(label)
Subroutine Call

APPLICATION: Program execution and flow control

DESCRIPTION: Perform subroutine beginning at C{number}

EXECUTION: Immediate

CONDITIONAL TO: C{number} previously defined

LIMITATIONS: Nesting must be <10 levels deep

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Input: 0–999

TYPICAL VALUES: Input: 0–999

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: GOSUB(0):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The GOSUB(label) command redirects program execution to a subroutine of the program marked with a
label C{number}. The end of every subroutine is marked by the RETURN statement, which causes
execution to return to the line after the corresponding GOSUB command.

NOTE: If a GOSUB is attempted to a label that does not exist, the GOSUB is ignored and the next
program line is executed.

Subroutines may call further subroutines — that is called nesting. There may be as many as a thousand
GOSUBs, but the nesting cannot exceed nine levels deep. A counter, conditional test or some other
method can be used to stay within the nesting limit. A subroutine may call itself, which is called
recursion. However, this practice is highly discouraged because it can lead to a stack overflow or
nesting limit.

NOTE: Subroutines present a great opportunity to partition and organize your code.

The STACK control flow command explicitly and deliberately destroys the RETURN address history.
Therefore, if you issue a STACK command, ensure that the program execution does not encounter a
RETURN before the next GOSUB.

The GOSUB command is valid from both serial channels and within a user program. There are three
forms of the command that are valid:

l GOSUB1 — Traditional format (no parenthesis)

l GOSUB(1) — With parenthesis

Part 2: Commands: GOSUB(label)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 481 of 969

l GOSUB(a) — Any variable may be used

The third format allows for highly flexible programs that can call an array of different subroutines.

EXAMPLE:
GOSUB20 'Run subroutine 20
GOSUB21 'Run subroutine 21
a=3
GOSUB25 'Run subroutine 25
END 'End code execution

C20 'Nested subroutine
GOSUB30
PRINT("20",#13)

RETURN

C21 'Nested subroutine
GOSUB30
PRINT("21",#13)

RETURN

C25 'Recursive subroutine
PRINT(" 25:",a)
a=a-1

 IF a==0
RETURN

ENDIF
GOSUB25

RETURN

C30 'Normal subroutine
PRINT(#13,"Subroutine Call ")

RETURN

Program output is:

Subroutine Call 20

Subroutine Call 21
 25:3 25:2 25:1

Referring to the previous example, the GOSUB commands: GOSUB20, GOSUB21, GOSUB25 or
GOSUB30 can also be issued from the terminal.

RELATED COMMANDS:

C{number} Command Label (see page 353)
GOTO(label) Branch Program Flow to a Label (see page 482)
STACK Stack Pointer Register, Clear (see page 761)

Part 2: Commands: GOSUB(label)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 482 of 969

GOTO(label)
Branch Program Flow to a Label

APPLICATION: Program execution and flow control

DESCRIPTION: Branch program execution to statement C{number}

EXECUTION: Immediate

CONDITIONAL TO: C{number} previously defined

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Input: 0–999

TYPICAL VALUES: Input: 0–999

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: GOTO(0):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

CAUTION: Extensive use of IF statements and GOTO branches can quickly make
your programs impossible to read or debug. Learn to organize your code with one
main loop using a GOTO and write the rest of the program with subroutines
(GOSUB). For details, see GOSUB(label) on page 480.

The GOTO{number} command unconditionally redirects program execution control to another part of the
program marked by the label C{number}.

NOTE: If a GOTO jump is attempted to a label that does not exist, the GOTO is ignored and the next
program line is executed. This can create problems because it would likely not be the correct
command order. Therefore, be certain that every GOTO has a corresponding label.

The GOTO{number} command is valid for both serial channels and within a user program. However, take
care not to issue a GOTO{number} command unless the corresponding C{number} label exists within the
stored program.

The GOTO command is valid from both the serial channels and within a user program. There are three
forms of the command that are valid:

l GOTO1 — Traditional format

l GOTO(1) — With parenthesis

l GOTO(a) — Any variable may be used

Part 2: Commands: GOTO(label)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 483 of 969

The third format allows for highly flexible programs that can jump to an array of different labels.

EXAMPLE:
C0 'Place main label

IF IN(0)==0
PRINT("Input 0 Low",#13)

ENDIF
GOTO0 'GOTO allows program to run forever

END

RELATED COMMANDS:

BREAK Break from CASE or WHILE Loop (see page 331)
C{number} Command Label (see page 353)
DEFAULT Default Case for SWITCH Structure (see page 388)
ELSE IF-Structure Command Flow Element (see page 428)
GOSUB(label) Subroutine Call (see page 480)

Part 2: Commands: GOTO(label)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 484 of 969

GROUP(function,value)
Group Address Settings

APPLICATION: Communications control

DESCRIPTION: Configure group addressing settings of Combitronic over Ethernet
(UDP) communications.

EXECUTION: Immediate

CONDITIONAL TO: Availability of Combitronic over Ethernet

LIMITATIONS: Not available with Combitronic over CAN bus

READ/REPORT: RGROUP(function)

WRITE: Read/write

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: See below

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 6.0.2.35 (M); 6.4.2.x (D) requires IE option; no Class 5

COMBITRONIC: GROUP(y,z):3, a=GROUP(y):3, RGROUP(y):3
where y is the function and z is a data value, see below;
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The GROUP command configures group addressing settings of Combitronic over Ethernet (UDP)
communications. The RGROUP command reports the state of those group addressing settings.

Addressing Modes

There are several modes of addressing in Combitronic over Ethernet (UDP):
l Point-to-point: a command with the specific address of a motor after the colon, for example,

a:3=5. This type of message is received by the intended target and is not affected by broadcast
or group-cast settings. It also has the advantage of being routable, i.e., it can find its destination
based on an IP address across IP network segments if necessary.

l Broadcast: a command is directed to ":0" as a target address. Broadcast can be invoked if the
group target is set to 0.

l Group-cast: a command is directed to ":255" as a target address.

Group addressing is analogous to tuning a radio to a particular channel—it allows the SmartMotor to
"listen" to a particular message group. Note that ordinary point-to-point messages, for example a:3=5,
will still be received by the intended destination (address 3) regardless of the group settings (target or
filter) of the sender or receiver, respectively. Likewise, broadcast messages, for example a:0=5, will not
be affected by group target or filter.

Part 2: Commands: GROUP(function,value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 485 of 969

Group-cast messages, e.g., a:255=5, will be sent to and received by motors according to their
respective group settings. For example:

motor 1: group target is set to 4

motor 2: group filter is set to 4

motor 3: group filter is set to 5

motor 4: group filter is set to 4

In this example, a message sent by motor 1 to address 255 will be received by motors 2 and 4 but not
by motor 3.

Also, note that commands PTS, PRTS and GS automatically transmit to Combitronic without the ":"
operator, and they specifically perform a group-cast. Therefore, the configured group outgoing target
setting is the destination group in these case. By default, this is 0, which will be treated by the
receiving motors as a broadcast.

GROUP Command

The GROUP command configures several different settings involving group addressing:

GROUP(function,value)

Two arguments are given:
l function: a number associated with the function column below

l value: a value passed to that function

Possible codes, values and meanings are described in the next table.

Function Value Meanings Default
Value Description

1 0: Outgoing group-directed messages (":255" or
PTS, PRTS, GS) are sent as a broadcast instead
of group-cast. All SmartMotors that are reach-
able by broadcast on this network will receive the
message.

1-255: the above cases are group-cast to this
specified group number. Only SmartMotors con-
figured with this group number as a filter (and
reachable in the same network) will receive.

0 Group number outgoing tar-
get (which group will out-
going group messages go
to).

2 0: Do not listen to any particular group (does not
affect the reception of a broadcast message).

1-255: listen to this specified group.

0 Group number incoming fil-
ter (which group does this
motor listen to).

3 0: Allow reception of broadcast.

1: Mask (block this type of traffic).

0 Mask (block) the reception
of broadcast messages.

4 0: Allow reception of group message.

1: Mask (block this type of traffic).

0 Mask (block) the reception
of group-cast messages.

Part 2: Commands: GROUP(function,value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 486 of 969

RGROUP Command

As mentioned at the beginning of this section, the RGROUP command reports the state of those group
addressing settings. The syntax for the RGROUP command is:

RGROUP(function)

where:

Function Description
1 Group number outgoing target (the group that outgoing group messages go to)
2 Group number incoming filter (the group that this motor listens to)
3 Mask (block) the reception of broadcast messages
4 Mask (block) the reception of group-cast messages

EXAMPLE: (These GROUP examples are commanded from the terminal window; however, the command
can also be used within a program)

NOTE: Comments are for information only and cannot be typed in the terminal window.

Example 1: group-cast

In motor 1:
GROUP(1,7) ' Set this motor (motor 1) to direct group-cast

' messages to group 7.
GROUP(2,7):2 ' Tell motor 2 to listen to group 7.
a:0=6 ' All motors receive this.
b:255=88 ' Group 7 motors receive this.

Example 2: broadcast with mask

In motor 1:
GROUP(3,1):2 ' Tell motor 2 to ignore broadcast.
a:0=6 ' Motor 2 ignores this message.
GROUP(3,0):2 ' Tell motor 2 to accept broadcast.
a:0=6 ' Motor 2 accepts this message.

EXAMPLE: (This GROUP example is commanded from the terminal window)

This example requests the value of motor 4's group number incoming filter.

RGROUP(2):4

The command reports:

3

RELATED COMMANDS:

GS Start Synchronized Motion (GO Synchronized) (see page 487)
PRTS(...) Position, Relative Target, Synchronized (see page 685)
PTS(...) Position Target, Synchronized (see page 692)

Part 2: Commands: GROUP(function,value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 487 of 969

GS
Start Synchronized Motion (GO Synchronized)

APPLICATION: Motion control

DESCRIPTION: Go synchronized; initiates linear-interpolated moves

EXECUTION: Immediate

CONDITIONAL TO: Combitronic network of motors is established

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M), not ver. 5.32.x.x; 6.x (D/M), M requires EIP option

COMBITRONIC: N/A (see details)

DETAILED DESCRIPTION:

NOTE: This command requires a Combitronic-supported motor. Although this command does not
support Combitronic syntax, it does use Combitronic communication to pass information between
other motors.

The GS (Go Synchronized) command is used to start synchronized motion or update buffered values
such as speed or acceleration. Only motors that have been included in the synchronized move group will
start when this is commanded. Motors are included in the synchronized move group using the PTS,
PTSS, PRTS or PRTSS command issued from a single controller motor.

If a GS command is transmitted and no motion results, refer to the G command for conditions that may
prevent motion (for details, see G on page 473). In addition, the PTS command has several aspects that
must be considered (for details, see PTS(...) on page 692).

While this command uses Combitronic communications, it does not have the typical Combitronic syntax
— that is because this command is intended to be called on the controller within the group of motors.
Combitronic communications will automatically be sent to the network so that participating motors will
receive this command.

Part 2: Commands: GS

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 488 of 969

EXAMPLE: (2-axis synchronized absolute move to position x:y for motors 1 and 2)

This sample code may be executed by any motor sharing the same CAN bus network with the motors
being commanded to move.

NOTE: Ensure no motor drive faults exist prior to calling this subroutine.

. . .
C20

OFF:0 MP:0 PRT:0=0 G TWAIT 'Initialize to stationary in position mode
PT:1=PC:1 PT:2=PC:2 'Set target and commanded positions equal
WAIT=50
VTS=v 'Set target path velocity
ADTS=a 'Set target path accel/decel
PTS(x;1,y;2) 'Use Position Target Synchronized moves
PTSS(a;3) 'Supplemental synchronized target
IF PTSD!=0 'Prevent 0-length (divide by zero) move

GS 'Go Synchronized
TSWAIT 'Wait until path move time is complete

ENDIF
RETURN

For additional examples, see A Note About PTS and PRTS on page 181.

RELATED COMMANDS:

ADTS=formula Acceleration/Deceleration Target, Synchronized (see page 265)
ATS=formula Acceleration Target, Synchronized (see page 292)
DTS=formula Deceleration Target, Synchronized (see page 399)
G Start Motion (GO) (see page 473)
PRTS(...) Position, Relative Target, Synchronized (see page 685)
PRTSS(...) Position, Relative Target, Synchronized, Supplemental (see page 688)
PTS(...) Position Target, Synchronized (see page 692)
R PTSD Position Target, Synchronized Distance (see page 695)
PTSS(...) Position Target, Synchronized Supplemental (see page 696)
R PTST Position Target, Synchronized Time (see page 698)
VTS=formula Velocity Target, Synchronized Move (see page 831)

Part 2: Commands: GS

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 489 of 969

HEX(index)
Decimal Value of a Hex String

APPLICATION: Data conversion

DESCRIPTION: Get (read) the integer value of an ASCII-encoded hex string

EXECUTION: Immediate

CONDITIONAL TO: ASCII-encoded hexadecimal number stored in the ab[] array

LIMITATIONS: Hex string maximum length is 8 digits long;
lower-case characters "a" though "f" are not supported

READ/REPORT: RHEX(index)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: Input: "0" to "FFFFFFFF"

Output: -2147483648 to 2147483647

TYPICAL VALUES: Input: "0" to "FFFFFFFF"

Output: -2147483648 to 2147483647

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The HEX command reads a hexadecimal (hex) string into a variable. The hex string must be ASCII-
encoded (i.e., the ASCII digits 0–9 and upper-case characters A–F).

NOTE: For Class 5 SmartMotors, lower-case characters are not supported in firmware versions
preceding 5.x.4.8.

This command uses the input ASCII bytes found in the ab[] registers and converts them to a value.

The argument into the HEX command is the starting ab[] register for the string. For example:

x=HEX(10)

In this case:
l The HEX command will start at ab[10] and proceed up to ab[17].

l The string must be stored with the most significant hex digit at the beginning. In this example, ab
[10] is the most significant digit, and ab[17] is the least significant digit.

l The string can be up to eight bytes long and terminated with a NULL value 0. If fewer than eight
digits are found, the termination is required so the command knows the size of the hex number.
If more than eight digits are found, only the first eight are processed.

l The result is an integer.

Part 2: Commands: HEX(index)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 490 of 969

EXAMPLE:
'Value of: 5862
'Hex of: 16E6
'Decimal representation of hex: 049 054 069 054
ab[10]=49
ab[11]=54
ab[12]=69
ab[13]=54
ab[14]=0 'Null character to end value
x=HEX(10) 'Set x to hex value
Rx 'Report x command

Program output is:

5862

RELATED COMMANDS:
R ATOF(index) ASCII to Float (see page 291)
R DFS(value) Dump Float, Single (see page 393)
R LFS(value) Load Float Single (see page 547)

Part 2: Commands: HEX(index)

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 491 of 969

HM_ADT=formula
Homing Accel/Decel Target

APPLICATION: Motion control

DESCRIPTION: Sets the homing buffered acceleration target (AT) /deceleration tar-
get (DT) at the same time

EXECUTION: Buffered until homing mode is started

CONDITIONAL TO: Homing mode operation, PIDn (sample rate), encoder resolution

LIMITATIONS: Must not be negative; effective value is rounded down to next even
number

READ/REPORT: RHM_ADT

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: (encoder counts / (sample²)) * 65536

RANGE OF VALUES: 0 to 2147483647

TYPICAL VALUES: 2 to 5000

DEFAULT VALUE: 4

FIRMWARE VERSION: 6.x (D/M); no Class 5

COMBITRONIC: HM_ADT:3=1234, a=HM_ADT:3, RHM_ADT:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEA command. For details, see SCALEA(m,d) on page
724. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The HM_ADT command sets the acceleration and deceleration rate of the homing motion profile. For
the homing mode, those rates are a single common value and cannot be set individually.

A useful Scale Factor Multiplier code example, which also illustrates the use of af[], SAMP and RES, is
shown in RES on page 702 and SAMP on page 722.
For more details on SmartMotor homing operations, see the SmartMotor Homing Procedures and Meth-
ods Application Note.

EXAMPLE:
ADT=20 'Set homing mode target accel/decel

RELATED COMMANDS:
R HM_MTHD=formula Homing Method (see page 492)
R HM_OSET=formula Homing Offset (see page 496)
R HM_VTS=formula Homing Velocity Target to Switch (see page 498)
R HM_VTZ=formula Homing Velocity Target to Zero (see page 500)
R MH Mode, Homing (see page 607)

HM_ADT=formula

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 492 of 969

HM_MTHD=formula
Homing Method

APPLICATION: Motion control

DESCRIPTION: Get/set the desired homing method

EXECUTION: Buffered until homing mode is started

CONDITIONAL TO: Homing mode

LIMITATIONS: N/A

READ/REPORT: RHM_MTHD

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: 1-14, 17-30, 33-35

TYPICAL VALUES: 1-14, 17-30, 33-35

DEFAULT VALUE: 0

FIRMWARE VERSION: 6.x (D/M); no Class 5

COMBITRONIC: HM_MTHD:3=14, a=HM_MTHD:3, RHM_MTHD:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

HM_MTHD sets the method for the homing operation. For example, HM_MTHD=1 specifies that the
homing operation will use the negative limit switch. The next table shows the available methods.

HM_
MTHD=

Reference
to motor's

index?

Final dir-
ection

Switch input
(s) Description

0 N/A N/A N/A Not a valid mode
1 yes positive negative

limit
Home to negative limit switch, then reference motor
index in the positive direction relative to negative
limit switch

2 yes negative positive limit Home to positive limit switch, then reference motor
index in the negative direction relative to positive
limit switch

3 yes negative home switch Home switch transitions to on state in positive dir-
ection; seek home switch, then reference motor index
in negative direction relative to home switch

4 yes positive home switch Home switch transitions to on state in positive dir-
ection; seek home switch, then reference motor index
in positive direction relative to home switch

HM_MTHD=formula

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 493 of 969

HM_
MTHD=

Reference
to motor's

index?

Final dir-
ection

Switch input
(s) Description

5 yes positive home switch Home switch transitions to on state in negative dir-
ection; seek home switch, then reference motor index
in positive direction relative to home switch

6 yes negative home switch Home switch transitions to on state in negative dir-
ection; seek home switch, then reference motor index
in negative direction relative to home switch

7 yes negative home switch
and positive
limit

Home switch is on state in the middle of the actuator
range with off state at both ends, positive limit
switch also required; Seeks the lower end of the home
area, then reference motor index in negative direction
relative to home switch

8 yes positive home switch
and positive
limit

Home switch is on state in the middle of the actuator
range with off state at both ends, positive limit
switch also required; Seeks the lower end of the home
area, then reference motor index in positive direction
relative to home switch

9 yes negative home switch
and positive
limit

Home switch is on state in the middle of the actuator
range with off state at both ends, positive limit
switch also required; Seeks the higher end of the
home area, then reference motor index in negative dir-
ection relative to home switch

10 yes positive home switch
and positive
limit

Home switch is on state in the middle of the actuator
range with off state at both ends, positive limit
switch also required; Seeks the higher end of the
home area, then reference motor index in positive dir-
ection relative to home switch

11 yes positive home switch
and negative
limit

Home switch is on state in the middle of the actuator
range with off state at both ends, negative limit
switch also required; Seeks the higher end of the
home area, then reference motor index in positive dir-
ection relative to home switch

12 yes negative home switch
and negative
limit

Home switch is on state in the middle of the actuator
range with off state at both ends, negative limit
switch also required; Seeks the higher end of the
home area, then reference motor index in negative dir-
ection relative to home switch

13 yes positive home switch
and negative
limit

Home switch is on state in the middle of the actuator
range with off state at both ends, negative limit
switch also required; Seeks the lower end of the home
area, then reference motor index in positive direction
relative to home switch

14 yes negative home switch Home switch is on state in the middle of the actuator

RHM_MTHD

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 494 of 969

HM_
MTHD=

Reference
to motor's

index?

Final dir-
ection

Switch input
(s) Description

and negative
limit

range with off state at both ends, negative limit
switch also required; Seeks the lower end of the home
area, then reference motor index in negative direction
relative to home switch

15 -16 N/A N/A N/A (reserved)
17 no positive negative

limit
Home to negative limit switch

18 no negative positive limit Home to positive limit switch
19 no negative home switch Home switch transitions to on state in positive dir-

ection; seek home switch
20 no positive home switch Home switch transitions to on state in positive dir-

ection; seek home switch
21 no positive home switch Home switch transitions to on state in negative dir-

ection; seek home switch
22 no negative home switch Home switch transitions to on state in negative dir-

ection; seek home switch
23 no negative home switch

and positive
limit

Home switch is on state in the middle of the actuator
range with off state at both ends, positive limit
switch also required; Seeks the lower end of the home
area

24 no positive home switch
and positive
limit

Home switch is on state in the middle of the actuator
range with off state at both ends, positive limit
switch also required; Seeks the lower end of the home
area

25 no negative home switch
and positive
limit

Home switch is on state in the middle of the actuator
range with off state at both ends, positive limit
switch also required; Seeks the higher end of the
home area

26 no positive home switch
and positive
limit

Home switch is on state in the middle of the actuator
range with off state at both ends, positive limit
switch also required; Seeks the higher end of the
home area

27 no positive home switch
and negative
limit

Home switch is on state in the middle of the actuator
range with off state at both ends, negative limit
switch also required; Seeks the higher end of the
home area

28 no negative home switch
and negative
limit

Home switch is on state in the middle of the actuator
range with off state at both ends, negative limit
switch also required; Seeks the higher end of the
home area

RHM_MTHD

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 495 of 969

HM_
MTHD=

Reference
to motor's

index?

Final dir-
ection

Switch input
(s) Description

29 no positive home switch
and negative
limit

Home switch is on state in the middle of the actuator
range with off state at both ends, negative limit
switch also required; Seeks the lower end of the home
area

30 no negative home switch
and negative
limit

Home switch is on state in the middle of the actuator
range with off state at both ends, negative limit
switch also required; Seeks the lower end of the home
area

31 - 32 N/A N/A N/A (reserved)
33 yes negative (none) Reference motor index in negative direction relative

to starting position
34 yes positive (none) Reference motor index in positive direction relative

to starting position
35 no N/A (none) No motion, reference the current position
36 N/A N/A N/A (reserved) Not supported
37 N/A N/A N/A (reserved) Not supported
38+ N/A N/A N/A (reserved)

For more details on SmartMotor homing operations, see the SmartMotor Homing Procedures and Meth-
ods Application Note.

EXAMPLE:
HM_MTHD=1 'Home using the negative limit switch

RELATED COMMANDS:
R HM_ADT=formula Homing Accel/Decel Target (see page 491)
R HM_VTS=formula Homing Velocity Target to Switch (see page 498)
R HM_VTZ=formula Homing Velocity Target to Zero (see page 500)
R MH Mode, Homing (see page 607)

RHM_MTHD

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 496 of 969

HM_OSET=formula
Homing Offset

APPLICATION: Motion control

DESCRIPTION: Get/set the homing offset

EXECUTION: Applied when homing process completes

CONDITIONAL TO: homing mode

LIMITATIONS: N/A

READ/REPORT: RHM_OSET

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Encoder counts

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -1000000000 to 1000000000

DEFAULT VALUE: 0

FIRMWARE VERSION: 6.x (D/M); no Class 5

COMBITRONIC: HM_OSET:3=1234, a=HM_OSET:3, RHM_OSET:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

HM_OSET offsets the location of the zero position from the reference home location when the homing
operation completes.

NOTE: This does not control where the motor will come to rest when the homing completes. The
location where the motor comes to rest is a result of deceleration and speed. The user application is
responsible for commanding a deliberate move to its desired location whether that is position:
home, position: zero, or some other place.

For more details on SmartMotor homing operations, see the SmartMotor Homing Procedures and Meth-
ods Application Note.

HM_OSET=formula

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 497 of 969

EXAMPLE:
HM_OSET=3000 'Set the homing offset

RELATED COMMANDS:
R HM_ADT=formula Homing Accel/Decel Target (see page 491)
R HM_MTHD=formula Homing Method (see page 492)
R HM_VTS=formula Homing Velocity Target to Switch (see page 498)
R HM_VTZ=formula Homing Velocity Target to Zero (see page 500)
R MH Mode, Homing (see page 607)

RHM_OSET

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 498 of 969

HM_VTS=formula
Homing Velocity Target to Switch

APPLICATION: Motion control

DESCRIPTION: Gets/sets the homing velocity to the switch position

EXECUTION: Buffered until homing mode is started

CONDITIONAL TO: Homing mode operation, PIDn (sample rate), encoder resolution

LIMITATIONS: N/A

READ/REPORT: RHM_VTS

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: (encoder counts / sample) * 65536

RANGE OF VALUES: 0 to 2147483647

TYPICAL VALUES: 1000 to 3200000

DEFAULT VALUE: 0

FIRMWARE VERSION: 6.x (D/M); no Class 5

COMBITRONIC: HM_VTS=1234:3, a=HM_VTS:3, RHM_VTS:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEV command. For details, see SCALEV(m,d) on page
728. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The HM_VTS command is used to get (read) or set the velocity target to the homing switch position:
l =HM_VTS

Read the current target velocity
l HM_VTS=frm

Set the target velocity

The HM_VTS command specifies a target velocity while in homing mode for the first phase of seeking
the limit and/or home switch as prescribed by the selected homing mode. Homing mode will select the
direction, so HM_VTS is given in positive values only. The value must be in the range 0 to 2147483647.
The value set by the HM_VTS command only governs the calculated trajectory of MH mode. The PID
compensator may need to "catch up" if the actual position has fallen behind the trajectory position. In
this case, the actual speed will exceed the target speed. The value defaults to zero, so it must be set
before any motion can occur. The new value takes effect during the homing process, so it must be set it
prior to activating homing mode.
For more details on SmartMotor homing operations, see the SmartMotor Homing Procedures and Meth-
ods Application Note.

Equations for Real-World Units:

HM_VTS=formula

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 499 of 969

Encoder resolution and sample rate can vary. Therefore, the general equations in the next table can be
used to convert the real-world units of velocity to a value for HM_VTS, where af[0] is already set with
the real-world unit value. These equations force floating-point calculations to avoid overflow and
maintain resolution. They can be placed in a user program, or they can be precalculated if the values of
SAMP and RES are known (SAMP and RES can be reported from the terminal using the RSAMP and
RRES commands, respectively). SAMP can change if the PID command is used. The value of RES can
differ between motor models.

Input as Value
in af[0] Equation

Radians/Sec HM_VTS=((af[0]*RES)/(PI*2.0*SAMP))*65536
Encoder Counts/Sec HM_VTS=(af[0]/(SAMP*1.0))*65536
Rev/Sec HM_VTS=((af[0]*RES)/(SAMP*1.0))*65536
RPM HM_VTS=((af[0]*RES)/(60.0*SAMP))*65536

A useful Scale Factor Multiplier code example, which also illustrates the use of af[], SAMP and RES, is
shown in RES on page 702 and SAMP on page 722.

EXAMPLE:
HM_VTS=40000 'Set the homing target velocity to the switch position

RELATED COMMANDS:
R HM_ADT=formula Homing Accel/Decel Target (see page 491)
R HM_MTHD=formula Homing Method (see page 492)
R HM_OSET=formula Homing Offset (see page 496)
R HM_VTZ=formula Homing Velocity Target to Zero (see page 500)
R MH Mode, Homing (see page 607)

HM_VTS=formula

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 500 of 969

HM_VTZ=formula
Homing Velocity Target to Zero

APPLICATION: Motion control

DESCRIPTION: Gets/sets the homing velocity to the zero position

EXECUTION: Buffered until homing mode is started

CONDITIONAL TO: Homing mode operation, PIDn (sample rate), encoder resolution

LIMITATIONS: N/A

READ/REPORT: RHM_VTZ

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: (encoder counts / sample) * 65536

RANGE OF VALUES: 0 to 2147483647

TYPICAL VALUES: 1000 to 3200000

DEFAULT VALUE: 0

FIRMWARE VERSION: 6.x (D/M); no Class 5

COMBITRONIC: HM_VTZ=1234:3, a=HM_VTZ:3, RHM_VTZ:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEV command. For details, see SCALEV(m,d) on page
728. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The HM_VTZ command is used to get (read) or set the velocity target to the homing zero position:
l =HM_VTZ

Read the current target velocity
l HM_VTZ=frm

Set the target velocity

The HM_VTZ command specifies a target velocity while in homing mode for the final phase of seeking
the home position as prescribed by the selected homing mode. Homing mode will select the direction,
so HM_VTS is given in positive values only. The value must be in the range 0 to 2147483647. The value
set by the HM_VTZ command only governs the calculated trajectory of MH mode. The PID compensator
may need to "catch up" if the actual position has fallen behind the trajectory position. In this case, the
actual speed will exceed the target speed. The value defaults to zero, so it must be set before any
motion can occur. The new value takes effect during the homing process, so it must be set it prior to
activating homing mode.
For more details on SmartMotor homing operations, see the SmartMotor Homing Procedures and Meth-
ods Application Note.

Equations for Real-World Units:

HM_VTZ=formula

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 501 of 969

Encoder resolution and sample rate can vary. Therefore, the general equations in the next table can be
used to convert the real-world units of velocity to a value for HM_VTZ, where af[0] is already set with
the real-world unit value. These equations force floating-point calculations to avoid overflow and
maintain resolution. They can be placed in a user program, or they can be precalculated if the values of
SAMP and RES are known (SAMP and RES can be reported from the terminal using the RSAMP and
RRES commands, respectively). SAMP can change if the PID command is used. The value of RES can
differ between motor models.

Input as Value
in af[0] Equation

Radians/Sec HM_VTZ=((af[0]*RES)/(PI*2.0*SAMP))*65536
Encoder Counts/Sec HM_VTZ=(af[0]/(SAMP*1.0))*65536
Rev/Sec HM_VTZ=((af[0]*RES)/(SAMP*1.0))*65536
RPM HM_VTZ=((af[0]*RES)/(60.0*SAMP))*65536

A useful Scale Factor Multiplier code example, which also illustrates the use of af[], SAMP and RES, is
shown in RES on page 702 and SAMP on page 722.

EXAMPLE:
HM_VTZ=20000 'Set the homing target velocity to zero position

RELATED COMMANDS:
R HM_ADT=formula Homing Accel/Decel Target (see page 491)
R HM_MTHD=formula Homing Method (see page 492)
R HM_OSET=formula Homing Offset (see page 496)
R HM_VTS=formula Homing Velocity Target to Switch (see page 498)
R MH Mode, Homing (see page 607)

HM_VTZ=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 502 of 969

I(enc)
Index, Rising-Edge Position

APPLICATION: I/O control

DESCRIPTION: Encoder value latched by rising-edge, hardware-index capture

EXECUTION: Immediate

CONDITIONAL TO: Index previously captured

LIMITATIONS: N/A

READ/REPORT: RI(enc); supports the DS2020 Combitronic system over RS-232 only

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Encoder counts

RANGE OF VALUES: Input: 0 or 1
Output: -2147483648 to 2147483647

TYPICAL VALUES: Input: 0 or 1
Output: -2147483648 to 2147483647

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: RI(0):3, x=I(0):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command for ENC1 only. For details, see SCALEP
(m,d) on page 726. For the list of SCALE-affected commands, see Commands Affected by SCALE on
page 903.

I (capital i) is the function that stores the last hardware-latched, rising-edge encoder index position. It
can be read from a host with the RI(enc) command, or it can be read by the program with a line such as
a=I(enc). The value of enc determines which encoder is being referred to:

l I(0) reads the internal encoder captured count

l I(1) reads the external encoder captured count

For the DS2020 Combitronic system, the report version of this command is used for a procedure to
find the position that corresponds to the physical zero position of the feedback sensor.

The index capture must first be armed with the Ai, Aij or Aji command before a capture occurs. The Bi
(enc) command can be used to detect the capture event (due to encoder index or input signal). These
capture events can also be detected by status bits in status word 1.

The index is a physical reference mark on the encoder. It is also referred to as a Z pulse, marker pulse,
and sometimes a combination of those names. It is typically used in homing sequences requiring a high
degree of repeatability.

Part 2: Commands: I(enc)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 503 of 969

Class 5.x and later firmware has the ability to redirect port 6 to the Index register input trigger, which
allows high-speed position capture through port 6. The internal or external encoder can use this source
through the EIRI and EIRE commands, respectively. When using this method, the previously-stated rules
for arming and clearing the index still apply.

For the DS2020 Combitronic system, RI(0) returns the position value that corresponds to the last
found physical zero position of the feedback sensor.

EXAMPLE: (homing against a hard stop with Index reference)

NOTE: This method of referencing against a hard stop can eliminate an additional switch and cable.

AMPS=100 'Current limit 10%
O=0 'Declare this home
MP 'Set Mode Position
ADT=100 'Set accel/decel
VT=100000 'Set Velocity
PT=-1000000 'Move negative
Ai(0)
G 'Start Motion
WHILE Bt 'Wait for motion fault

IF Bi(0) 'If rising-edge index pulse seen
a=I(0) 'Record rising-edge index position

ENDIF
LOOP 'Loop back to wait
O=-a 'Last Index is Home
PT=0 'Move to New Home
G 'Start Motion
AMPS=1023 'Restore power

RELATED COMMANDS:

Ai(enc) Arm Index Rising Edge (see page 270)
Aij(enc) Arm Index Rising Edge Then Falling Edge (see page 272)
Aj(enc) Arm Index Falling Edge (see page 274)
Aji(enc) Arm Index Falling Edge Then Rising Edge (see page 276)
R Bi(enc) Bit, Index Capture, Rising (see page 309)
R Bx(enc) Bit, Index Input, Real-Time (see page 351)
EIRE Enable Index Register, Encoder Capture (see page 419)
EIRI Enable Index Register, Input Capture (see page 421)

Part 2: Commands: I(enc)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 504 of 969

IDENT=formula
Set Identification Value

APPLICATION: EEPROM (Nonvolatile Memory)

DESCRIPTION: Get/set the SmartMotor identification value

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RIDENT

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 6.x (D/M); no Class 5

COMBITRONIC: IDENT:3=1234, a=IDENT:3, RIDENT:3
where ":3" is the motor address — use the actual address or a vari-
able
NOTE: Requires Class 6 EIP motor

DETAILED DESCRIPTION:

The IDENT command gets (reads) and sets the identification value for a SmartMotor. It doesn’t have
any effect on the motor — it’s just a non-volatile ID that is preserved between power cycles. It allows a
SmartMotor's user program to self-detect its designated purpose according to the programmer's
setting of IDENT on that motor.

l x=IDENT
Get the IDENT value and assign it to the variable x.

l IDENT=formula
Set IDENT equal to the value of the formula.

The value of IDENT can be reported with the RIDENT command.

EXAMPLE:

In the next example, the programmer has three motors on the machine. He wants to load the same user
program in all motors but have each motor do certain operations based on its IDENT value. That part of
the program could look like this:

IF IDENT=1
' Do the motor 1 operation - motors 2 and 3 ignore this.
ENDIF

Part 2: Commands: IDENT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 505 of 969

RELATED COMMANDS:
R IDENT=formula Set Identification Value (see page 504)
IF formula Conditional Program Code Execution (see page 506)
SWITCH formula Switch, Program Flow Control (see page 766)

Part 2: Commands: IDENT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 506 of 969

IF formula
Conditional Program Code Execution

APPLICATION: Program execution and flow control

DESCRIPTION: IF formula...ENDIF control block

EXECUTION: Immediate

CONDITIONAL TO: Value of formula after the IF statement

LIMITATIONS: Requires corresponding ENDIF; can be executed only from within user
program

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

DETAILED DESCRIPTION:

CAUTION: Extensive use of IF statements and GOTO branches can quickly make
your programs impossible to read or debug. Learn to organize your code with one
main loop using a GOTO and write the rest of the program with subroutines
(GOSUB). For details, see GOSUB(label) on page 480.

The IF statement provides a method for an executing program to choose between alternate execution
paths at runtime. In its simplest form, the IF control block consists of:

IF (formula) 'Evaluates as nonzero
'Run the code below the "IF" command

ENDIF

NOTE: Every IF structure must be terminated with an ENDIF.

Formula is a test condition — both mathematical comparisons and Boolean-logic bitwise comparisons
can be used.

l If the result of the formula is any value besides 0, then it is considered true and the code
immediately after the IF formula statement is executed.

l If the result of formula is 0, then it is considered false and execution skips the code after IF
formula. When false, execution skips to the next available ELSE, ELSEIF or ENDIF command.

The next table shows various forms of IF formulas and their descriptions:

Part 2: Commands: IF formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 507 of 969

IF
formula Description

IF a==b if a equals b
IF a!=b if a does not equal b
IF a<b if a is less than b
IF a<=b if a is less than or equal to b
IF a>b if a is greater than b
IF a>=b if a is greater than or equal to b
IF a&b if a AND b (bitwise comparison)
IF a|b if a OR b (bitwise comparison)
IF a if a does not equal zero (common shortcut to IF a==1)

The formula after the IF statement may:
l Include Combitronic values retrieved from other motors

l Consist of multiple variables and math operators

Note that there isn't a logical OR, AND or XOR. The bitwise operators may be used with proper
attention paid to the result of those operations. For example:

IF (a==b)|(c==d)

will be true if a equals b, OR if c equals d. The reason this works is that comparison operators such as
"==" return 0 if false and 1 if true. In a bitwise sense, this is setting bit 0 when true. The bitwise OR
operator "|" compares all bits. However, only the lowest bit becomes significant.

EXAMPLE: (If true, run some code.)

IF PA>12345 'If Position is above 12345
PRINT("position is greater than 12345",#13)

ENDIF 'This is the next line of code to be executed
'whether it is true or not.

EXAMPLE: (If true, run some code; ELSE if false, run some other code.)

IF PA>12345 'If Position is above 12345
 PRINT("position is greater than 12345",#13)
ELSE 'If it is no true
 PRINT("position is not greater than 12345",#13)
ENDIF 'This is the next line of code to be executed

EXAMPLE: (If true, run some code; else if something else is true, run that code.)

IF PA>12345 'If Position is above 12345
 PRINT("position is greater than 12345",#13)
ELSEIF PA==0 'If Position equals zero
 PRINT("position is at zero",#13)
ENDIF 'This is the next line of code to be executed

'even if position is not at zero and
'not greater than 12345.

Part 2: Commands: IF formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 508 of 969

EXAMPLE: (Test for two conditions and default to another line of code.)

IF PA>100 'If Position is above 100
 PRINT("position is greater than 100",#13)
ELSEIF PA<=0 'If it less than or equal to zero
 PRINT("position is <= to zero",#13)
ELSE
 PRINT("position is between zero and 100",#13)
ENDIF

EXAMPLE: (Binary bit mask comparison.)

a=10 'binary 1010
b=5 'binary 0101
c=7 'binary 0111
d=1 'binary 0001
e=0 'binary 0000
IF a&2 'Compare "a" and 2 as binary numbers bit for it.
 PRINT("This is true because 2 is 0010",#13)
ENDIF
IF a&d 'Are any bits in common with a AND d?
 PRINT("This will never PRINT",#13)
ENDIF
IF a|b 'Are there any bits that are 1 in either number?
 PRINT("This will print",#13)
ENDIF
IF d|e 'Even though e is zero, d is nonzero:
 PRINT("This will print",#13)
ENDIF
IF b&c
 PRINT("This is true",#13)
ENDIF
END

RELATED COMMANDS:

ELSE IF-Structure Command Flow Element (see page 428)
ELSEIF formula IF-Structure Command Flow Element (see page 430)
ENDIF End IF Statement (see page 441)

Part 2: Commands: IF formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 509 of 969

IN(...)
Specified Input

APPLICATION: I/O control

DESCRIPTION: Read the specified input or all inputs

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RIN(...)
; supports the DS2020 Combitronic system

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: Depends on motor series and command options (see details)

TYPICAL VALUES: Depends on motor series and command options (see details)

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: RIN(0):3, x=IN(0):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The IN command reads one specific input or all inputs. It can be used in these ways:
l x=IN(IO)

where IN(IO) specifies the I/O number that is assigned to the variable x. See the next table for
allowed range of IO. The result is a value of 0 or 1 assigned to x.

l x=IN(W,word)
where IN(W,word) specifies which word of I/O will be assigned to the variable x. A literal "W" is
used as the first argument. See the next table for the allowed values for "word" and the output
word value range.

l x=IN(W,word[,mask])
where IN(W,word[,mask]) specifies which word of I/O will be assigned to the variable x. A literal
"W" is used as the first argument. The mask argument is ANDed with the resulting response word
(equivalent to using the & operator on the result). See the next table for the allowed values for
"word", the output word value range, and the bitmask range.

Part 2: Commands: IN(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 510 of 969

Motor
Type

word
Allowed
Values

IO
Allowed
Range

Logic 0
Voltage

Logic 1
Voltage

Output
Word
Value
Range

Bitmask
Range

Class 5 D-style 0 0-6 0 5 0 to 255 0 to 255
7 (virtual only,
not connected)

N/A N/A

Class 5 D-style with
AD1 option

0 0-6 0 5 0 to 255 0 to 255
7 (virtual only,
not connected)

N/A N/A

1 16-25 0 24 0 to 1023 0 to 1023
Class 5 M-style 0 0-10 0 24 0 to 2047 0 to 2047
Class 6 M-style 0 0-9 0 24 0 to 2047 0 to 2047
Class 6 D-style 0 0-9 0 24 0 to 2047 0 to 2047
DS2020 Combitronic
system (report only)

0 0-5

NOTE: D-style motor's bit #7 does not connect to any physical I/O but does remember the state it
was set to.

Logical I/O User Read Commands Example for Class 5 M-style Motor

The next example describes the RIN() commands used for reading logical I/O status on the Class 5 M-
style motor.

Pin Conn Desc User Read Command
1 12 pin I/O-0 RIN(0)

. . .
4 5 pin I/O-2 RIN(2)

. . .
9 12 pin Not Fault Output RIN(11)

10 12 pin Drive Enable Input RIN(12)

Further, other commands are available for this purpose:
l Bits returned by Status Word 16, RW(16); for example:

RW(16) 2048

where "RW(16)" is the command typed in the Terminal Window; it returns "2048" indicating bit 7
is on. For more details on Status Word 16, see Status Word 16: On Board Local I/O Status:
M-Style Class 5 Motor on page 930. For more details on the RW(16) command, see RW(word) on
page 833.

Part 2: Commands: IN(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 511 of 969

l Bits returned by RIN(W,0); for example:

RIN(W,0) 2048

where "RIN(W,0)" is the command typed in the Terminal Window; it returns "2048" indicating bit
7 is on. For more details on Status Word 16, see Status Word 16: On Board Local I/O Status:
M-Style Class 5 Motor on page 930. For details on the RIN(W,0) command, see the Detailed
Description section of this topic.

EXAMPLE:

This line of code could be written in motor number 1 — it sets variable "a" in motor 2 equal to an I/O of
motor 3:

a:2=IN(0):3 'Set variable in motor 2 to I/O of motor 3

EXAMPLE: (Subroutine checks inputs and calls corresponding subroutines based on state; shows C#,
ENDIF, GOSUB, GOTO, IF and IN)

C10 'Place label
IF IN(0)==0 'Check Input 0

GOSUB20 'If Input 0 low, call Subroutine 20
ENDIF 'End check Input 0
IF IN(1)==0 'Check Input 1

a=30 'as example for below
GOSUB(a) 'If Input 1 low, call Subroutine 30

ENDIF 'End check Input 1
GOTO(10) 'Will loop back to C10

C20 'Subroutine 20 code here
RETURN

C30 'Subroutine 30 code here
RETURN

RELATED COMMANDS:

EIGN(...) Enable as Input for General-Use (see page 412)
EILN Enable Input as Limit Negative (see page 415)
EILP Enable Input as Limit Positive (see page 417)
EIRE Enable Index Register, Encoder Capture (see page 419)
EIRI Enable Index Register, Input Capture (see page 421)
EISM(x) E-Configure Input as Sync Controller (see page 423)
EOBK(IO) Enable Output, Brake Control (see page 445)
R INA(...) Specified Input, Analog (see page 512)
OR(value) Output, Reset (see page 638)
OS(...) Output, Set (see page 640)
OUT(...)=formula Output, Activate/Deactivate (see page 644)
UO(...)=formula User Status Bits (see page 795)
UR(...) User Bits, Reset (see page 801)
US(...) User Bits, Set (see page 803)

Part 2: Commands: IN(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 512 of 969

INA(...)
Specified Input, Analog

APPLICATION: I/O control

DESCRIPTION: Read the desired analog input

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RINA(...)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: Depends on motor series and command options (see details)

TYPICAL VALUES: Depends on motor series and command options (see details)

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: RINA(V1,3):3, x=INA(V1,3):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The INA command reads the specified analog input. It can be used in these ways:

NOTE: See the table after these descriptions for their application to each motor type.
l x=INA(A,IO)

where IN(A,IO) specifies a raw analog reading with 10-bit resolution and spanned over a signed
16-bit range, which is assigned to variable x.

l x=INA(V,IO)
where IN(V,IO) specifies a reading of the input voltage (V) in millivolts of analog input value and
for a given I/O (defined by IO), which is assigned to the variable x.

l x=INA(V1,IO)
where INA(V1,IO) specifies a scaled 0–5 VDC reading in millivolts (3456 would be 3.456 VDC) for
a given I/O (defined by IO) that is assigned to the variable x.

l x=INA(V2,IO)
where INA(V2,IO) specifies a scaled 0–.6 VDC reading in millivolts (60 would be 0.06 VDC) for a
given I/O (defined by IO) that is assigned to the variable x.

l x=INA(S,x)
where INA(S,x) specifies the sourcing voltage for the I/O port (when output pin); x is 16-25 for
the Class 5 D-style motor and 0 for the M-style motor.

Part 2: Commands: INA(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 513 of 969

l x=INA(T,x)
where INA(T,x) specifies the I/O chip temperature; x is 16-25 for the Class 5 D-style motor and 0
for the M-style motor.

Motor type IO Command Nominal input
voltage

Nominal value
reported

Class 5 D-style 0–6 INA(A,IO) 0–5V 0-32736
INA(V1,IO) 0-5000

Class 5 D-style with AD1
option

0–6 INA(A,IO) 0–5V 0-32736
INA(V1,IO) 0-5000

16–25 INA(A,IO) 0–24V 0-19000
INA(V,IO) 0-24000
INA(V1,IO) 0-5100a

INA(V2,IO) 0-610a

INA(S,x) 2400
INA(T,x) 30 (°C)

Class 5 M-style 0–10 INA(A,IO) 0–24V 0-19000
INA(V,IO) 0-24000
INA(V1,IO) 0-5100a

INA(V2,IO) 0-610a

INA(S,x) 2400
INA(T,x) 30 (°C)

Class 6 M-style 0–1 INA(A,IO) 0–18Vb 0-32736
INA(V,IO) 0-18000

Class 6 D-style 0–1 INA(A,IO) 0–10Vc 0-32736
INA(V,IO) 0-10000

11 INA(A,11) 4-20mA 4000-20000
nom; 0-
21483
min/max

a. 99999 indicates out of range.
b. Nominal input voltage can go up to 24V, but analog measurement is saturated at 18V (18000
millivolts)
c. Nominal input voltage can go up to 24V, but analog measurement is saturated at 10.67V
(10670 millivolts)

Part 2: Commands: INA(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 514 of 969

EXAMPLE: (Routine maintains velocity during analog drift)

EIGN(W,0) 'Disable hardware limits
KP=3020 'Increase stiffness from default
KD=10010 'Increase damping from default
F 'Activate new tuning parameters
ADT=100 'Set maximum accel/decel
MV 'Set to Velocity mode
d=10 'Analog dead band, 5000 = full scale
o=2500 'Offset to allow negative swings
m=40 'Multiplier for speed
w=10 'Time delay between reads
b=0 'Seed b
C10 'Label to create infinite loop
 a=INA(V1,3)-o 'Take analog 5 Volt full-scale reading
 x=a-b 'Set x to determine change in input
 IF x>d 'Check if change beyond dead band
 VT=b*m 'Multiplier for appropriate speed
 G 'Initiate new velocity
 ELSEIF x<-d 'Check if change beyond dead band
 VT=b*m 'Multiplier for appropriate speed
 G 'Initiate new velocity
 ENDIF 'End IF statement
 b=a 'Update b for prevention of hunting
 WAIT=w 'Pause before next read
GOTO10 'Loop back to label
END 'Required END (never reached)

RELATED COMMANDS:
R IN(...) Specified Input (see page 509)
R OC(...) Output Condition (see page 630)
R OF(...) Output Fault (see page 634)

Part 2: Commands: INA(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 515 of 969

IPCTL(function,"string")
Set IP Address, Subnet Mask or Gateway

APPLICATION: Communications control

DESCRIPTION: Sets IP address, subnet mask or Gateway

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: ASCII string: decimal values 0-255 separated by "."

RANGE OF VALUES: "0.0.0.0" to "255.255.255.255"

TYPICAL VALUES: "192.168.0.10" (IP address)

"255.255.255.0" (Subnet mask)

"192.168.0.1" (Gateway)

DEFAULT VALUE: "0.0.0.0" for IP address, subnet mask, gateway (disabled / automatic)

FIRMWARE VERSION: 6.x (D/M); no Class 5

COMBITRONIC: N/A

DETAILED DESCRIPTION:

NOTE: In PROFINET networks, IP addresses are usually automatically configured and this command
is not needed. Therefore, leave the address at the default (0.0.0.0) setting, unless you need to set a
specific static IP address.

The IPCTL command sets the IP address, subnet mask, or gateway for the industrial Ethernet network.
It uses the form IPCTL(function,"string"), where, for example:

l function is one of these codes:

function Description
0 Set IP address
1 Set subnet mask
2 Set gateway

l "string" is formatted as an IP address and entered as a string

Specific features are based on the fieldbus network being used. See the corresponding SmartMotor
fieldbus guide for more details.

EXAMPLE: (Set a static IP address)

IPCTL(0,"192.168.0.10") 'Set the IP address to 192.168.0.10

Part 2: Commands: IPCTL(function,"string")

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 516 of 969

RELATED COMMANDS:

SNAME("string") Set PROFINET Station Name (see page 754)
ETHCTL(function,value) Control Industrial Ethernet Network Features (see page 456)

Part 2: Commands: IPCTL(function,"string")

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 517 of 969

ITR(Int#,StatusWord,Bit#,BitState,Label#)
Interrupt Setup

APPLICATION: Program execution and flow control

DESCRIPTION: Configure a single user program interrupt

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: See details

TYPICAL VALUES: N/A

DEFAULT VALUE: Motor defaults with no ITR interrupts configured

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The ITR command is used to configure an interrupt. It uses the form:

 ITR(Int#,StatusWord,Bit#,BitState,Label#)

where:
l Int# — the interrupt number: 0–7 (lower number is a higher priority)

l StatusWord — the status word number containing the bit to monitor: 0–17

l Bit# — the bit number in a status word to monitor: 0–15

l BitState — the transition to this state will cause the interrupt: 0 or 1

l Label# — the label number to jump to for the interrupt routine: 0–999

After this command is called, the user-program process will be monitoring for the specified condition.
The interrupts are always triggered by an edge (transition) of a bit in the status words. Any status
word/bit can be chosen.

For the interrupt to function, a program must be running, ITRE must enable the global interrupt scanner,
and the individual interrupt must be enabled with the EITR() command. Often, a program is completely
interrupt driven and has no need for a main loop. In this case, the PAUSE command can be placed in a
program after the point where the interrupts are configured. This will halt the main loop of the program
but will leave the interrupts active. To understand where the PAUSE command will continue on with the
main program, see RESUME on page 704.

The routine called as label# must have a RETURNI at the end instead of a RETURN. Therefore, interrupt
routines should not be called as subroutines, and subroutines should not be called as interrupt routines.

Part 2: Commands: ITR(Int#,StatusWord,Bit#,BitState,Label#)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 518 of 969

If there is a need for an interrupt or a subroutine to use a common section of code, then the interrupt
routine should use a GOSUB to call the common section as a subroutine. This method ensures that the
return path will still go through the RETURNI at the end of the interrupt routine.

Lower interrupt ID numbers have a higher priority. This means that they can be called even while a
lower-priority interrupt routine is in progress. In some cases, this may cause a conflict, which is
typically referred to as a race condition. For example, if both routines need to read and modify the
same variable, one or more interrupts can be disabled while this critical operation is taking place. For
more details, see the command pair DITR(int) on page 394 and EITR(int) on page 424, or the command
pair ITRD on page 520 and ITRE on page 522.

NOTE: Each instance of the ITR command must have a unique interrupt level. It is not possible to
configure two different events with the same priority level.

An interrupt will block itself, but an interrupt does not automatically disable itself. In other words, the
interrupt-causing event will call the interrupt routine. If the same event occurs again while inside the
interrupt routine, then that same interrupt routine will be called again. This occurs immediately after
the first instance of the interrupt routine completes.

EXAMPLE: (Fault handler routine)

EIGN(W,0,12) 'Another way to disable Travel Limits
ZS 'Clear faults
ITR(0,0,0,0,0) 'Set Int 0 for: stat word 0, bit 0,

'shift to 0, to call C0
EITR(0) 'Enable Interrupt 0
ITRE 'Global Interrupt Enable
PAUSE 'Pause to prevent "END" from disabling

'Interrupt, no change to stack
END

C0 'Fault handler
MTB:0 'Motor will turn off with Dynamic

'braking, tell other motors to stop.
US(0):0 'Set User Status Bit 0 to 1 (Status

'Word 12 bit zero)
US(ADDR):0 'Set User Status Bit "address" to 1

'(Status Word 12 Bit "address")
RETURNI

Part 2: Commands: ITR(Int#,StatusWord,Bit#,BitState,Label#)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 519 of 969

EXAMPLE: (Routine pulses output on a given position)

EIGN(W,0) 'Disable limits
ZS 'Clear faults
ITR(0,4,0,0,1) 'ITR(int#,sw,bit,state,lbl)
ITRE 'Enable all interrupts
EITR(0) 'Enable interrupt 0
OUT(1)=1 'Set I(0)/O B to output, high
ADT=100 'Set maximum accel/decel
VT=100000 'Set maximum velocity
MP 'Set Position mode
'****Main Program Body****
WHILE 1>0
 O=0 'Reset origin for move
 PT=40000 'Set final position
 G 'Start motion
 WHILE PA<20000 'Loop while motion continues
 LOOP 'Wait for desired position to pass
 OUT(1)=0 'Set output low
 TMR(0,400) 'Use timer 0 for pulse width
 TWAIT
 WAIT=1000 'Wait 1 second
LOOP
END
'****Interrupt Subroutine****
C1
 OUT(1)=1 'Set output high again
RETURNI

RELATED COMMANDS:

DITR(int) Disable Interrupts (see page 394)
EISM(x) E-Configure Input as Sync Controller (see page 423)
EITR(int) Enable Interrupts (see page 424)
END End Program Code Execution (see page 439)
ITR(Int#,StatusWord,Bit#,BitState,Label#) Interrupt Setup (see page 517)
ITRD Interrupt Disable, Global (see page 520)
ITRE Enable Interrupts, Global (see page 522)
PAUSE Pause Program Execution (see page 648)
RESUME Resume Program Execution (see page 704)
RETURNI Return Interrupt (see page 708)
RUN Run Program (see page 714)

Part 2: Commands: ITR(Int#,StatusWord,Bit#,BitState,Label#)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 520 of 969

ITRD
Interrupt Disable, Global

APPLICATION: Program execution and flow control

DESCRIPTION: Disable the global interrupt scanner

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: Motor defaults to ITRD (interrupts disabled)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: ITRD:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The ITRD command is used to disable the global interrupt scanner. ITRD disables the interrupt handler
and clears Interrupt Status Bit 15.

For an interrupt to work, it must be enabled at two levels: first, enable individual interrupts with the
EITR() command using the interrupt number from 0 to 7 in the parentheses; second, enable all
interrupts with the ITRE command. Similarly, individual interrupts can be disabled with the DITR()
command, and all interrupts can be disabled with the ITRD command. For more details, see the
corresponding command-description pages.

NOTE: The user program must also be running for interrupts to take effect, the END and RUN
commands will reset the state of the interrupts to defaults.

For more details, see Interrupt Programming on page 195.

Part 2: Commands: ITRD

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 521 of 969

EXAMPLE:
ITR(0,4,0,0,10) 'Set interrupt 0 for: status word 16, bit 3,

'Shift to 0, to call C10
TMR(0,2000) 'Timer bit set for 2 seconds
EITR(0)
ITRE 'Global enable interrupts
MP 'Set position mode
VT=10000 'Set velocity target
ADT=50 'Set accel/decel target
PT=10000 'Set position target
G 'Start motion
TWAIT 'Wait for move to complete
'Use ITRD to disable all interrupts after move
ITRD 'Global disable interrupts
END 'Ending the program will also disable interrupts

C10 'Interrupt subroutine
PRINT("Move exceeded two seconds.",#13)

RETURNI

Program output is:

Move exceeded two seconds.

RELATED COMMANDS:

DITR(int) Disable Interrupts (see page 394)
EISM(x) E-Configure Input as Sync Controller (see page 423)
EITR(int) Enable Interrupts (see page 424)
END End Program Code Execution (see page 439)
ITR(Int#,StatusWord,Bit#,BitState,Label#) Interrupt Setup (see page 517)
ITRD Interrupt Disable, Global (see page 520)
ITRE Enable Interrupts, Global (see page 522)
PAUSE Pause Program Execution (see page 648)
RESUME Resume Program Execution (see page 704)
RETURNI Return Interrupt (see page 708)
RUN Run Program (see page 714)

Part 2: Commands: ITRD

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 522 of 969

ITRE
Enable Interrupts, Global

APPLICATION: Program execution and flow control

DESCRIPTION: Enable the global interrupt scanner

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: Configuration of interrupt (ITR), program running, individual interrupt
enabled (EITR)

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: Motor defaults to ITRD (interrupts disabled)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: ITRE:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The ITRE command is used to enable the global interrupt scanner.

For an interrupt to work, it must be enabled at two levels: first, enable individual interrupts with the
EITR() command using the interrupt number from 0 to 7 in the parentheses; second, enable all
interrupts with the ITRE command. Similarly, individual interrupts can be disabled with the DITR()
command, and all interrupts can be disabled with the ITRD command. For more details, see the
corresponding command-description pages.

NOTE: The user program must also be running for interrupts to take effect, the END and RUN
commands will reset the state of the interrupts to defaults.

For more details, see Interrupt Programming on page 195.

Part 2: Commands: ITRE

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 523 of 969

EXAMPLE: (Routine pulses output on a given position)

EIGN(W,0) 'Disable limits
ZS 'Clear faults
ITR(0,4,0,0,1) 'ITR(int#,sw,bit,state,lbl)
ITRE 'Enable all interrupts
EITR(0) 'Enable interrupt 0
OUT(1)=1 'Set I(0)/O B to output, high
ADT=100 'Set maximum accel/decel
VT=100000 'Set maximum velocity
MP 'Set Position mode
'****Main Program Body****
WHILE 1>0
 O=0 'Reset origin for move
 PT=40000 'Set final position
 G 'Start motion
 WHILE PA<20000 'Loop while motion continues
 LOOP 'Wait for desired position to pass
 OUT(1)=0 'Set output low
 TMR(0,400) 'Use timer 0 for pulse width
 TWAIT
 WAIT=1000 'Wait 1 second
LOOP
END
'****Interrupt Subroutine****
C1
 OUT(1)=1 'Set output high again
RETURNI

RELATED COMMANDS:

DITR(int) Disable Interrupts (see page 394)
EISM(x) E-Configure Input as Sync Controller (see page 423)
EITR(int) Enable Interrupts (see page 424)
END End Program Code Execution (see page 439)
ITR(Int#,StatusWord,Bit#,BitState,Label#) Interrupt Setup (see page 517)
ITRD Interrupt Disable, Global (see page 520)
PAUSE Pause Program Execution (see page 648)
RESUME Resume Program Execution (see page 704)
RETURNI Return Interrupt (see page 708)
RUN Run Program (see page 714)

Part 2: Commands: ITRE

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 524 of 969

J(enc)
Index, Falling-Edge Position

APPLICATION: I/O control

DESCRIPTION: Encoder value latched by falling-edge, hardware-index capture

EXECUTION: Immediate

CONDITIONAL TO: Index previously captured

LIMITATIONS: N/A

READ/REPORT: RJ(enc)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Encoder counts

RANGE OF VALUES: Input: 0 or 1
Output: -2147483648 to 2147483647

TYPICAL VALUES: Input: 0 or 1
Output: -2147483648 to 2147483647

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: RJ(0):3, x=J(0):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command for ENC1 only. For details, see SCALEP
(m,d) on page 726. For the list of SCALE-affected commands, see Commands Affected by SCALE on
page 903.

J is the function that stores the last hardware-latched, falling-edge encoder index position. It can be
read from a host with the RJ(enc) command, or it can be read by the program with a line such as a=J
(enc). The value of enc determines which encoder is being referred to:

l J(0) reads the internal encoder captured count

l J(1) reads the external encoder captured count

The index capture must first be armed with the Aj, Aij or Aji command before a capture will occur. The
Bj(enc) command can be used to detect the capture event (due to encoder index or input signal). These
capture events can also be detected by status bits in status word 1.

The index is a physical reference mark on the encoder. It is also referred to as a Z pulse, marker pulse,
and sometimes a combination of those names. It is typically used in homing sequences requiring a high
degree of repeatability.

Class 5.x and later firmware has the ability to redirect port 6 to the Index register input trigger, which
allows high-speed position capture through port 6. The internal or external encoder can use this source

Part 2: Commands: J(enc)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 525 of 969

through the EIRI and EIRE commands, respectively. When using this method, the previously-stated rules
for arming and clearing the index still apply.

EXAMPLE: (homing against a hard stop with Index reference)

NOTE: This method of referencing against a hard stop can eliminate an additional switch and cable.

AMPS=100 'Current limit 10%
O=0 'Declare this home
MP 'Set Mode Position
ADT=100 'Set accel/decel
VT=100000 'Set velocity
PT=-1000000 'Move negative
Aj(0)
G 'Start motion
WHILE Bt 'Wait for motion fault

IF Bj(0) 'If rising-edge index pulse seen
a=J(0) 'Record falling-edge index position

ENDIF
LOOP 'Loop back to wait
O=-a 'Last index is home
PT=0 'Move to new home
G 'Start motion
AMPS=1023 'Restore power

RELATED COMMANDS:

Ai(enc) Arm Index Rising Edge (see page 270)
Aij(enc) Arm Index Rising Edge Then Falling Edge (see page 272)
Aj(enc) Arm Index Falling Edge (see page 274)
Aji(enc) Arm Index Falling Edge Then Rising Edge (see page 276)
R Bi(enc) Bit, Index Capture, Rising (see page 309)
R Bx(enc) Bit, Index Input, Real-Time (see page 351)
EIRE Enable Index Register, Encoder Capture (see page 419)
EIRI Enable Index Register, Input Capture (see page 421)

Part 2: Commands: J(enc)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 526 of 969

KA=formula
Constant, Acceleration Feed Forward

APPLICATION: Motion control

DESCRIPTION: Acceleration feed forward

EXECUTION: Buffered until an F command is issued

CONDITIONAL TO: N/A

LIMITATIONS: Must be positive

READ/REPORT: RKA

WRITE: Read/write

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: 0 to 65535

TYPICAL VALUES: 0 to 3000

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: KA:3=1234, a=KA:3, RKA:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

KA sets the buffered acceleration feed-forward gain. The acceleration feed-forward term helps the PID
filter cope with the predictable effects of acceleration and inertia.

NOTE: The motion or servo modifications from this command must be applied by the F function. For
details, see F on page 457.

The KA gain factor is only applied in position (MP) and velocity (MV) moves. The default value for KA is
0, and acceptable values range from 0 to 65535.

It is difficult or impossible to tune KA in low-inertia systems. Even in high-inertia systems, it can be a
challenge to observe the benefit during brief acceleration periods. Therefore, if you think that
modifying KA could be useful, use the SMI software Tuner tool for assistance.

EXAMPLE:
KA=200 'Set buffered acceleration feed forward
F 'Update PID filter

Part 2: Commands: KA=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 527 of 969

RELATED COMMANDS:

F Force Into PID Filter (see page 457)
R KD=formula Constant, Derivative Coefficient (see page 528)
R KG=formula Constant, Gravitational Offset (see page 530)
R KI=formula Constant, Integral Coefficient (see page 532)
R KL=formula Constant, Integral Limit (see page 535)
R KP=formula Constant, Proportional Coefficient (see page 537)
R KS=formula Constant, Velocity Filter Option (for KD) (see page 540)
R KV=formula Constant, Velocity Feed Forward (see page 542)

Part 2: Commands: KA=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 528 of 969

KD=formula
Constant, Derivative Coefficient

APPLICATION: Motion control; supports the DS2020 Combitronic system

DESCRIPTION: Derivative coefficient

EXECUTION: Value of buffered derivative gain

CONDITIONAL TO: Buffered until an F command is issued

LIMITATIONS: Must be positive

READ/REPORT: RKD

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: 0 to 65535
DS2020 Combitronic system: 0 to 2147483647

TYPICAL VALUES: 400 to 2000
DS2020 Combitronic system: 50 to 150

DEFAULT VALUE: Motor-size dependent

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: KD:3=1234, a=KD:3, RKD:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

KD sets the value of the PID filter's derivative gain. If the PID filter gives stable performance, KD is
usually the vibration absorbing or damping term.

NOTE: The motion or servo modifications from this command must be applied by the F function. For
details, see F on page 457.

For any stable KP value, there is an optimum KD value, and any KD value outside of that causes the
motor to be unstable. Therefore, an effective way to tune the filter is to repetitively raise the KP value,
and then run the KD term up and down to find the optimum setting. The point at which the KD term
cannot stabilize the servo is the point where KP has gone too far.

To test each setting, twist the shaft of the motor and let it go while looking for an abrupt and firm
response. Typically, a KD value of approximately ten times KP is a good starting point when KP<300.
The SMI software Tuner tool can be useful in finding the optimum setting. However, it does not provide
tuning information for the DS2020 Combitronic system.

EXAMPLE:
KD=2000 'Set buffered derivative gain
F 'Update PID filter

Part 2: Commands: KD=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 529 of 969

EXAMPLE: (Routine homes motor against a hard stop)

MDS 'Using Sine mode commutation
KP=3200 'Increase stiffness from default
KD=10200 'Increase damping from default
F 'Activate new tuning parameters
AMPS=100 'Lower current limit to 10%
VT=-10000 'Set maximum velocity
ADT=100 'Set maximum accel/decel
MV 'Set Velocity mode
G 'Start motion
WHILE EA>-100 'Loop while position error is small
LOOP 'Loop back to WHILE
O=-100 'While pressed, declare home offset
S 'Abruptly stop trajectory
MP 'Switch to Position mode
VT=20000 'Set higher maximum velocity
PT=0 'Set target position to be home
G 'Start motion
TWAIT 'Wait for motion to complete
AMPS=1023 'Restore current limit to maximum
END 'End program

RELATED COMMANDS:
R KA=formula Constant, Acceleration Feed Forward (see page 526)
R KG=formula Constant, Gravitational Offset (see page 530)
R KI=formula Constant, Integral Coefficient (see page 532)
R KL=formula Constant, Integral Limit (see page 535)
R KP=formula Constant, Proportional Coefficient (see page 537)
R KS=formula Constant, Velocity Filter Option (for KD) (see page 540)
R KV=formula Constant, Velocity Feed Forward (see page 542)

Part 2: Commands: KD=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 530 of 969

KG=formula
Constant, Gravitational Offset

APPLICATION: Motion control

DESCRIPTION: Gravitational offset

EXECUTION: Buffered until an F command is issued

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RKG

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: -16777216 to 16777215

TYPICAL VALUES: 0

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: KG:3=1234, a=KG:3, RKG:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

KG sets the gravity compensation term of the PID filter.

NOTE: The motion or servo modifications from this command must be applied by the F function. For
details, see F on page 457.

Simple PID filters are not equipped for a constant force asserted on the system. An example of a
constant force is that induced by gravity acting on a vertically moving axis. The KG term exists to
offset the PID filter output in a way that removes the effect of these constant forces.

To set KG, set KP and KI to zero and servo in place. The load will want to fall, so you will need to hold it
in place. Increase or decrease KG until the load barely holds. Record that value and then continue
increasing the parameter until the load begins to move upward. Now record that value. The optimum KG
value is the average of the two recorded values.

Valid values for KG are integers from -16777216 to 16777215; the default value is 0. As a result, you
may not see much of an effect until KG has a magnitude greater than one million. However, extremely
high values will cause rapid pulse-width modulation (PWM) saturation, which results in uncontrollable
servo behavior.

EXAMPLE:
KG=1000000 'Set buffered gravity term
F 'Update PID filter

RELATED COMMANDS:
R KA=formula Constant, Acceleration Feed Forward (see page 526)

Part 2: Commands: KG=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 531 of 969

R KD=formula Constant, Derivative Coefficient (see page 528)
R KI=formula Constant, Integral Coefficient (see page 532)
R KL=formula Constant, Integral Limit (see page 535)
R KP=formula Constant, Proportional Coefficient (see page 537)
R KS=formula Constant, Velocity Filter Option (for KD) (see page 540)
R KV=formula Constant, Velocity Feed Forward (see page 542)

Part 2: Commands: KG=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 532 of 969

KI=formula
Constant, Integral Coefficient

APPLICATION: Motion control; supports the DS2020 Combitronic system

DESCRIPTION: Value of buffered integral gain

EXECUTION: Buffered until an F command is issued

CONDITIONAL TO: N/A

LIMITATIONS: Must be positive; total integral limited by KL (does not apply to
DS2020 Combitronic system)

READ/REPORT: RKI

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: 0 to 32767
DS2020 Combitronic system: 0 to 2147483647

TYPICAL VALUES: 0 to 1000
DS2020 Combitronic system: 0

DEFAULT VALUE: Motor-size dependent
DS2020 Combitronic system: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: KI:3=1234, a=KI:3, RKI:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The KI term sets the integral gain of the PID filter. The integral compensator is not for stability. Raising
it too far will cause the motor to become unstable.

NOTE: The motion or servo modifications from this command must be applied by the F function. For
details, see F on page 457.

The KI command is designed to compensate for constant offsets, such as friction in the system or other
constant forces. The amount of effort sent to the motor from the KP term of the PID is proportional to
the distance it is from its target position. Therefore, as the target gets close, the small position error
results in a torque that is too small to allow the motor to reach the final target. The KI term helps to
overcome this limitation by adding up, over a long period of time, this small but constant error. This
ensures that the servo can eventually reach a position error of 0 at a steady-state speed.

The integral term of the PID filter is generated by taking the sum of the position error of every sample
and then multiplying by KI. By doing this, it creates a force that increases over time until the error is
corrected. This correction occurs at a rate set by the KI parameter. Therefore, when tuning your motor
for stability, it is a good idea to set KI to zero and then increase it until you see that it reliably
compensates your system.

Part 2: Commands: KI=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 533 of 969

NOTE: For the SmartMotor, KL, the protective upper limit, must be set high enough to allow KI to do
its job.

NOTE: For the DS2020 Combitronic system, KI can compensate static position error if KV and KP
are not sufficient.

EXAMPLE:
KI=250 'Set buffered integral gain
F 'Update PID filter

RELATED COMMANDS:
R KA=formula Constant, Acceleration Feed Forward (see page 526)
R KD=formula Constant, Derivative Coefficient (see page 528)
R KG=formula Constant, Gravitational Offset (see page 530)
R KL=formula Constant, Integral Limit (see page 535)
R KP=formula Constant, Proportional Coefficient (see page 537)
R KS=formula Constant, Velocity Filter Option (for KD) (see page 540)
R KV=formula Constant, Velocity Feed Forward (see page 542)

Part 2: Commands: KI=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 534 of 969

KII=formula
Current Control Loop: Integrator

APPLICATION: Motion control

DESCRIPTION: Current control loop integral gain

EXECUTION: Immediate

CONDITIONAL TO: MDC commutation active

LIMITATIONS: D-style motor does not support this command

READ/REPORT: RKII

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: 0 to 32767

TYPICAL VALUES: 0 to 16000

DEFAULT VALUE: From factory settings in EEPROM

FIRMWARE VERSION: 5.97.x / 5.98.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

NOTE: The D-style motor does not support this command.

The KII command sets or reports the current-loop integral gain when operating in field-oriented,
current-control mode (i.e., MDC).

There are two PI current-control loops when operating in field-oriented control: one loop controls the
torque-producing current "Iq", and the other loop nullifies currents that do not produce torque "Id".
Both loops use the parameters KPI and KII to control proportional and integral response.

The default (factory) settings for KPI and KII will work in most applications. These should only be
changed if necessary and if the effects on the application are understood.

EXAMPLE: (Shows use of KII and KPI)

KPI=2000 'Set proportional gain for MDC mode
KII=1500 'Set integral gain for MDC mode
F 'Initiate gains
MDC 'Change to Current mode commutation

RELATED COMMANDS:
R KPI=formula Current Control Loop: Proportional (see page 539)

Part 2: Commands: KII=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 535 of 969

KL=formula
Constant, Integral Limit

APPLICATION: Motion control

DESCRIPTION: Integral gain limit

EXECUTION: Buffered until an F command is issued

CONDITIONAL TO: N/A

LIMITATIONS: Must be positive

READ/REPORT: RKL

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: 0 to 32767

TYPICAL VALUES: 0 to 32767

DEFAULT VALUE: 32767

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: KL:3=1234, a=KL:3, RKL:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The KL term sets a limit on the effects of the KI term. Because KI integrates the position error over
time, it can eventually dominate the PID equation. To prevent this, KL sets an upper limit on the KI
term.

NOTE: The motion or servo modifications from this command must be applied by the F function. For
details, see F on page 457.

The KI term will raise the power to the servo as a function of time. If there is something other than
friction blocking the servo and it is unable to move, the amount of torque given to the motor can
quickly become extremely large. Therefore, KL may be an option for dynamic (changing) loads, or for
overshoot due to KI "wind-up".

Note that KL restricts the ability of the PID to compensate for speed when using voltage commutation
modes like MDT, MDE and MDS. Therefore, the position error (EA) may become larger as speed
increases.

EXAMPLE:
KL=1500 'Set buffered integral limit
F 'Update PID filter

RELATED COMMANDS:
R KA=formula Constant, Acceleration Feed Forward (see page 526)
R KD=formula Constant, Derivative Coefficient (see page 528)
R KG=formula Constant, Gravitational Offset (see page 530)

Part 2: Commands: KL=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 536 of 969

R KI=formula Constant, Integral Coefficient (see page 532)
R KP=formula Constant, Proportional Coefficient (see page 537)
R KS=formula Constant, Velocity Filter Option (for KD) (see page 540)
R KV=formula Constant, Velocity Feed Forward (see page 542)

Part 2: Commands: KL=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 537 of 969

KP=formula
Constant, Proportional Coefficient

APPLICATION: Motion control; supports the DS2020 Combitronic system

DESCRIPTION: Proportional coefficient

EXECUTION: Buffered until an F command is issued

CONDITIONAL TO: N/A

LIMITATIONS: Must be positive

READ/REPORT: RKP

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: 0 to 65535
DS2020 Combitronic system: 0 to 2147483647

TYPICAL VALUES: 40 to 8000
DS2020 Combitronic system: 20000 to 60000

DEFAULT VALUE: Motor-size dependent

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: KP:3=1234, a=KP:3, RKP:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The KP command is used to set the gain of the proportional parameter of the PID filter.

NOTE: The motion or servo modifications from this command must be applied by the F function. For
details, see F on page 457.

This creates a force from the PID in direct proportion to how far the motor is pushed away from the
calculated trajectory. This force is like a spring that is being stretched — the more it is stretched, the
further it resists. While this gives a predictable force to maintain the desired position, it has
diminishing results as the error gets smaller. Therefore, to zero the position error in the long term, use
the KI term of the PID filter. For details, see KI=formula on page 532.

The higher the KP value, the stiffer the motor will be. At some point, the added stiffness will cause the
motor to become unstable. This can sometimes be stabilized by adjusting the KD value (for details, see
KD=formula on page 528). However, if moving the KD value up or down does not stabilize the servo,
then the KP value is too high and must be reduced.

EXAMPLE:
KP=250 'Set buffered proportional gain
F 'Update PID filter

Part 2: Commands: KP=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 538 of 969

EXAMPLE: (Routine homes motor against a hard stop)

MDS 'Using Sine mode commutation
KP=3200 'Increase stiffness from default
KD=10200 'Increase damping from default
F 'Activate new tuning parameters
AMPS=100 'Lower current limit to 10%
VT=-10000 'Set maximum velocity
ADT=100 'Set maximum accel/decel
MV 'Set Velocity mode
G 'Start motion
WHILE EA>-100 'Loop while position error is small
LOOP 'Loop back to WHILE
O=-100 'While pressed, declare home offset
S 'Abruptly stop trajectory
MP 'Switch to Position mode
VT=20000 'Set higher maximum velocity
PT=0 'Set target position to be home
G 'Start motion
TWAIT 'Wait for motion to complete
AMPS=1023 'Restore current limit to maximum
END 'End program

RELATED COMMANDS:
R KA=formula Constant, Acceleration Feed Forward (see page 526)
R KD=formula Constant, Derivative Coefficient (see page 528)
R KG=formula Constant, Gravitational Offset (see page 530)
R KI=formula Constant, Integral Coefficient (see page 532)
R KL=formula Constant, Integral Limit (see page 535)
R KS=formula Constant, Velocity Filter Option (for KD) (see page 540)
R KV=formula Constant, Velocity Feed Forward (see page 542)

Part 2: Commands: KP=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 539 of 969

KPI=formula
Current Control Loop: Proportional

APPLICATION: Motion control

DESCRIPTION: Current control loop proportional gain

EXECUTION: Immediate

CONDITIONAL TO: MDC commutation active

LIMITATIONS: D-style motor does not support this command

READ/REPORT: RKPI

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: 0 to 32767

TYPICAL VALUES: 0 to 16000

DEFAULT VALUE: From factory settings in EEPROM

FIRMWARE VERSION: 5.97.x / 5.98.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

NOTE: The D-style motor does not support this command.

The KPI command sets or reports the current-loop proportional gain when operating in field-oriented,
current-control mode (i.e., MDC).

There are two PI current-control loops when operating in field-oriented control: one loop controls the
torque-producing current "Iq", and the other loop nullifies currents that do not produce torque "Id".
Both loops use the parameters KPI and KII to control proportional and integral response.

The default (factory) settings for KPI and KII will work in most applications. These should only be
changed if necessary and if the effects on the application are understood.

EXAMPLE: (Shows use of KII and KPI)

KPI=2000 'Set proportional gain for MDC mode
KII=1500 'Set integral gain for MDC mode
F 'Initiate gains
MDC 'Change to Current mode commutation

RELATED COMMANDS:
R KII=formula Current Control Loop: Integrator (see page 534)

Part 2: Commands: KPI=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 540 of 969

KS=formula
Constant, Velocity Filter Option (for KD)

APPLICATION: Motion control

DESCRIPTION: Velocity filter option (for KD)

EXECUTION: Buffered until an F command is issued

CONDITIONAL TO: N/A

LIMITATIONS: Must be positive

READ/REPORT: RKS

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: 0 to 3 (larger number = longer filter time)

TYPICAL VALUES: 1

DEFAULT VALUE: 1

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: KS:3=1234, a=KS:3, RKS:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The PID filter's KS term is used to adjust the filtering of the KD term.

NOTE: The motion or servo modifications from this command must be applied by the F function. For
details, see F on page 457.

The KD term requires a filter because the velocity error signal is inherently noisy and quantized. This is
because the measurement of velocity is based on encoder counts per PID sample. It is often a
difference of just a few counts.

For example, a speed of VT=65536 is only 1 count per PID sample. This means that in real time, the
number jumps between whole numbers. To smooth this out, the quantity can be averaged. The KS value
controls the amount of filtering applied. Refer to the next table.

KS
Value

Filter Sample
Length

(PID Samples)
Notes

0 1 No filtering
1 4 Default
2 8
3 16

Part 2: Commands: KS=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 541 of 969

Adjusting the filter will sometimes allow the SmartMotor™ to handle inertial ratios in excess of the
traditional 5:1 or 10:1 ratios. This "reflected load to rotor inertia" ratio is often cited as a traditional
limit for dependable servo motor applications.

A KS value of 0 produces the least latency, which results in better stability. However, it also produces
the most noise (it may produce an audible white noise).

By increasing the KS value, the latency of the PID differential term is increased. Note that this can have
a negative impact on the damping ability of the KD term. In other words, the tuning may be less stable
with larger values of KS.

EXAMPLE:
KS=3 'Set buffered differential sample rate
F 'Update PID filter

RELATED COMMANDS:
R KA=formula Constant, Acceleration Feed Forward (see page 526)
R KD=formula Constant, Derivative Coefficient (see page 528)
R KG=formula Constant, Gravitational Offset (see page 530)
R KI=formula Constant, Integral Coefficient (see page 532)
R KL=formula Constant, Integral Limit (see page 535)
R KP=formula Constant, Proportional Coefficient (see page 537)
R KV=formula Constant, Velocity Feed Forward (see page 542)

Part 2: Commands: KS=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 542 of 969

KV=formula
Constant, Velocity Feed Forward

APPLICATION: Motion control; supports the DS2020 Combitronic system

DESCRIPTION: Velocity feed forward

EXECUTION: Buffered until an F command is issued

CONDITIONAL TO: N/A

LIMITATIONS: Must be positive

READ/REPORT: RKV

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: 0 to 65535
DS2020 Combitronic system: 0 to 2147483647

TYPICAL VALUES: 0 to 10000
DS2020 Combitronic system: 1000

DEFAULT VALUE: Motor-size dependent
DS2020 Combitronic system: 1000

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: KV:3=1234, a=KV:3, RKV:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

KV sets the gain for the velocity feed-forward element of the extended PID filter.

NOTE: The motion or servo modifications from this command must be applied by the F function. For
details, see F on page 457.

The velocity feed-forward element can be thought of as a force that the PID outputs based on the
expected speed from the trajectory calculation. This reduces the lag time of the PID waiting for
position feedback. The KV term begins the PID response as soon as the trajectory calls for more speed.
KP and KI are still required, but the KV term will help improve responsiveness.

If you put the SmartMotor™ into a high-velocity move with KI=0 and monitor the position error with the
Motor View tool's Status tab in the SMI software, then you will see a constant position error. To reduce
the error to zero, issue a series of successively larger KV parameters (each KV requires an F command
to update the PID filter — see the example).

Acceptable values range from 0 to 65535. Typically, useful values range from 0 to 2000. Current values
can be reported with RKV.

In the DS2020 Combitronic system, KV sets the feed-forward gain: how much of the velocity computed
by the trajectory generator feeds the velocity loop. Usually, if KV=1000 (which means unity gain), the
best performances are obtained.

Part 2: Commands: KV=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 543 of 969

EXAMPLE:
KV=1000 'Set buffered velocity feed forward
F 'Update PID filter

RELATED COMMANDS:
R KA=formula Constant, Acceleration Feed Forward (see page 526)
R KD=formula Constant, Derivative Coefficient (see page 528)
R KG=formula Constant, Gravitational Offset (see page 530)
R KI=formula Constant, Integral Coefficient (see page 532)
R KL=formula Constant, Integral Limit (see page 535)
R KP=formula Constant, Proportional Coefficient (see page 537)
R KS=formula Constant, Velocity Filter Option (for KD) (see page 540)

Part 2: Commands: KV=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 544 of 969

LEN
Length of Character Count in Communications Port 0

APPLICATION: Communications control

DESCRIPTION: Number of characters in channel 0 receive buffer

EXECUTION: Immediate

CONDITIONAL TO: Communications channel 0 must be open in data mode

LIMITATIONS: Maximum buffer length is 31 characters

READ/REPORT: RLEN

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Number of available characters

RANGE OF VALUES: 0 to 31

TYPICAL VALUES: 0 to 31

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The LEN command checks the receive buffer of serial communications channel 0 and returns the
number of characters that are waiting to be processed. Testing the value of LEN is a good way to see if
there is a character available for retrieval with the GETCHR command (see the next example).

EXAMPLE:
i=0
IF LEN>0 'Any data received?

GOSUB5 'If so, process data
ENDIF
END
C5

ab[i]=GETCHR 'Read and store in data
'Process incoming data

i=i+1 'Maintain reference index
RETURN

In the previous example, "i" will be equal to LEN.

RELATED COMMANDS:
R GETCHR Next Character from Communications Port 0 (see page 476)
R GETCHR1 Next Character from Communications Port 1 (see page 478)
R LEN1 Length of Character Count in Communications Port 1 (see page 545)
OCHN(...) Open Channel (see page 632)

Part 2: Commands: LEN

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 545 of 969

LEN1
Length of Character Count in Communications Port 1

APPLICATION: Communications control

DESCRIPTION: Number of characters in channel 1 receive buffer

EXECUTION: Immediate

CONDITIONAL TO: Communications channel 1 must be open in data mode-

LIMITATIONS: Maximum buffer length is 31 characters

READ/REPORT: RLEN1

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Number of available characters

RANGE OF VALUES: 0 to 31

TYPICAL VALUES: 0 to 31

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.0.x, 5.16.x or 5.32.x series (D); 6.4.2.x (D)
RLEN1 requires: 5.x (D/M); 6.4.2.x (D)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The LEN1 command checks the receive buffer of serial communications channel 1 and returns the
number of characters that are waiting to be processed. Testing the value of LEN1 is a good way to see
if there is a character waiting for retrieval with GETCHR1 command (see the next example).

NOTE: M-style motors do not have the second communications port (COM 1) needed to support the
LEN1 and GETCHR1 commands.

EXAMPLE:
i=0
IF LEN1>0 'Any data received?

GOSUB5 'If so, process data
ENDIF
END
C5

ab[i]=GETCHR1 'Read and store in data
'Process incoming data

i=i+1 'Maintain reference index
RETURN

From the above example, "i" will be equal to LEN1.

Part 2: Commands: LEN1

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 546 of 969

RELATED COMMANDS:
R GETCHR Next Character from Communications Port 0 (see page 476)
R GETCHR1 Next Character from Communications Port 1 (see page 478)
R LEN Length of Character Count in Communications Port 0 (see page 544)
OCHN(...) Open Channel (see page 632)

Part 2: Commands: LEN1

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 547 of 969

LFS(value)
Load Float Single

APPLICATION: Data conversion

DESCRIPTION: Get float value from 32-bit IEEE format

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RLFS(value)

WRITE: N/A

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: Input: 32-bit integer, -2147483648 to 2147483647
Output: any floating-point value within 32-bit float range: ±1x1038

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The LFS command is used to get the float value from 32-bit IEEE-754 format.

It allows the import of floating-point values from external systems — this format may be needed for
interchange.

The 32-bit value input by this function is not a normal integer value. It is an encoded number that
includes the exponent of the floating-point value.

NOTE: The input of this function does not have any usefulness within the SmartMotor programming
language.

The output of this function is a floating-point value that can be used in a formula. The output of LFS() is
directed to DFS(). For details on DFS(), see DFS(value) on page 393.

EXAMPLE:
al[0]=1162934955 '4 byte value in IEEE-754 format
af[0]=LFS(al[0]) 'Convert from IEEE-754 to float

Raf[0] 'Report value of float

Program output is:

3343.666748046

RELATED COMMANDS:
R af[index]=formula Array Float [index] (see page 267)
R DFS(value) Dump Float, Single (see page 393)

Part 2: Commands: LFS(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 548 of 969

LOAD
Download Compiled User Program to Motor

APPLICATION: Program access

DESCRIPTION: Download and store executable SmartMotor™ program to motor

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: EEPROM is read/write unless "locked"

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

NOTE: This command is intended to be used in custom terminal software for PLCs, HMIs or similar
devices.

The LOAD command is used by a terminal to download a compiled program file and store it within the
user-program EEPROM in the SmartMotor. The LOAD command causes a SmartMotor to load all
incoming host communications into program memory up to the first occurrence of ASCII character 255.
This command is mainly used by host utilities, which also compile the program before download.

User programs are stored in the SmartMotor's EEPROM memory. The maximum program size depends
on the motor class you are using:

l For Class 5 motors, the maximum program size is 32767 bytes.

l For Class 6 motors, the maximum program size is 64150 bytes.

LOAD terminates the current motion mode or trajectory. However, it does not change motion
parameters such as EL, ADT, VT, KP, etc., or alter the current value of the user variables.

If the motor does not receive the ASCII 255 byte after the LOAD command is issued, it will continue to
store incoming serial bytes directly to the user-program EEPROM. During this time, the motor will not
respond to your commands. The only way to terminate this condition is to transmit ASCII 255 bytes or
to reset the power.

NOTE: The SMI (SmartMotor Interface) software package is adjusted to take care of this
automatically.

By using the LOAD command, you can download the file from any controller, HMI, PLC or PC-based
program capable of storing an ASCII text file. For any given motor that is actively addressed (i.e., you
are talking to it and it responds), if you issue the LOAD command to the motor, it immediately goes into

Part 2: Commands: LOAD

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 549 of 969

a memory-write mode while checking all incoming data. After issuing the LOAD command, every ASCII
character that is received goes directly into the user-program EEPROM. To terminate the LOAD
command, the last characters sent must be two hex FF characters and one hex 20 character. This tells
the motor that it is the end of the file and to revert to regular command mode.

Details on the downloadable file:

When you compile an SMS file with the SMI software, it creates an SMX file extension with the same
name in the same directory. That is the file you need to download to the motor.

Perform these steps to complete the download operation:

1. Establish serial communications with the motor.

2. Issue the LOAD command.

3. If ECHO is enabled, you should see the LOAD command and then an ECHOed hex 20.

4. Hex value 06 should be transmitted by the motor. Read and verify this byte.

5. Transmit the first 32 characters from the SMX file. If the SMX file is shorter than 32 bytes, just
send what is available and skip to step 8 (sending FF FF 20).

6. Hex value 06 should be transmitted by the motor. Read and verify this byte.

7. Repeat step 5 using the next 32 bytes.

8. When the last character is read from the file and sent to the motor, then send two hex FF
characters and one hex 20 character to the motor.

9. Issue another RCKS command. If it returns a success status (with the P character at the end),
then the download was successful.

10. RUN the program (no reboot required).

These are reasons for unsuccessful download:
l Noise on the serial port

l Loss of connection during download

l Failure to send the two hex FF characters and one hex 20 character before power down

l The SMI-compiled SMX file was altered in some way

NOTE: Do not alter the SMX file from its originally-compiled version. For example, if you open an
SMX file in Windows Notepad to view and save it, Notepad automatically adds a carriage return
character to the end of each line. Therefore, the saved file will not work, and the carriage returns
must be removed before downloading the file to the motor.

Part 2: Commands: LOAD

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 550 of 969

EXAMPLE:

This procedure is an example of the steps needed for an outside program to send an SMX file to the
SmartMotor.

1. Write the LOAD command.

2. Read a 0x06 character back from the motor.

3. Write 32 bytes of the .SMX file to the motor at a time.

4. Read the 0x06 character back from the motor.

5. Write any remaining bytes of the .SMX file (< 32).

6. Write 0xff 0xff 0x20.

RELATED COMMANDS:

LOCKP Lock Program (see page 551)
RCKS Report Checksum (see page 701)
RUN Run Program (see page 714)
RUN? Halt Program Execution Until RUN Received (see page 716)
UP Upload Compiled Program and Header (see page 797)
UPLOAD Upload Standard User Program (see page 799)

Part 2: Commands: LOAD

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 551 of 969

LOCKP
Lock Program

APPLICATION: Program access

DESCRIPTION: Prevents function of UP and UPLOAD

EXECUTION: N/A

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The LOCKP command modifies the downloaded program in the motor's EEPROM to prevent it from
being uploaded. That is, the commands UP and UPLOAD will not be able to upload the program body or
contents.

NOTE: LOCKP does not prevent the download of another program.

The LOCKP command should be used after program development and testing is complete.

LOCKP can be used as a serial command or incorporated in a user program for Class 5 and later motors.
l If it is used as a serial command, it should be issued from the Terminal window.

l If it is used in a program, be sure that part of the program with the LOCKP command is run to
ensure LOCKP protection is effective.

CAUTION: It is the developer’s responsibility to make sure the part of the program
with the LOCKP command is run to ensure LOCKP protection—the LOCKP
command itself has to execute—just having it in the program doesn’t take effect
until that part of the program is actually executed. It should be verified by trying to
upload after running the program.

After LOCKP is issued, issuing UP or UPLOAD will no longer produce results.

EXAMPLE:
LOCKP 'Requires a motor reboot to take effect.

Part 2: Commands: LOCKP

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 552 of 969

RELATED COMMANDS:

UP Upload Compiled Program and Header (see page 797)
UPLOAD Upload Standard User Program (see page 799)

Part 2: Commands: LOCKP

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 553 of 969

LOOP
Loop Back to WHILE Formula

APPLICATION: Program execution and flow control

DESCRIPTION: Terminator for WHILE formula

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

LOOP is the statement terminator for the WHILE control block. Each WHILE must have only one
corresponding LOOP. Each time LOOP is encountered, program execution branches back to reevaluate
the WHILE formula.

The WHILE formula...LOOP control block creates a program loop that repeatedly executes for as long
as the formula value is true or nonzero. The formula is evaluated when WHILE is first encountered, and
each time program execution is sent back to the WHILE by the corresponding terminating LOOP
statement. If the formula value is zero or false, program execution continues on the line of code just
below the LOOP command.

WHILE formula...LOOP

It is legal to jump from an external program location to a label within a WHILE control loop. However,
this method may not be the best practice.

LOOP is not a valid terminal command. It is only valid within a user program.

BREAK can be used to exit the WHILE loop.

EXAMPLE:
b=1
WHILE b<5

PRINT(#13,"b=",b)
b=b+1

LOOP PRINT(#13,"Exit Loop")
END

Part 2: Commands: LOOP

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 554 of 969

The previous code outputs:

b=1
b=2
b=3
b=4
b=5
Exit Loop

RELATED COMMANDS:

BREAK Break from CASE or WHILE Loop (see page 331)
WHILE formula While Condition Program Flow Control (see page 841)

Part 2: Commands: LOOP

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 555 of 969

MC
Mode Cam (Electronic Camming)

APPLICATION: Motion control

DESCRIPTION: Request Cam mode (electronic camming)

EXECUTION: Buffered until a G command is issued

CONDITIONAL TO: Cam table created

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MC:3 or MC(0):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The MC command puts the SmartMotor™ into Cam mode, which causes the motor to follow a
predetermined profile according to an external encoder source. To set up a Cam operation, you must
also specify position data and initialize it to the controller source (either an external or internal timer).
The camming motion is started by issuing a G command. The next example shows a complete command
sequence.

NOTE: Refer to the Related Commands section, as there are several important commands to use
when creating a Cam table and configuring the cam motion.

In Cam mode, each value of the external encoder defines a required corresponding motor position.
Cams typically define a periodic motion profile or trajectory.

NOTE: The MCW(table, point) command is mandatory when using Cam mode (MC) It should be called
after the creation of cam tables but before the G command. If cam tables already exist in memory
from a power-on, then MCW should be called at least once before the G command to enter Cam
mode. Refer to the next example.

Cam tables may be stored in EEPROM or in user variables ab, aw or al.

The controller source can be selected with the SRC command. Also, the MFA, MFD, MFMUL, MFDIV,
MFSLEW and MFSDC commands are in effect with Cam mode. This allows sophisticated traversal
control over the Cam table. For instance, a motion can be defined where a continuously running
controller can be eased into and out of using the MFA and MFD ramps. Also, using the MFSLEW
command, a predefined number of controller counts can be accepted before the Cam table halts.

Part 2: Commands: MC

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 556 of 969

The MCMUL and MCDIV commands allow the output (follower position) to be scaled without rewriting
the Cam table.

EXAMPLE: (Routine exercises each Cam User Bit during the programmed cam profile)

EIGN(W,0)
ZS
CTA(7,0,0) 'Add table into RAM al[0]-al[8].
CTW(0,0,1) 'Add 1st point, Cam User Bit 0 ON.
CTW(1000,4000,1) 'Add 2nd point, Cam User Bit 0 ON.
CTW(3000,8000,2) 'Add 3rd point, Cam User Bit 1 ON.
CTW(4000,12000,132) 'Add 4th, Spline Mode, Cam Bit 2 ON.
CTW(1000,16000,136) 'Add 5th, Spline Mode, Cam Bit 3 ON.
CTW(-2000,20000,16) 'Add 6th point, Cam Bit 4 ON.
CTW(0,24000,32) 'Add 7th point, Cam Bit 5 ON.
MC 'Select Cam Mode.
SRC(2) 'Use the virtual controller encoder.
MCE(0) 'Force Linear interpolation.
MCW(0,0) 'Use table 0 in RAM from point 0.
MFMUL=1 'Simple 1:1 ratio from virtual enc.
MFDIV=1 'Simple 1:1 ratio from virtual enc.
MFA(0) MFD(0) 'Disable virtual enc. ramp-up/ramp-

'down sections.
MFSLEW(24000,1) 'Table is 6 segments * 4000 encoder

'counts each. Specify 1 for the second
'argument, which forces this number as
'the output total of the virtual controller
'encoder into the cam.

MFSDC(-1,0) 'Disable virtual controller (gearing) repeat.
G 'Begin move.
END 'Required END.

RELATED COMMANDS:
R MCDIV=formula Mode Cam Divisor (see page 557)
MF0 Mode Follow, Zero External Counter (see page 578)
MFA(distance[,m/s]) Mode Follow Ascend (see page 580)
MFD(distance[,m/s]) Mode Follow Descend (see page 585)
R MFDIV=formula Mode Follow Divisor (see page 588)
R MFMUL=formula Mode Follow Multiplier (see page 598)
MFSDC(distance,mode) Mode Follow, Stall-Dwell-Continue (see page 603)
MFSLEW(distance[,m/s]) Mode Follow Slew (see page 605)
MS0 Mode Step, Zero External Counter (see page 616)
R MCMUL=formula Mode Cam Multiplier (see page 560)
MCE(arg) Mode Cam Enable () (see page 558)
MCW(table,point) Mode Cam Where (Start Point) (see page 562)
ECS(counts) Encoder Count Shift (see page 410)
CTA(points,seglen[,location]) Cam Table Attribute (see page 376)
CTW(pos[,seglen][,user]) Cam Table Write Data Points (see page 383)
CTE(table) Cam Table Erase (see page 378)
SRC(enc_src) Source, Follow and/or Cam Encoder (see page 759)

Part 2: Commands: MC

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 557 of 969

MCDIV=formula
Mode Cam Divisor

APPLICATION: Motion control

DESCRIPTION: Cam mode ratio divisor

EXECUTION: Buffered at start of cam motion and at restarts due to MFSLEW
length

CONDITIONAL TO: Cam mode active

LIMITATIONS: N/A

READ/REPORT: RMCDIV

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: -32767 to -1 and 1 to 32767 (0 excluded)

TYPICAL VALUES: -32767 to -1 and 1 to 32767 (0 excluded)

DEFAULT VALUE: 1

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MCDIV:3=1234, a=MCDIV:3, RMCDIV:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The MCDIV command provides the Cam mode ratio divisor. It works in combination with the MCMUL
command, which provides the Cam mode ratio multiplier. For usage details, see MCMUL=formula on
page 560.

NOTE: MCDIV cannot be set to 0.

EXAMPLE:

For examples, see MCMUL=formula on page 560.

RELATED COMMANDS:

MC Mode Cam (Electronic Camming) (see page 555)
R MCMUL=formula Mode Cam Multiplier (see page 560)
MFSDC(distance,mode) Mode Follow, Stall-Dwell-Continue (see page 603)
MFSLEW(distance[,m/s]) Mode Follow Slew (see page 605)

Part 2: Commands: MCDIV=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 558 of 969

MCE(arg)
Mode Cam Enable ()

APPLICATION: Motion control

DESCRIPTION: Enable Cam mode operation type

EXECUTION: Buffered until a G command is issued

CONDITIONAL TO: MC mode selected

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: 0,1,2

TYPICAL VALUES: 0,1,2

DEFAULT VALUE: 1

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The MCE(arg) command specifies the Cam mode operation type. For details on Cam mode, see
Cam Mode (Electronic Camming) on page 156.

The arg parameter must be one of these values:

arg Description
0 Force linear interpolation. This overrides any per-segment, linear versus spline option.
1 (Default) Allow spline mode unless a segment has a linear specification.

The shape of the spline assumes that both the beginning and end of the table have a slope of 0.
2 Allow spline mode unless a segment has a linear specification.

The shape (slope) of the spline takes into consideration wrapping around the end of the table.

Part 2: Commands: MCE(arg)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 559 of 969

EXAMPLE: (Routine exercises each Cam User Bit during the programmed cam profile)

EIGN(W,0)
ZS
CTA(7,0,0) 'Add table into RAM al[0]-al[8].
CTW(0,0,1) 'Add 1st point, Cam User Bit 0 ON.
CTW(1000,4000,1) 'Add 2nd point, Cam User Bit 0 ON.
CTW(3000,8000,2) 'Add 3rd point, Cam User Bit 1 ON.
CTW(4000,12000,132) 'Add 4th, Spline Mode, Cam Bit 2 ON.
CTW(1000,16000,136) 'Add 5th, Spline Mode, Cam Bit 3 ON.
CTW(-2000,20000,16) 'Add 6th point, Cam Bit 4 ON.
CTW(0,24000,32) 'Add 7th point, Cam Bit 5 ON.
MC 'Select Cam Mode.
SRC(2) 'Use the virtual controller encoder.
MCE(0) 'Force Linear interpolation.
MCW(0,0) 'Use table 0 in RAM from point 0.
MFMUL=1 'Simple 1:1 ratio from virtual enc.
MFDIV=1 'Simple 1:1 ratio from virtual enc.
MFA(0) MFD(0) 'Disable virtual enc. ramp-up/ramp-

'down sections.
MFSLEW(24000,1) 'Table is 6 segments * 4000 encoder

'counts each. Specify 1 for the second
'argument, which forces this number as
'the output total of the virtual controller
'encoder into the cam.

MFSDC(-1,0) 'Disable virtual controller (gearing) repeat.
G 'Begin move.
END 'Required END.

RELATED COMMANDS:

MC Mode Cam (Electronic Camming) (see page 555)

Part 2: Commands: MCE(arg)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 560 of 969

MCMUL=formula
Mode Cam Multiplier

APPLICATION: Motion control

DESCRIPTION: Cam mode ratio multiplier

EXECUTION: Buffered at start of cam motion and at restarts due to MFSLEW
length

CONDITIONAL TO: Cam mode active

LIMITATIONS: N/A

READ/REPORT: RMCMUL

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: -4194304 to 4194304

TYPICAL VALUES: -4194304 to 4194304

DEFAULT VALUE: 1

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MCMUL:3=1234, a=MCMUL:3, RMCMUL:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The MCMUL command provides the Cam mode ratio multiplier. It is used in combination with MCDIV to
scale the output of the follower position in Cam mode. This allows a Cam table's amplitude to be
rescaled without rewriting the table.

Choose a ratio of MCMUL/MCDIV that provides sufficient resolution while allowing the desired range.
For example, to allow scaling from 10% to 1000% in 0.1% increments, choose MCDIV=1000. For this
case, a setting of MCMUL=1000 would provide a 100% (1:1) scaling of the Cam table.

If the ratio of MCMUL/MCDIV produces a negative ratio, then the amplitude of the Cam table is also
negative.

Typically, the scaling should be configured before initiating cam motion with the G command. However,
under some circumstance, it is possible to change the scaling while moving.

To change scaling while moving, the changes to MCMUL are only accepted if a restart of the cam
motion occurs. A G command will force the restart of the cam motion. However, issuing a G command
during cam motion will cause a major disruption in speed and position. It will move the starting follower
position of the table to home, which is usually detrimental to machine operations. Therefore, issuing a G
command will only work if the cam is at the starting follower position and remains there long enough to
reliably issue that command. It may be difficult to correctly time this in a program.

Instead, the controller profile can be used to accurately time the restart of the cam motion. The Follow
mode commands are still active in Cam mode, and are used to feed the controller into the Cam table.

Part 2: Commands: MCMUL=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 561 of 969

The MFSLEW and MFSDC commands can be used to create a controller profile that repeats to
correspond to the start of the Cam table.

The controller profile can be programmed to restart by carefully selecting an MFSLEW(length,1)
command value to align with the length of the Cam table (i.e., the number of segments times the
segment length, or the sum of all variable-length segment lengths). Note that the MFSLEW command
specifies the length in "follower" units because the output (follower) of the follow commands is fed into
the cam. The MFSDC(0,0) command is also required if a repetitive cam motion is desired. The input
source (specified by the SRC command) can be any source. For details, see SRC(enc_src) on page 759.

EXAMPLE: (Subroutine from Cam program)

C41
MP PT=0 G TWAIT
SRC(2)
MCE(1) 'Spline
MFA(0)
MFD(0)
MFMUL=1
MFDIV=1
MCMUL=1
MCDIV=1
MFSLEW(112000,1)
MFSDC(100,0) 'Set dwell for "c" counts, auto reverse after dwell
MC
G

RETURN

RELATED COMMANDS:

MC Mode Cam (Electronic Camming) (see page 555)
R MCDIV=formula Mode Cam Divisor (see page 557)
R MCMUL=formula Mode Cam Multiplier (see page 560)
MFSDC(distance,mode) Mode Follow, Stall-Dwell-Continue (see page 603)
MFSLEW(distance[,m/s]) Mode Follow Slew (see page 605)
SRC(enc_src) Source, Follow and/or Cam Encoder (see page 759)

Part 2: Commands: MCMUL=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 562 of 969

MCW(table,point)
Mode Cam Where (Start Point)

APPLICATION: Motion control

DESCRIPTION: Specifies the Cam mode start point

EXECUTION: Buffered until a G command is issued

CONDITIONAL TO: Cam table created; MC (Cam mode) selected

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Input:
 table: 0–10
 point: 0–65535

TYPICAL VALUES: Input:
 table: 0–10
 point: 0–750

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The MCW command selects the Cam table and specifies the starting point used when the cam motion is
initiated with a G command. Typically, the starting point is point 0, but values from 0 to 65535 are
valid. For the table input parameter, valid values and their meanings are:

Table
Selection Description

0 RAM table
1–10 Tables stored sequentially in EEPROM

NOTE: The MCW(table, point) command is mandatory when using Cam mode (MC) It should be called
after the creation of cam tables but before the G command. If cam tables already exist in memory
from a power-on, then MCW should be called at least once before the G command to enter Cam
mode. Refer to the next example.

Part 2: Commands: MCW(table,point)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 563 of 969

EXAMPLE: (Routine exercises each Cam User Bit during the programmed cam profile)

EIGN(W,0)
ZS
CTA(7,0,0) 'Add table into RAM al[0]-al[8].
CTW(0,0,1) 'Add 1st point, Cam User Bit 0 ON.
CTW(1000,4000,1) 'Add 2nd point, Cam User Bit 0 ON.
CTW(3000,8000,2) 'Add 3rd point, Cam User Bit 1 ON.
CTW(4000,12000,132) 'Add 4th, Spline Mode, Cam Bit 2 ON.
CTW(1000,16000,136) 'Add 5th, Spline Mode, Cam Bit 3 ON.
CTW(-2000,20000,16) 'Add 6th point, Cam Bit 4 ON.
CTW(0,24000,32) 'Add 7th point, Cam Bit 5 ON.
MC 'Select Cam Mode.
SRC(2) 'Use the virtual controller encoder.
MCE(0) 'Force Linear interpolation.
MCW(0,0) 'Use table 0 in RAM from point 0.
MFMUL=1 'Simple 1:1 ratio from virtual enc.
MFDIV=1 'Simple 1:1 ratio from virtual enc.
MFA(0) MFD(0) 'Disable virtual enc. ramp-up/ramp-

'down sections.
MFSLEW(24000,1) 'Table is 6 segments * 4000 encoder

'counts each. Specify 1 for the second
'argument, which forces this number as
'the output total of the virtual controller
'encoder into the cam.

MFSDC(-1,0) 'Disable virtual controller (gearing) repeat.
G 'Begin move.
END 'Required END.

RELATED COMMANDS:

CTA(points,seglen[,location]) Cam Table Attribute (see page 376)
CTE(table) Cam Table Erase (see page 378)
R CTT Cam Table Total in EEPROM (see page 382)
CTW(pos[,seglen][,user]) Cam Table Write Data Points (see page 383)
G Start Motion (GO) (see page 473)
MC Mode Cam (Electronic Camming) (see page 555)

Part 2: Commands: MCW(table,point)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 564 of 969

MDB
Enable TOB Feature (Commutation Mode)

APPLICATION: Motion control

DESCRIPTION: Enable the Trajectory Overshoot Braking (TOB) option

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: Trapezoidal (6-step) commutation mode active: MDT or MDE

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: By default, this mode is not enabled

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MDB:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The MDB command enables the Trajectory Overshoot Braking (TOB) option.

This command should be used to enable TOB after using the MDT or MDE commands. Note that:
l This option reverts to off when one of these commutation mode commands are used.

l This option is off by default. Status Word 6, Bit 9 indicates if this mode is active.

NOTE: MDE, MDS and MDC require angle match before they will take effect. This means the
SmartMotor's factory calibration is valid and the index mark of the internal encoder has been seen
after startup. The default commutation mode for D-style motors is MDT (see MDT on page 576); the
default commutation mode for M-style motors is MDC (see MDC on page 566).

EXAMPLE: (Shows the use of MDB and MDE)

'NOTE: MDE and MDB can help with handling high inertia loads.
EIGN(W,0) 'Make all onboard I/O inputs.
ZS 'Clear errors.
MP VT=20000 ADT=100 O=0 'Mode Position, Velocity, accel/decel,

'zero encoder.
MDE 'Switch to Enhanced Trap Commutation Mode (default is MDT).
MDB 'Turn on Trajectory Overshoot Braking (MDE mode is required for MDB).
PT=8000 G TWAIT 'Move to Absolute Position 8000.
PT=0 G TWAIT 'Move to Absolute Position 0.
END

Part 2: Commands: MDB

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 565 of 969

RELATED COMMANDS:

MDC Mode Current (Commutation Mode) (see page 566)
MDE Mode Enhanced (Commutation Mode) (see page 568)
MDH Mode Hybrid (Commutation Mode) (see page 570)
MDHV Mode Hybrid Velocity (Commutation Mode) (see page 572)
MDS Mode Sine (Commutation Mode) (see page 574)
MDT Mode Trap (Commutation Mode) (see page 576)

Part 2: Commands: MDB

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 566 of 969

MDC
Mode Current (Commutation Mode)

APPLICATION: Motion control

DESCRIPTION: Sine current commutation mode

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: M-style motors only, not supported in D-style motors

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: D-style motors default to MDT commutation mode;
M-style motors default to MDC commutation mode

FIRMWARE VERSION: 5.97.x / 5.98.x (D/M); 6.x (D/M)

COMBITRONIC: MDC:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The MDC command enables the motor's sinusoidal (sine) commutation mode augmented with digital
current control. Available only in the M-style SmartMotor, this method offers optimum performance
without sacrificing quiet operation. It is the best choice for an application when this capability is
available.

Because MDC uses the encoder, it requires angle match (the first sighting of the encoder index) before
it will engage.

Use status word 6 to see the active commutation mode.

NOTE: MDE, MDS and MDC require angle match before they will take effect. This means the
SmartMotor's factory calibration is valid and the index mark of the internal encoder has been seen
after startup. The default commutation mode for D-style motors is MDT (see MDT on page 576); the
default commutation mode for M-style motors is MDC (see MDC on page 566).

Part 2: Commands: MDC

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 567 of 969

EXAMPLE:
KPI=2000 'Set proportional gain for MDC mode
KII=1500 'Set integral gain for MDC mode
F 'Initiate gains

MDC 'Change to Current Mode commutation

MV 'Set velocity move
VT=200000 'Set velocity target
ADT=50 'Set accel/decel target
G 'Start motion

RELATED COMMANDS:

MDB Enable TOB Feature (Commutation Mode) (see page 564)
MDE Mode Enhanced (Commutation Mode) (see page 568)
MDH Mode Hybrid (Commutation Mode) (see page 570)
MDHV Mode Hybrid Velocity (Commutation Mode) (see page 572)
MDS Mode Sine (Commutation Mode) (see page 574)
MDT Mode Trap (Commutation Mode) (see page 576)

Part 2: Commands: MDC

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 568 of 969

MDE
Mode Enhanced (Commutation Mode)

APPLICATION: Motion control

DESCRIPTION: Enables enhanced trapezoidal (6-step) mode commutation using the
encoder

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: Motor rotates past internal index to initialize commutation angle

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: D-style motors default to MDT commutation mode;
M-style motors default to MDC commutation mode

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MDE:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The MDE command enables the motor's enhanced trapezoidal commutation mode using the encoder.
This driving method is the same as basic trapezoidal commutation using Hall sensors. However, it also
uses the internal encoder to add accuracy to the commutation trigger points. This idealized trapezoidal
commutation mode offers the greatest motor torque and speed, but it can exhibit minor ticking sounds
at low rates, which are created as the current shifts abruptly from one coil to the next.

Because MDE uses the encoder, it requires angle match (the first sighting of the encoder index) before
it will engage.

Use status word 6 to see the active commutation mode.

NOTE: MDE, MDS and MDC require angle match before they will take effect. This means the
SmartMotor's factory calibration is valid and the index mark of the internal encoder has been seen
after startup. The default commutation mode for D-style motors is MDT (see MDT on page 576); the
default commutation mode for M-style motors is MDC (see MDC on page 566).

Part 2: Commands: MDE

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 569 of 969

EXAMPLE: (Shows the use of MDB and MDE)

'NOTE: MDE and MDB can help with handling high inertia loads.
EIGN(W,0) 'Make all onboard I/O inputs.
ZS 'Clear errors.
MP VT=20000 ADT=100 O=0 'Mode Position, Velocity, accel/decel,

'zero encoder.
MDE 'Switch to Enhanced Trap Commutation Mode (default is MDT).
MDB 'Turn on Trajectory Overshoot Braking (MDE mode is required for MDB).
PT=8000 G TWAIT 'Move to Absolute Position 8000.
PT=0 G TWAIT 'Move to Absolute Position 0.
END

RELATED COMMANDS:

MDB Enable TOB Feature (Commutation Mode) (see page 564)
MDC Mode Current (Commutation Mode) (see page 566)
MDH Mode Hybrid (Commutation Mode) (see page 570)
MDHV Mode Hybrid Velocity (Commutation Mode) (see page 572)
MDS Mode Sine (Commutation Mode) (see page 574)
MDT Mode Trap (Commutation Mode) (see page 576)

Part 2: Commands: MDE

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 570 of 969

MDH
Mode Hybrid (Commutation Mode)

APPLICATION: Motion control

DESCRIPTION: Enables hybrid commutation mode

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: Motor rotates past internal index to initialize commutation angle

LIMITATIONS: Command is not available for any Class 6 motors

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: D-style motors default to MDT commutation mode;
M-style motors default to MDC commutation mode

FIRMWARE VERSION: 5.x.4.31 and later (NOTE: 5.0.x, 5.16.x or 5.32.x series only); no Class
6

COMBITRONIC: MDH:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The MDH command enables the motor's hybrid commutation mode. The purpose of this mode is to
overcome the lack of MDC mode support in Class 5 D-style motors running specific firmware (i.e.,
firmware 5.x.4.31 and later in the 5.0.x, 5.16.x or 5.32.x series only). For details on MDC mode, see
MDC on page 566.

The operation of MDH mode will apply either MDS or MDE commutation mode based on an operating
speed specified by the MDHV command:

l below that speed, MDS commutation is applied for smooth rotation

l above that speed, MDE commutation is applied for high-speed efficiency

NOTE: At higher speeds, the motor tends to average out any of the low-speed smoothness issues.
At lower speeds, the loss of efficiency is minor.

To determine the selection of either MDS or MDE commutation, the motor's actual measured speed as
an absolute (positive) value is compared to the value set by the MDHV command based on the criteria
described above.

Part 2: Commands: MDH

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 571 of 969

EXAMPLE: (shows MDH and MDHV)

MDHV=500000 'Set hybrid transition velocity
MDH 'Set hybrid mode

'Will remain in hybrid mode until commanded otherwise
MV 'Set velocity move
VT=600000 'Set velocity target
ADT=10 'Set accel/decel target
G 'Start motion
END

RELATED COMMANDS:

MDB Enable TOB Feature (Commutation Mode) (see page 564)
MDC Mode Current (Commutation Mode) (see page 566)
MDE Mode Enhanced (Commutation Mode) (see page 568)
MDHV Mode Hybrid Velocity (Commutation Mode) (see page 572)
MDS Mode Sine (Commutation Mode) (see page 574)
MDT Mode Trap (Commutation Mode) (see page 576)

Part 2: Commands: MDH

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 572 of 969

MDHV
Mode Hybrid Velocity (Commutation Mode)

APPLICATION: Motion control

DESCRIPTION: Hybrid velocity commutation mode transition speed

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: MDH mode active

LIMITATIONS: Command is not available for any Class 6 motors

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: Assignment

UNITS: N/A

RANGE OF VALUES: 0 to 2147483647

TYPICAL VALUES: 100000 to 1000000

DEFAULT VALUE: 546133

FIRMWARE VERSION: 5.x.4.31 and later (NOTE: 5.0.x, 5.16.x or 5.32.x series only); no Class
6

COMBITRONIC: MDHV:3=500000
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The MDHV command is a setting in relation to the motor's hybrid velocity commutation mode, MDH, for
Class 5 D-style motors running specific firmware (i.e., firmware 5.x.4.31 and later in the 5.0.x, 5.16.x or
5.32.x series only). The command is used as:

MDHV=

which sets the motor actual speed (a positive, absolute value) where the transition from MDS to MDE
commutation mode occurs. Refer to the next code example. For more details, see MDH on page 570.

EXAMPLE: (shows MDH and MDHV)

MDHV=500000 'Set hybrid transition velocity
MDH 'Set hybrid mode

'Will remain in hybrid mode until commanded otherwise
MV 'Set velocity move
VT=600000 'Set velocity target
ADT=10 'Set accel/decel target
G 'Start motion
END

RELATED COMMANDS:

MDB Enable TOB Feature (Commutation Mode) (see page 564)
MDC Mode Current (Commutation Mode) (see page 566)

Part 2: Commands: MDHV

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 573 of 969

MDE Mode Enhanced (Commutation Mode) (see page 568)
MDH Mode Hybrid (Commutation Mode) (see page 570)
MDS Mode Sine (Commutation Mode) (see page 574)
MDT Mode Trap (Commutation Mode) (see page 576)

Part 2: Commands: MDHV

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 574 of 969

MDS
Mode Sine (Commutation Mode)

APPLICATION: Motion control

DESCRIPTION: Enable sine mode commutation, voltage mode

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: Motor rotates past internal index to initialize commutation angle

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: D-style motors default to MDT commutation mode;
M-style motors default to MDC commutation mode

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MDS:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The MDS command enables the motor's sine commutation mode (voltage mode). This mode offers
smoother commutation when compared to trapezoidal modes. It accomplishes this by shifting current
more gradually from one coil to the next. Whereas, trapezoidal modes exhibit higher torque due to the
longer application of current to the windings, which overrides losses.

Refer to the next figure. It shows the differences between sine and 6-step trapezoidal commutation
modes, used by the SmartMotor, for one magnetic cycle. (Commutation ensures firing of switches on
the proper magnetic cycle.) The shaded leading areas indicate the application of current sooner in
trapezoidal commutation mode, which results in greater torque.

Part 2: Commands: MDS

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 575 of 969

-1.0

0

1.0
Sine

Trapezoid

Sine vs 6-Step Trapezoid Commutation

Leading areas of higher current
resulting in greater torque for
trapezoidal commutation

Magnetic Cycle

Because MDS uses the encoder, for motors with incremental encoders, it requires angle match (the
first sighting of the encoder index) before it will engage. MDS is the best choice for applications that
require extremely smooth and quiet rotation at low speeds.

Use status word 6 to see the active commutation mode.

NOTE: MDE, MDS and MDC require angle match before they will take effect. This means the
SmartMotor's factory calibration is valid and the index mark of the internal encoder has been seen
after startup. The default commutation mode for D-style motors is MDT (see MDT on page 576); the
default commutation mode for M-style motors is MDC (see MDC on page 566).

EXAMPLE:
MDS 'Set sine mode

'Will remain in sine mode until commanded otherwise
MV 'Set velocity move
VT=50000 'Set velocity target
ADT=10 'Set accel/decel target
G 'Start motion
END

RELATED COMMANDS:

MDB Enable TOB Feature (Commutation Mode) (see page 564)
MDC Mode Current (Commutation Mode) (see page 566)
MDE Mode Enhanced (Commutation Mode) (see page 568)
MDH Mode Hybrid (Commutation Mode) (see page 570)
MDHV Mode Hybrid Velocity (Commutation Mode) (see page 572)
MDT Mode Trap (Commutation Mode) (see page 576)

Part 2: Commands: MDS

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 576 of 969

MDT
Mode Trap (Commutation Mode)

APPLICATION: Motion control

DESCRIPTION: Enable trapezoidal (6-step) mode commutation using Hall sensors

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: N/A

LIMITATIONS: Command is not available for any Class 6 motors

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: D-style motors default to MDT commutation mode;
M-style motors default to MDC commutation mode

FIRMWARE VERSION: 5.x (D/M); no Class 6

COMBITRONIC: MDT:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The MDT command enables the motor's trapezoidal commutation mode using Hall sensors (the default
mode for D-style motors). Despite the minor inaccuracies that are typical in the mechanical placement
of the sensors, this is the most simple and effective method, and it is ready on boot up.

Use status word 6 to see the active commutation mode.

NOTE: MDE, MDS and MDC require angle match before they will take effect. This means the
SmartMotor's factory calibration is valid and the index mark of the internal encoder has been seen
after startup. The default commutation mode for D-style motors is MDT (see MDT on page 576); the
default commutation mode for M-style motors is MDC (see MDC on page 566).

EXAMPLE:
MDT 'Set trap mode

'Will remain in trap mode until commanded otherwise
MV 'Set velocity move
VT=1500000 'Set velocity target
ADT=100 'Set accel/decel target
G 'Start motion
END

RELATED COMMANDS:

MDB Enable TOB Feature (Commutation Mode) (see page 564)

Part 2: Commands: MDT

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 577 of 969

MDC Mode Current (Commutation Mode) (see page 566)
MDE Mode Enhanced (Commutation Mode) (see page 568)
MDH Mode Hybrid (Commutation Mode) (see page 570)
MDHV Mode Hybrid Velocity (Commutation Mode) (see page 572)
MDS Mode Sine (Commutation Mode) (see page 574)

Part 2: Commands: MDT

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 578 of 969

MF0
Mode Follow, Zero External Counter

APPLICATION: Motion control

DESCRIPTION: Reset external encoder to zero, select quadrature mode input

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: External encoder inputs available, connected to an encoder

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: This is not the motor default; it is best practice to issue MF0 before
beginning a program that uses quadrature inputs

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MF0:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

WARNING: For Class 5 D-series motors, certain special features may override the
brake function. In particular, the MFR, MSR, MF0, MS0 commands, or any similar
feature from a network interface (including CANopen modes of operation: -1, -3, -
11), may interfere with a brake assignment to I/O 0 or 1). Therefore, use of I/O 0 or
1 is not recommended for the brake in the Class 5 D-series if follow or step modes
are used, regardless of SRC setting. For a programming example, refer to MF0 on
page 578.

The MF0 command zeroes the second encoder register (see CTR(enc) on page 380) without changing
the current motion mode of the SmartMotor™.

Following MF0, the A and B pins will be interpreted as a quadrature encoder signal. MS0 is the opposite
input mode.

l On the D-style motor, these are inputs 0 and 1.

l On the M-style motor, these encoder inputs are differential and are labeled separately from
general I/O signals.

If the Mode Follow with Ratio (MFR) or the Cam mode does not meet your requirements, you can write
your own loop and define a unique relationship between the incoming secondary encoder signal and the
motor’s position.

Part 2: Commands: MF0

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 579 of 969

MF0 is also typically used to take input from a quadrature output selector switch, especially in the
context of a user interface. It is not necessary to use the inputs for motion.

EXAMPLE: (Shows use of MF0, MFDIV and MFMUL)

EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
MF0 'Reset CTR(1)
MFMUL=21 'Multiplier = 21
MFDIV=-10 'Divisor = -10
MFR 'Example: input 100 external encoder counts,

'resulting motion is -210 counts
G 'Start following external encoder
END

RELATED COMMANDS:
R CTR(enc) Counter, Encoder, Step and Direction (see page 380)
MS0 Mode Step, Zero External Counter (see page 616)
MSR Mode Step Ratio (see page 618)

Part 2: Commands: MF0

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 580 of 969

MFA(distance[,m/s])
Mode Follow Ascend

APPLICATION: Motion control

DESCRIPTION: Follow mode, ascend ramp;

EXECUTION: Buffered until a G command is issued or a profiled move restarts
through MFSDC

CONDITIONAL TO: MFR, MSR or MC modes

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: Either encoder counts from encoder input, or internal encoder counts
(selectable)

RANGE OF VALUES: Input:
 value: 0 to 2147483647

[m/s]: 0 or 1

TYPICAL VALUES: Input:
 value: 0 to 2147483647

[m/s]: 0 or 1

DEFAULT VALUE: MFA(0,0) (no ramp — Follow mode immediately jumps to ratio when G
issued)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MFA(1000,1):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The MFA command sets the ascend ramp to the specified sync ratio from a ratio of zero. It uses the
format:

MFA(exp1[,exp2])

where:
l Exp1

Specifies counts — valid values are from 0 to 2147483647. Set to 0 (default) to disable.
l Exp2

(Optional) Specifies the meaning of exp1. Values are: 0 specifies input units (controller units); 1
specifies distance-traveled units (follower units).

Part 2: Commands: MFA(distance[,m/s])

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 581 of 969

When operating in MFR or MSR mode, it is possible to create a motion profile where the ratio of the
incoming encoder signal to the motor output motion can be gradually ramped up. This ramp starts when
motion is commanded to start with a G command, and will end when the programmed ratio of
MFMUL/MFDIV is reached. The rate of increase is controlled by the two parameters to the MFA
function. The first argument is a distance (in encoder counts), and the second argument specifies if that
distance is in terms of the encoder input or the motors output motion.

In MC mode MFA still functions. However it does not directly affect the motor's output motion. It is a
front-end profile between the encoder input and the operation of the Cam table. MFA allows for
gradual increase of the rate at which cam points are followed.

For a figure showing use examples of this command, see MFSDC Modes on page 148.

EXAMPLE: (profile driven by an incoming encoder signal)

MFMUL=300
MFDIV=100
MFA(300,1) 'Follower moves 300 counts over ascend
MFD(600,1) 'Follower moves 600 counts over descend
MFSLEW(200,1) 'Follower maintains sync ratio for 200 counts
MFR
G

EXAMPLE: (Cam program example; uses virtual encoder)

CTE(1) 'Erase all EEPROM tables.
CTA(7,4000) 'Create 7-point table at each 4K encoder increment.
CTW(0) 'Add 1st point.
CTW(1000) 'Add 2nd point; go to point 1000 from start.
CTW(3000) 'Add 3rd point; go to point 3000 from start.
CTW(4000) 'Add 4th point; go to point 4000 from start.
CTW(1000) 'Add 5th point; go to point 1000 from start.
CTW(-2000) 'Add 6th point; go to point -2000 from start.
CTW(0) 'Add 7th point; return to starting point.

'Table has now been written to EEPROM.
SRC(2) 'Use the virtual encoder.
MCE(0) 'Force linear interpolation.
MCW(1,0) 'Use table 1 from point 0.
MFMUL=1 'Simple 1:1 ratio from virtual encoder.
MFDIV=1 'Simple 1:1 ratio from virtual encoder.
MFA(0) MFD(0) 'Disable virtual encoder ramp-up/

'ramp-down sections.
MFSLEW(24000,1) 'Table is 6 segments * 4000 encoder

'counts each.
'Specify the second argument as a 1 to
'force this number as the output total of
'the virtual encoder into the cam.

MFSDC(-1,0) 'Disable virtual encoder profile repeat.
MC 'Enter Cam mode.
G 'Begin move.
END

RELATED COMMANDS:

MFD(distance[,m/s]) Mode Follow Descend (see page 585)
R MFDIV=formula Mode Follow Divisor (see page 588)

Part 2: Commands: MFA(distance[,m/s])

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 582 of 969

R MFMUL=formula Mode Follow Multiplier (see page 598)
MFR Mode Follow Ratio (see page 600)
MFSDC(distance,mode) Mode Follow, Stall-Dwell-Continue (see page 603)
MFSLEW(distance[,m/s]) Mode Follow Slew (see page 605)
MSR Mode Step Ratio (see page 618)
SRC(enc_src) Source, Follow and/or Cam Encoder (see page 759)

Part 2: Commands: MFA(distance[,m/s])

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 583 of 969

MFCTP(arg1,arg2)
Mode Follow Control Traverse Point

APPLICATION: Motion control

DESCRIPTION: Control information for traverse mode

EXECUTION: Buffered until a G command is issued

CONDITIONAL TO: MFR or MSR mode; MFSDC(x,2) mode selected

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Input:
 arg1: -1,0,1
 arg2: 0,1

TYPICAL VALUES: Input:
 arg1: -1,0,1
 arg2: 0,1

DEFAULT VALUE: MFCTP(0,0)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MFCTP(0,0):3
where ":3" is the motor address — use the actual address or a
variable

DETAILED DESCRIPTION:

The MFCTP command provides control information for traverse mode. It allows a several mode
selections to be made. It uses the format:

MFCTP(exp1,exp2)

Refer to the next tables for exp1 and exp2 values and descriptions.
l Exp1

Value Description
-1 When G is issued, continue in the same direction from when the previous traverse move

was ended. This direction is indicated by status word 7, bit 13. This state is not reset
by an X or an OFF.

0 (Default at power up) When G is issued, initially traverse toward higher bound.
1 When G is issued, initially traverse toward lower bound.

Part 2: Commands: MFCTP(arg1,arg2)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 584 of 969

l Exp2

Value Description
0 (Default at power up) The RPC(2) frame of reference is frozen when the servo is off

(OFF, MTB, MT).
1 The RPC(2) frame of reference will be updated with shaft motion when the servo is off

(OFF, MTB, MT). This is a special setting to ensure backward compatibility with existing
applications that may use the RPC(2) frame of reference.

EXAMPLE: (Single-trajectory traverse winding application)

' *** User does some type of homing before this. ***
SRC(2) '*** For demo controller signal. ***
'Typical applications would use SRC(1) for encoder input.

MFCTP(0,1) 'Start traverse state in "normal" direction;
'activate update of RCP(2) when servo is off.

MFL(1000,1) 'Lower-end ramp.
MFH(1000,1) 'Higher-end ramp.
MFLTP=-1000 'Lower traverse point.
MFHTP=1000 'Higher traverse point.
MFMUL=1 'Ratio (default is 1).
MFDIV=1 'Ratio (default is 1).
MFSDC(4000,2) 'Dwell for 4000 counts, 2 is active traverse mode.
MFR 'Enable Follow mode at specified ratio.
G 'Begin move.

RELATED COMMANDS:
R MFDIV=formula Mode Follow Divisor (see page 588)
MFH(distance[,m/s]) Mode Follow, High Ascend/Descend Rate (see page 590)
R MFHTP=formula Mode Follow, High Traverse Point (see page 592)
MFL(distance[,m/s]) Mode Follow, Low Ascend/Descend Rate (see page 594)
R MFLTP=formula Mode Follow, Low Traverse Point (see page 596)
R MFMUL=formula Mode Follow Multiplier (see page 598)
MFR Mode Follow Ratio (see page 600)
MFSDC(distance,mode) Mode Follow, Stall-Dwell-Continue (see page 603)
MSR Mode Step Ratio (see page 618)

Part 2: Commands: MFCTP(arg1,arg2)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 585 of 969

MFD(distance[,m/s])
Mode Follow Descend

APPLICATION: Motion control

DESCRIPTION: Follow mode, descend ramp; default is zero (off)

EXECUTION: Buffered until a G command is issued, or a profiled move restarts
through MFSDC

CONDITIONAL TO: MFR, MSR or MC modes

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: Encoder counts from encoder input or internal counter (selectable)

RANGE OF VALUES: Input:
 value: 0 to 2147483647

[m/s]: 0 or 1

TYPICAL VALUES: Input:
 value: 0 to 2147483647

[m/s]: 0 or 1

DEFAULT VALUE: MFD(0,0) (no ramp — immediately change to zero ratio at end of slew
or X command)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MFD(1000,1):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The MFD command specifies the descend ramp from the current ratio to a ratio of 0. It uses the
format:

MFD(exp1[,exp2])

where:
l Exp1

Specifies counts — valid values from 0 to 2147483647. Set to 0 (default) to disable.
l Exp2

(Optional) Specifies the meaning of exp1. Values are: 0 specifies input units (controller units); 1
specifies distance-traveled units (follower units).

Part 2: Commands: MFD(distance[,m/s])

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 586 of 969

When operating in MFR or MSR mode, it is possible to create a motion profile where the ratio of the
incoming encoder signal to the motor output motion can be gradually ramped down. This ramp starts
when an X (decelerate to stop) is commanded, or a pre-programmed distance was traveled as specified
by MFSLEW. The ramp will end when the ratio reaches 0. The rate of decrease is controlled by the two
parameters to the MFD function. The first argument is a distance (in encoder counts), and the second
argument specifies if that distance is in terms of the encoder input or the motors output motion.

In MC mode, MFD still functions. However, it does not directly affect the output motor motion. It is a
front-end profile between the encoder input and the operation of the Cam table. MFD can be used to
gradually decrease the rate at which cam points are followed.

For a figure showing use examples of this command, see MFSDC Modes on page 148.

EXAMPLE: (profile driven by an incoming encoder signal)

MFMUL=300
MFDIV=100
MFA(300,1) 'Follower moves 300 counts over ascend
MFD(600,1) 'Follower moves 600 counts over descend
MFSLEW(200,1) 'Follower maintains sync ratio for 200 counts
MFR
G

EXAMPLE: (Cam program example; uses virtual encoder)

CTE(1) 'Erase all EEPROM tables.
CTA(7,4000) 'Create 7-point table at each 4K encoder increment.
CTW(0) 'Add 1st point.
CTW(1000) 'Add 2nd point; go to point 1000 from start.
CTW(3000) 'Add 3rd point; go to point 3000 from start.
CTW(4000) 'Add 4th point; go to point 4000 from start.
CTW(1000) 'Add 5th point; go to point 1000 from start.
CTW(-2000) 'Add 6th point; go to point -2000 from start.
CTW(0) 'Add 7th point; return to starting point.

'Table has now been written to EEPROM.
SRC(2) 'Use the virtual encoder.
MCE(0) 'Force linear interpolation.
MCW(1,0) 'Use table 1 from point 0.
MFMUL=1 'Simple 1:1 ratio from virtual encoder.
MFDIV=1 'Simple 1:1 ratio from virtual encoder.
MFA(0) MFD(0) 'Disable virtual encoder ramp-up/

'ramp-down sections.
MFSLEW(24000,1) 'Table is 6 segments * 4000 encoder

'counts each.
'Specify the second argument as a 1 to
'force this number as the output total of
'the virtual encoder into the cam.

MFSDC(-1,0) 'Disable virtual encoder profile repeat.
MC 'Enter Cam mode.
G 'Begin move.
END

Part 2: Commands: MFD(distance[,m/s])

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 587 of 969

RELATED COMMANDS:

MFA(distance[,m/s]) Mode Follow Ascend (see page 580)
R MFDIV=formula Mode Follow Divisor (see page 588)
R MFMUL=formula Mode Follow Multiplier (see page 598)
MFR Mode Follow Ratio (see page 600)
MFSDC(distance,mode) Mode Follow, Stall-Dwell-Continue (see page 603)
MFSLEW(distance[,m/s]) Mode Follow Slew (see page 605)
MSR Mode Step Ratio (see page 618)

Part 2: Commands: MFD(distance[,m/s])

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 588 of 969

MFDIV=formula
Mode Follow Divisor

APPLICATION: Motion control

DESCRIPTION: Divisor for external encoder mode follow with ratio MFMUL/MFDIV

EXECUTION: Buffered until a G command is issued, or a profiled move restarts
through MFSDC

CONDITIONAL TO: MFR, MSR or MC modes

LIMITATIONS: Class 6 D-style cannot output an encoder signal

READ/REPORT: RMFDIV

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: -32767 to -1 and 1 to 32767 (0 excluded)

TYPICAL VALUES: -32767 to -1 and 1 to 32767 (0 excluded)

DEFAULT VALUE: 1

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MFDIV:3=1234, a=MFDIV:3, RMFDIV:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The MFDIV command specifies the divisor for use with the MFR, MSR or MC command. For more
details about how this ratio is applied, see MFR on page 600.

MFMUL/MFDIV specifies the ratio for the MFR or MSR mode. The MC mode is also affected. To use
the MFR or MSR command, you will need to define the specific relationship (ratio) of the encoder count
input to outgoing requested encoder counts of motion.

Both MFMUL and MFDIV may be positive or negative; this controls the resulting direction of shaft
rotation.

NOTE: MFMUL and MFDIV are each set to 1 by default (1 to 1 ratio). Therefore, it is only necessary
to specify either or both if you want to change the default ratio.

NOTE: MFR and MSR are used to enable the desired Electronic Gearing mode (Mode Follow or Mode
Step, respectively). They are not needed to enable a change to the ratio—the "G" command will do
that.

For Class 6 M-style motors, when the internal encoder is directed as an output and received into
another motor for the purposes of Follow mode, the resolution at the receiving motor will be 4096
instead of 4000. MFMUL and MFDIV will need to compensate accordingly. For more notes, see
"Encoder Output" in ENCD(in_out) on page 437.

Part 2: Commands: MFDIV=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 589 of 969

EXAMPLE: (Shows use of MF0, MFDIV and MFMUL)

EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
MF0 'Reset CTR(1)
MFMUL=21 'Multiplier = 21
MFDIV=-10 'Divisor = -10
MFR 'Example: input 100 external encoder counts,

'resulting motion is -210 counts
G 'Start following external encoder
END

RELATED COMMANDS:

MC Mode Cam (Electronic Camming) (see page 555)
R MFMUL=formula Mode Follow Multiplier (see page 598)
MFR Mode Follow Ratio (see page 600)
MSR Mode Step Ratio (see page 618)

Part 2: Commands: MFDIV=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 590 of 969

MFH(distance[,m/s])
Mode Follow, High Ascend/Descend Rate

APPLICATION: Motion control

DESCRIPTION: Sets the ramp at the high end of the traverse

EXECUTION: Buffered until a G command is issued or either traverse point after
reversal

CONDITIONAL TO: MFR or MSR mode; MFSDC(x,2) mode selected

LIMITATIONS: If the combined ramp follower distances of MFL and MFH exceed the
traverse distance, then the ramp rate(s) are increased as required.

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: Either encoder counts from encoder input, or internal encoder counts
(selectable)

RANGE OF VALUES: Input:
 value: 0 to 2147483647

[m/s]: 0 or 1

TYPICAL VALUES: Input:
 value: 0 to 2147483647

[m/s]: 0 or 1

DEFAULT VALUE: MFH(0,0) (immediately change ratio at high end of traverse)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MFH(1000,1):3
where ":3" is the motor address — use the actual address or a
variable

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The MFH command sets the ramp at the high end of the traverse. It uses the format:

MFH(exp1[,exp2])

where:
l Exp1

Specifies counts — valid values from 0 to 2147483647. Set to 0 (default) to disable.
l Exp2

(Optional) Specifies the meaning of exp1. Values of exp2: 0 specifies input units (controller
units); 1 specifies distance-traveled units (follower units).

MFH behaves similar to MFA and MFD, where a ramp is defined during the follow profile. However,
MFH has a slightly different application. It is only used in absolute traverse mode, MFSDC(x,2). MFH

Part 2: Commands: MFH(distance[,m/s])

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 591 of 969

defines the descent and ascent ramps at the high end of the absolute traverse. This is an important
difference because the other ramps, MFA and MFD, are associated with increasing and decreasing
ramps, respectively. Whereas, MFH is associated with the higher physical position and orientation of
the ramp in the absolute traverse profile.

The MFH command can be set at any time, but the value is buffered and accepted when the absolute
traverse mode reaches a speed of 0. Typically, this is when starting, or when a traverse point is reached
and the motor has ramped down to a stop (using the previous ramp rate).

NOTE: This can cause an asymmetry because the descent and ascent ramps at a particular traverse
point will not be the same.

Depending on the application, this could be a problem. The best way to avoid an asymmetry is to set
the ramp when heading away from the traverse point it affects. In other words, only set MFH when the
motor is traveling in a negative direction away from the high traverse point.

NOTE: MFA is not applied in the absolute traverse mode. MFD is only applied in the absolute
traverse mode if an X (decelerate to stop) command is issued.

For a figure showing use examples of this command, see MFSDC Modes on page 148.

EXAMPLE: (Single-trajectory traverse winding application)

' *** User does some type of homing before this. ***
SRC(2) '*** For demo controller signal. ***
'Typical applications would use SRC(1) for encoder input.

MFCTP(0,1) 'Start traverse state in "normal" direction;
'activate update of RCP(2) when servo is off.

MFL(1000,1) 'Lower-end ramp.
MFH(1000,1) 'Higher-end ramp.
MFLTP=-1000 'Lower traverse point.
MFHTP=1000 'Higher traverse point.
MFMUL=1 'Ratio (default is 1).
MFDIV=1 'Ratio (default is 1).
MFSDC(4000,2) 'Dwell for 4000 counts, 2 is active traverse mode.
MFR 'Enable Follow mode at specified ratio.
G 'Begin move.

RELATED COMMANDS:

MFCTP(arg1,arg2) Mode Follow Control Traverse Point (see page 583)
R MFDIV=formula Mode Follow Divisor (see page 588)
R MFHTP=formula Mode Follow, High Traverse Point (see page 592)
MFL(distance[,m/s]) Mode Follow, Low Ascend/Descend Rate (see page 594)
R MFLTP=formula Mode Follow, Low Traverse Point (see page 596)
R MFMUL=formula Mode Follow Multiplier (see page 598)
MFR Mode Follow Ratio (see page 600)
MSR Mode Step Ratio (see page 618)
MFSDC(distance,mode) Mode Follow, Stall-Dwell-Continue (see page 603)

Part 2: Commands: MFH(distance[,m/s])

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 592 of 969

MFHTP=formula
Mode Follow, High Traverse Point

APPLICATION: Motion control

DESCRIPTION: High traverse point

EXECUTION: Buffered until a G command is issued, or the opposite traverse point

CONDITIONAL TO: MFR or MSR mode; MFSDC(x,2) mode selected

LIMITATIONS: MFHTP-MFLTP must be in the range 0 to 2147483647

READ/REPORT: RMFHTP

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Followed encoder counts

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: 0 to 1000000

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MFHTP:3=1234, a=MFHTP:3, RMFHTP:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

When in absolute traverse mode, MFHTP=formula sets the high traverse point in terms of the follower
motor's position. The value may be anywhere in the range from -2147483648 to 2147483647.
However, it should be higher than the low traverse point specified by MFLTP.

NOTE: The distance between MFLTP and MFHTP must be in the range from 0 to 2147483647;
MFHTP must be the higher value.

The MFHTP traverse point can be set at any time. However, it is buffered and accepted into the motion
profile when the motion profile reaches the opposite traverse point (MFLTP).

For a figure showing use examples of this command, see MFSDC Modes on page 148.

Part 2: Commands: MFHTP=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 593 of 969

EXAMPLE: (Single-trajectory traverse winding application)

' *** User does some type of homing before this. ***
SRC(2) '*** For demo controller signal. ***
'Typical applications would use SRC(1) for encoder input.

MFCTP(0,1) 'Start traverse state in "normal" direction;
'activate update of RCP(2) when servo is off.

MFL(1000,1) 'Lower-end ramp.
MFH(1000,1) 'Higher-end ramp.
MFLTP=-1000 'Lower traverse point.
MFHTP=1000 'Higher traverse point.
MFMUL=1 'Ratio (default is 1).
MFDIV=1 'Ratio (default is 1).
MFSDC(4000,2) 'Dwell for 4000 counts, 2 is active traverse mode.
MFR 'Enable Follow mode at specified ratio.
G 'Begin move.

RELATED COMMANDS:

MFCTP(arg1,arg2) Mode Follow Control Traverse Point (see page 583)
R MFDIV=formula Mode Follow Divisor (see page 588)
MFH(distance[,m/s]) Mode Follow, High Ascend/Descend Rate (see page 590)
MFL(distance[,m/s]) Mode Follow, Low Ascend/Descend Rate (see page 594)
R MFLTP=formula Mode Follow, Low Traverse Point (see page 596)
R MFMUL=formula Mode Follow Multiplier (see page 598)
MFR Mode Follow Ratio (see page 600)
MFSDC(distance,mode) Mode Follow, Stall-Dwell-Continue (see page 603)
MSR Mode Step Ratio (see page 618)

Part 2: Commands: MFHTP=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 594 of 969

MFL(distance[,m/s])
Mode Follow, Low Ascend/Descend Rate

APPLICATION: Motion control

DESCRIPTION: Sets the ramp at the low end of the traverse

EXECUTION: Buffered until a G command is issued or either traverse point after
reversal

CONDITIONAL TO: MFR or MSR mode; MFSDC(x,2) mode selected

LIMITATIONS: If the combined ramp follower distances of MFL and MFH exceed the
traverse distance, then the ramp rate(s) are increased as required.

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: Encoder counts from encoder input or internal counter (selectable)

RANGE OF VALUES: Input:
 value: 0 to 2147483647

[m/s]: 0 or 1

TYPICAL VALUES: Input:
 value: 0 to 2147483647

[m/s]: 0 or 1

DEFAULT VALUE: MFL(0,0) (immediately change ratio at low end of traverse)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MFL(1000,1):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The MFL command specifies the ramp at the low end of the traverse. It uses the format:

MFL(exp1[,exp2])

where:
l Exp1

Specifies counts — valid value from 0 to 2147483647. Set to 0 (default) to disable.
l Exp2

(Optional) specifies the meaning of exp1. Values are: 0 specifies input units (controller units); 1
specifies distance-traveled units (follower units).

MFL behaves similar to MFA and MFD — a ramp is defined during the follow profile. However, MFL is
only used in absolute traverse mode, MFSDC(x,2). MFL defines the descent and ascent ramps at the

Part 2: Commands: MFL(distance[,m/s])

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 595 of 969

lower end of the absolute traverse. This is an important difference because the other ramps, MFA and
MFD, are associated with increasing and decreasing ramps, respectively. Whereas, MFL is associated
with the lower physical position and orientation of the ramp in the absolute traverse profile.

The MFL command can be set at any time, but the value is buffered and accepted when the absolute
traverse mode reaches a speed of 0. Typically, this is when starting, or when a traverse point is reached
and the motor has ramped down to a stop (using the previous ramp rate).

NOTE: This can cause an asymmetry because the descent and ascent ramps at a particular traverse
point will not be the same.

Depending on the application, this could be a problem. The best way to avoid an asymmetry is to set
the ramp when heading away from the traverse point it affects. In other words, only set MFL when the
motor is traveling in a positive direction away from the low traverse point.

NOTE: MFA is not applied in the absolute traverse mode. MFD is only applied in the absolute
traverse mode if an X (decelerate to stop) command is issued.

For a figure showing use examples of this command, see MFSDC Modes on page 148.

EXAMPLE: (Single-trajectory traverse winding application)

' *** User does some type of homing before this. ***
SRC(2) '*** For demo controller signal. ***
'Typical applications would use SRC(1) for encoder input.

MFCTP(0,1) 'Start traverse state in "normal" direction;
'activate update of RCP(2) when servo is off.

MFL(1000,1) 'Lower-end ramp.
MFH(1000,1) 'Higher-end ramp.
MFLTP=-1000 'Lower traverse point.
MFHTP=1000 'Higher traverse point.
MFMUL=1 'Ratio (default is 1).
MFDIV=1 'Ratio (default is 1).
MFSDC(4000,2) 'Dwell for 4000 counts, 2 is active traverse mode.
MFR 'Enable Follow mode at specified ratio.
G 'Begin move.

RELATED COMMANDS:

MFCTP(arg1,arg2) Mode Follow Control Traverse Point (see page 583)
R MFDIV=formula Mode Follow Divisor (see page 588)
MFH(distance[,m/s]) Mode Follow, High Ascend/Descend Rate (see page 590)
R MFHTP=formula Mode Follow, High Traverse Point (see page 592)
R MFLTP=formula Mode Follow, Low Traverse Point (see page 596)
R MFMUL=formula Mode Follow Multiplier (see page 598)
MFR Mode Follow Ratio (see page 600)
MFSDC(distance,mode) Mode Follow, Stall-Dwell-Continue (see page 603)
MSR Mode Step Ratio (see page 618)

Part 2: Commands: MFL(distance[,m/s])

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 596 of 969

MFLTP=formula
Mode Follow, Low Traverse Point

APPLICATION: Motion control

DESCRIPTION: Low traverse point

EXECUTION: Buffered until a G command is issued, or the opposite traverse point

CONDITIONAL TO: MFR or MSR mode; MFSDC(x,2) mode selected

LIMITATIONS: MFHTP-MFLTP must be in the range 0 to 2147483647

READ/REPORT: RMFLTP

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Followed encoder counts

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: 0 to 1000000

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MFLTP:3=1234, a=MFLTP:3, RMFLTP:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

When in absolute traverse mode, MFLTP=formula sets the lower traverse point in terms of the follower
motor's position. The value may be anywhere in the range from -2147483648 to 2147483647.
However, it should be lower than the high traverse point specified by MFHTP.

NOTE: The distance between MFLTP and MFHTP must be in the range from 0 to 2147483647;
MFHTP must be the higher value.

The MFLTP traverse point can be set at any time. However, it is buffered and accepted into the motion
profile when the motion profile reaches the opposite traverse point (MFHTP).

For a figure showing use examples of this command, see MFSDC Modes on page 148.

Part 2: Commands: MFLTP=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 597 of 969

EXAMPLE: (Single-trajectory traverse winding application)

' *** User does some type of homing before this. ***
SRC(2) '*** For demo controller signal. ***
'Typical applications would use SRC(1) for encoder input.

MFCTP(0,1) 'Start traverse state in "normal" direction;
'activate update of RCP(2) when servo is off.

MFL(1000,1) 'Lower-end ramp.
MFH(1000,1) 'Higher-end ramp.
MFLTP=-1000 'Lower traverse point.
MFHTP=1000 'Higher traverse point.
MFMUL=1 'Ratio (default is 1).
MFDIV=1 'Ratio (default is 1).
MFSDC(4000,2) 'Dwell for 4000 counts, 2 is active traverse mode.
MFR 'Enable Follow mode at specified ratio.
G 'Begin move.

RELATED COMMANDS:

MFCTP(arg1,arg2) Mode Follow Control Traverse Point (see page 583)
R MFDIV=formula Mode Follow Divisor (see page 588)
MFH(distance[,m/s]) Mode Follow, High Ascend/Descend Rate (see page 590)
R MFHTP=formula Mode Follow, High Traverse Point (see page 592)
MFL(distance[,m/s]) Mode Follow, Low Ascend/Descend Rate (see page 594)
R MFMUL=formula Mode Follow Multiplier (see page 598)
MFR Mode Follow Ratio (see page 600)
MFSDC(distance,mode) Mode Follow, Stall-Dwell-Continue (see page 603)
MSR Mode Step Ratio (see page 618)

Part 2: Commands: MFLTP=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 598 of 969

MFMUL=formula
Mode Follow Multiplier

APPLICATION: Motion control

DESCRIPTION: Multiplier for external encoder mode follow with ratio
MFMUL/MFDIV

EXECUTION: Buffered until a G command is issued or a profiled move restarts
through MFSDC

CONDITIONAL TO: MFR, MSR or MC mode

LIMITATIONS: Class 6 D-style cannot output an encoder signal

READ/REPORT: RMFMUL

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: -32767 to 32767

TYPICAL VALUES: -32767 to 32767

DEFAULT VALUE: 1

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MFMUL:3=1234, a=MFMUL:3, RMFMUL:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The MFMUL command specifies the multiplier for use with the MFR, MSR or MC command. For more
details about how this ratio is applied, see the MSR on page 618.

MFMUL/MFDIV specifies the ratio for the MFR or MSR mode. The MC mode is also affected. To use
the MFR or MSR command, you will need to define the specific relationship (ratio) of the encoder count
input to outgoing requested encoder counts of motion.

Both MFMUL and MFDIV may be positive or negative; this controls the resulting direction of shaft
rotation.

NOTE: MFMUL and MFDIV are each set to 1 by default (1 to 1 ratio). Therefore, it is only necessary
to specify either or both if you want to change the default ratio.

NOTE: MFR and MSR are used to enable the desired Electronic Gearing mode (Mode Follow or Mode
Step, respectively). They are not needed to enable a change to the ratio—the "G" command will do
that.

For Class 6 M-style motors, when the internal encoder is directed as an output and received into
another motor for the purposes of Follow mode, the resolution at the receiving motor will be 4096
instead of 4000. MFMUL and MFDIV will need to compensate accordingly. For more notes, see
"Encoder Output" in ENCD(in_out) on page 437.

Part 2: Commands: MFMUL=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 599 of 969

EXAMPLE: (Shows use of MF0, MFDIV and MFMUL)

EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
MF0 'Reset CTR(1)
MFMUL=21 'Multiplier = 21
MFDIV=-10 'Divisor = -10
MFR 'Example: input 100 external encoder counts,

'resulting motion is -210 counts
G 'Start following external encoder
END

RELATED COMMANDS:

MC Mode Cam (Electronic Camming) (see page 555)
R MFDIV=formula Mode Follow Divisor (see page 588)
MFR Mode Follow Ratio (see page 600)
MSR Mode Step Ratio (see page 618)

Part 2: Commands: MFMUL=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 600 of 969

MFR
Mode Follow Ratio

APPLICATION: Motion control

DESCRIPTION: Request mode follow with ratio

EXECUTION: Buffered until a G command is issued

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: MP

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MFR:3 or MFR(0):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

WARNING: For Class 5 D-series motors, certain special features may override the
brake function. In particular, the MFR, MSR, MF0, MS0 commands, or any similar
feature from a network interface (including CANopen modes of operation: -1, -3, -
11), may interfere with a brake assignment to I/O 0 or 1). Therefore, use of I/O 0 or
1 is not recommended for the brake in the Class 5 D-series if follow or step modes
are used, regardless of SRC setting. For a programming example, refer to MFR on
page 600.

The MFR command is used to implement a fractional relationship between an incoming secondary
encoder signal and the SmartMotor™ internal shaft position, which is represented by the primary
internal encoder count. The fractional relationship is defined by the user-set ratio of MFMUL to MFDIV.
The motor will move in proportion to the incoming encoder signal.

NOTE: MFMUL and MFDIV are each set to 1 by default (1 to 1 ratio). Therefore, it is only necessary
to specify either or both if you want to change the default ratio.

NOTE: MFR and MSR are used to enable the desired Electronic Gearing mode (Mode Follow or Mode
Step, respectively). They are not needed to enable a change to the ratio—the "G" command will do
that.

The encoder input is configured as a quadrature input. If a step-and-direction operation is desired, then
select MSR instead of MFR. Both commands operate the same with the exception of the input signal
type.

Part 2: Commands: MFR

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 601 of 969

Either the external encoder can be selected, or an internal time-base can be selected. For details, see
SRC(enc_src) on page 759.

The motion can be gradually started and stopped even if the encoder source is constantly running. For
instance, if a conveyor is constantly running, the motor can be ramped up to speed and then ramped
down from speed by command or programmed distance. This allows for operations on moving products,
such as labeling, stamping or transfers from one conveyor to another. For more information, see MFA
(distance[,m/s]) on page 580, MFD(distance[,m/s]) on page 585, and MFSLEW(distance[,m/s]) on page
605.

There are automatic modes that allow for repeating start-stop cycles or for traversing applications like
winders and cut-to-length material. For more information, see MFSDC(distance,mode) on page 603.

To use MFR, if something other than the default 1:1 ratio is desired, you will need to define the
relationship (ratio) of the external encoder input to shaft position, which is represented by the primary
internal encoder count. Both MFMUL and MFDIV may be positive or negative — this controls the
resulting direction of shaft rotation.

The MFR command and then a G command will immediately turn on the servo. The servo-off flag (Bo) is
set to 0; the trajectory flag (Bt) is set to 1. The motion is restricted by the current value of EL. The
motion is also subject to the currently defined activity of the limit switches.

The fractional ratio of input encoder to motor motion is maintained with a continuing remainder. This
means that the ratio can run continuously without concern about loss of accuracy. Any ratio that can be
expressed with the integers MFMUL and MFDIV, and within their range limits, can be maintained
accurately. For example, the ratio 1:10 or 2:3 can be maintained accurately. Keep in mind that the
values of MFMUL and MFDIV can be creatively selected to give the desired ratio. For instance,
MFMUL=10 and MFDIV=395 gives a reduction ratio of 39.5.

NOTE: The only method of inputting a ratio to the SmartMotor is with the MFMUL and MFDIV
commands, which require integers within a certain range.

Ratios that are irrational — a mathematical definition that means it cannot be represented by a ratio of
integers — cannot be tracked continuously. This is a fundamental mathematical principal and not a
limitation of the SmartMotor. For example, converting degrees to radians, or diameter to
circumference, is considered irrational because an integer ratio cannot express the precision required
to operate continuously. Such a ratio would only be accurate in a limited range of motion. Depending on
the application, this could be a problem. Therefore, it is the responsibility of the system designer to be
aware of this.

For a figure showing use examples of this command, see MFSDC Modes on page 148.

Programming Note

NOTE: When using the EOBK command in programs with the MFR command, be aware of the
information below.

In situations where EOBK(0) is used before MFR, note that MFR interferes with I/O 0 and 1. This
defeats, for example, EOBK(0), from working properly when it is placed before MFR.

To program this correctly:
l Choose an output value for EOBK that is something other than 0 or 1, e.g., EOBK(2):

EOBK(2)
…
MFR
G

OR

Part 2: Commands: MFR

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 602 of 969

l If EOBK(0) (or EOBK(1)) must be used, be sure to reissue EOBK after MFR but before the G
command:

MFR
EOBK(0)
G

EXAMPLE: (phase offset adjustment)

In some applications, it may be necessary to introduce a phase shift to achieve proper alignment during
MFR following. To perform this shift, configure trajectory 1 to execute a position move.

EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
MF0 'Reset CTR(1)
MFMUL=21 'Multiplier = 21
MFDIV=-10 'Divisor = -10
MFR 'Example: input 100 external encoder counts,

'resulting motion is -210 counts
MP(1) 'Position mode in trajectory 1

'Also, keep MFR active
PRT=0 'No phase shift
G(2) 'Start following

'Implementing phase adjust:
PRT=500 ' Set relative distance
VT=5000 ' Set velocity target
ADT=100 ' Set accel/decel
G(1) ' Start phase adjust
END

RELATED COMMANDS:
R CTR(enc) Counter, Encoder, Step and Direction (see page 380)
G Start Motion (GO) (see page 473)
MFA(distance[,m/s]) Mode Follow Ascend (see page 580)
MFCTP(arg1,arg2) Mode Follow Control Traverse Point (see page 583)
MFD(distance[,m/s]) Mode Follow Descend (see page 585)
R MFDIV=formula Mode Follow Divisor (see page 588)
MFH(distance[,m/s]) Mode Follow, High Ascend/Descend Rate (see page 590)
R MFHTP=formula Mode Follow, High Traverse Point (see page 592)
MFL(distance[,m/s]) Mode Follow, Low Ascend/Descend Rate (see page 594)
R MFLTP=formula Mode Follow, Low Traverse Point (see page 596)
R MFMUL=formula Mode Follow Multiplier (see page 598)
MFSDC(distance,mode) Mode Follow, Stall-Dwell-Continue (see page 603)
MFSLEW(distance[,m/s]) Mode Follow Slew (see page 605)
MSR Mode Step Ratio (see page 618)
SRC(enc_src) Source, Follow and/or Cam Encoder (see page 759)

Part 2: Commands: MFR

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 603 of 969

MFSDC(distance,mode)
Mode Follow, Stall-Dwell-Continue

APPLICATION: Motion control

DESCRIPTION: Follow mode stall-dwell-continue; controls dwell and repeat of the fol-
low profile

EXECUTION: Buffered until a G command is issued, or a profiled move restarts
through MFSDC

CONDITIONAL TO: MFR, MSR, or MC modes; MFSLEW must not be disabled

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: Encoder counts from encoder input

RANGE OF VALUES: Input:
 value: -1 to 2147483647
 mode: 0, 1, 2

TYPICAL VALUES: Input:
 value: -1 to 2147483647
 mode: 0, 1, 2

DEFAULT VALUE: MFSDC(-1,0) (disabled — does not repeat)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MFSDC(1000,1):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The MFSDC command sets the Follow mode stall-dwell-continue, which is used to control the dwell and
repeat of the follow profile. It uses the format:

MFSDC(exp1,exp2)

where:
l Exp1

Values from 0 to 2147483647 to specify the number of controller counts the follower dwells at
zero ratio. Set to -1 (default) to disable. When disabled, Follow Mode will not restart
automatically.

l Exp2
Values are: 0 to repeat the gearing profile in the same direction; 1 to repeat the gearing profile
in the opposite direction; 2 for the improved traverse mode that uses absolute position targets.
A setting of 0 is typical for feeding labels in label applications, and a setting of 1 or 2 is typical
for traverse-and-takeup spool winding applications.

Part 2: Commands: MFSDC(distance,mode)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 604 of 969

In MFR, MSR or MC mode, MFSDC is useful for creating a delay and restarting automatically after the
MFSLEW distance. The controller encoder input will continue forward while the motor's output motion
remains stationary. After the specified number of encoder input counts, the motor will continue motion
again.

For additional details and figures, see MFSDC(distance,mode) on page 147.

EXAMPLE: (Cam program example; uses virtual encoder)

CTE(1) 'Erase all EEPROM tables.
CTA(7,4000) 'Create 7-point table at each 4K encoder increment.
CTW(0) 'Add 1st point.
CTW(1000) 'Add 2nd point; go to point 1000 from start.
CTW(3000) 'Add 3rd point; go to point 3000 from start.
CTW(4000) 'Add 4th point; go to point 4000 from start.
CTW(1000) 'Add 5th point; go to point 1000 from start.
CTW(-2000) 'Add 6th point; go to point -2000 from start.
CTW(0) 'Add 7th point; return to starting point.

'Table has now been written to EEPROM.
SRC(2) 'Use the virtual encoder.
MCE(0) 'Force linear interpolation.
MCW(1,0) 'Use table 1 from point 0.
MFMUL=1 'Simple 1:1 ratio from virtual encoder.
MFDIV=1 'Simple 1:1 ratio from virtual encoder.
MFA(0) MFD(0) 'Disable virtual encoder ramp-up/

'ramp-down sections.
MFSLEW(24000,1) 'Table is 6 segments * 4000 encoder

'counts each.
'Specify the second argument as a 1 to
'force this number as the output total of
'the virtual encoder into the cam.

MFSDC(-1,0) 'Disable virtual encoder profile repeat.
MC 'Enter Cam mode.
G 'Begin move.
END

RELATED COMMANDS:

MFA(distance[,m/s]) Mode Follow Ascend (see page 580)
MFD(distance[,m/s]) Mode Follow Descend (see page 585)
R MFDIV=formula Mode Follow Divisor (see page 588)
R MFMUL=formula Mode Follow Multiplier (see page 598)
MFR Mode Follow Ratio (see page 600)
MFSLEW(distance[,m/s]) Mode Follow Slew (see page 605)
MSR Mode Step Ratio (see page 618)

Part 2: Commands: MFSDC(distance,mode)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 605 of 969

MFSLEW(distance[,m/s])
Mode Follow Slew

APPLICATION: Motion control

DESCRIPTION: Follow mode slew at ratio for a fixed distance

EXECUTION: Buffered until a G command is issued, or a profiled move restarts
through MFSDC

CONDITIONAL TO: MFR, MSR or MC modes

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: Encoder counts from encoder input or internal counter (selectable)

RANGE OF VALUES: Input:
 value: -1 to 2147483647

[m/s]: 0 or 1

TYPICAL VALUES: Input:
 value: -1 to 2147483647

[m/s]: 0 or 1

DEFAULT VALUE: MFSLEW(-1,0) (disabled — runs endlessly when slew section is
reached.)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MFSLEW(1000,1):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The MFSLEW command sets the Follow mode slew at ratio for a fixed distance. It uses the format:

MFSLEW(distance[,m/s])

where:
l distance

Specifies counts — valid values from -1 to 2147483647. Set to -1 (default) to disable. When
disabled, Follow mode continuously runs at ratio. A distance of 0 is acceptable. It produces a
motion where only the MFA and MFD ramps form a triangular profile.

l m/s
(Optional) Specifies the meaning of exp1. Values are: 0 for designating input units (controller
units); 1 for designating distance traveled (follower units).

Part 2: Commands: MFSLEW(distance[,m/s])

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 606 of 969

When operating in MFR or MSR mode, it is possible to create a motion profile where the motor follows
the encoder only for a specified distance — even if the encoder continues on. MFSLEW specifies this
distance in terms of the incoming encoder or the motor's outgoing motion.

In MC mode, this has special importance. It is possible to set the length of MFSLEW equal to the
controller length of the Cam table. For example, a cam of 10 points (9 segments) with a segment length
of 100 will have a total length of 900 counts. In this example, by setting MFSLEW(900,1), exactly one
pass through the Cam table can be selected. In combination with the MFSDC(0,0) command, an
automatic repeat is selected. This allows for certain parameters like MCMUL/MCDIV, MFSLEW and
MFMUL/MFDIV to be updated synchronously with the end of the Cam table.

For a figure showing use examples of this command, see MFSDC Modes on page 148.

EXAMPLE: (profile driven by an incoming encoder signal)

MFMUL=300
MFDIV=100
MFA(300,1) 'Follower moves 300 counts over ascend
MFD(600,1) 'Follower moves 600 counts over descend
MFSLEW(200,1) 'Follower maintains sync ratio for 200 counts
MFR
G

RELATED COMMANDS:

MFA(distance[,m/s]) Mode Follow Ascend (see page 580)
MFD(distance[,m/s]) Mode Follow Descend (see page 585)
R MFDIV=formula Mode Follow Divisor (see page 588)
R MFMUL=formula Mode Follow Multiplier (see page 598)
MFR Mode Follow Ratio (see page 600)
MFSDC(distance,mode) Mode Follow, Stall-Dwell-Continue (see page 603)
MSR Mode Step Ratio (see page 618)

Part 2: Commands: MFSLEW(distance[,m/s])

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 607 of 969

MH
Mode, Homing

APPLICATION: Motion control

DESCRIPTION: Request homing mode

EXECUTION: Buffered until a G command is issued

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 6.x (D/M); no Class 5

COMBITRONIC: MH:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The MH (Mode, Homing) command is used to set the SmartMotor to homing mode. MH can be sent
directly to the motor as a serial command or entered as part of a user program.

There are no parameters for this command — it simply requests the homing mode for the motor on the
next G command.

For more details on SmartMotor homing operations, see the SmartMotor Homing Procedures and
Methods Application Note.

EXAMPLE:

Enter these commands in the SMI software Terminal window:

MH 'Set the motor mode to homing
G 'Start the homing operation

RELATED COMMANDS:
R HM_ADT=formula Homing Accel/Decel Target (see page 491)
R HM_MTHD=formula Homing Method (see page 492)
R HM_OSET=formula Homing Offset (see page 496)
R HM_VTS=formula Homing Velocity Target to Switch (see page 498)
R HM_VTZ=formula Homing Velocity Target to Zero (see page 500)
R MODE Mode Operating (see page 610)

MH

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 608 of 969

MINV(arg)
Mode Inverse (Commutation Inverse)

APPLICATION: Motion control

DESCRIPTION: Inverts (reverses, negates, turns around) the direction convention of
the motor

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: Do not apply while motor drive is enabled

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Input: 0 or 1

TYPICAL VALUES: 0

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MINV(0):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The MINV (Mode Inverse) command inverts the direction convention (orientation) of the SmartMotor:
l MINV(0) restores the default direction convention

l MINV(1) inverts the direction convention

When looking at the end of the motor shaft, the default direction convention of the SmartMotor is
clockwise shaft rotation = positive encoder counts, and counterclockwise shaft rotation = negative
encoder counts. Issuing the MINV(1) command inverts (flips) this direction convention.

Part 2: Commands: MINV(arg)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 609 of 969

EXAMPLE:

Enter these commands in the SMI software Terminal window:

ENC0 'Read position from internal encoder
O=1234 'Set origin to 1234
RPA 'Responds with 1234
'Manually rotate the motor shaft a few turns clockwise
RPA 'Responds with a higher count, like 9936
MINV(1) 'Inverts the direction convention
RPA 'Responds with same higher count, like 9936
'Manually rotate the motor shaft a few turns clockwise
RPA 'Responds with a lower count, like 694
MINV(0) 'Restores the default direction convention
'Manually rotate the motor shaft a few turns clockwise
RPA 'Responds with a higher count, like 8723

RELATED COMMANDS:
R CTR(enc) Counter, Encoder, Step and Direction (see page 380)
R PA Position, Actual (see page 646)

Part 2: Commands: MINV(arg)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 610 of 969

MODE
Mode Operating

APPLICATION: Motion control

DESCRIPTION: Get operating mode, specific trajectory

EXECUTION: Read only

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RMODE
; supports the DS2020 Combitronic system

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: -5 to 7

TYPICAL VALUES: -5 to 7

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: RMODE(1):3, x=MODE(1):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The MODE command gets (reads) the operating mode:
l MODE gets the active operating mode

l MODE(...) gets the active operating mode, specific trajectory

For example x=MODE(1) will report trajectory 1 (MP, MV, MT)

The next table describes the possible meaning for the returned value:

Meaning
Value from MODE

or
MODE(0)

Trajectory 1
MODE(1)

Trajectory 2
Mode(2)

Cyclic Synchronous Torque (CST) 10 10 0
Cyclic Synchronous Velocity (CSV) 9 9 0
Cyclic Synchronous Position (CSP) 8 8 0
CANopen Interpolation 7 7 0
Homing 6 6 0
Torque (MT) 4 4 0

Part 2: Commands: MODE

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 611 of 969

Meaning
Value from MODE

or
MODE(0)

Trajectory 1
MODE(1)

Trajectory 2
Mode(2)

Velocity (MV) 3 3 0
Position (MP) 1 1 0
Null (move generator inactive) 0 0 0
Quadrature Follow (MFR) -2 0 -2
Step/Direction Follow (MSR) -3 0 -3
Cam (MC) -4 0 -4
Mixed: MP and MFR -5 1 -2
Mixed: MP and MSR -5 1 -3
Mixed: MP and MC -5 1 -4
Mixed: MV and MFR -5 3 -2
Mixed: MV and MSR -5 3 -3
Mixed: MV and MC -5 3 -4
JLS* -13 -13 0
*Applies only to the JLS firmware version.

EXAMPLE:

In the SMI editor, create this program, download it to a SmartMotor and then run it.

EIGN(W,0) 'Disable hardware limits
ZS 'Clear status bits
MP 'Set position mode
AT=500 'Preset acceleration.
VT=1000000 'Preset velocity.
PT=0 'Zero out position.
O=0 'Declare origin
G 'Servo in place
END 'Required END of program command

At the SMI software Terminal window, type these commands:

NOTE: Do not enter the comments — those are for your information and to show what is returned
by the commands.

RMODE 'Reports 1 for position mode
PRINT(MODE,#13) 'Prints 1 for position mode

Edit the program and substitute MV (velocity mode), download it to a SmartMotor and then run it.

At the SMI software Terminal window, type these commands:

NOTE: Do not enter the comments — those are for your information and to show what is returned
by the commands.

RMODE 'Reports 3 for velocity mode
PRINT(MODE,#13) 'Prints 3 for velocity mode

Part 2: Commands: MODE

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 612 of 969

RELATED COMMANDS:

MC Mode Cam (Electronic Camming) (see page 555)
MFR Mode Follow Ratio (see page 600)
MP Mode Position (see page 613)
MSR Mode Step Ratio (see page 618)
MT Mode Torque (see page 620)
MV Mode Velocity (see page 624)

Part 2: Commands: MODE

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 613 of 969

MP
Mode Position

APPLICATION: Motion control; supports the DS2020 Combitronic system

DESCRIPTION: Request position mode

EXECUTION: Buffered until a G command is issued

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: This is the default motion mode at power up

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: MP:3 or MP(0):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

Mode Position (MP), or position mode, is the default mode of the motor. If you ever change modes, you
can return to position mode by issuing the MP command. The mode request is buffered until a G
command is issued.

NOTE: For a standard position-mode move, the SmartMotor™ requires, at a minimum, a position
target (PT), nonzero trajectory velocity (VT) and a nonzero positive acceleration/deceleration (ADT).

MP calculates the trajectory to the target position when the G command is issued. The preceding
PT=formula or PRT=formula determines if the move is to be absolute (destination target set equal to
buffered PT value) or relative (destination target set equal to current trajectory position plus the
buffered PRT offset value).

The PID (servo) will be active. The MP mode calculates a trapezoidal velocity profile as a function of
time. This profile is calculated to accelerate, reach a slew speed, and decelerate in a way so the speed
is exactly 0 at the target position. The PID uses this calculated ideal position (PC) and compares it to
the actual position (PA). The PID will apply torque to the motor to follow this profile with as little error
(EA) as possible. Position error is due to basic physics of friction, inertia, gravity or any other force on
the motor.

The G command may be issued at any time, and it may be repeated (particularly in the case of relative
modes with PRT=offset). When repeating the G command in the middle of a move, the result will
depend on the absolute versus relative mode:

Part 2: Commands: MP

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 614 of 969

l Absolute mode (initiated with a PT command) will always target the most recent value of PT. If
the PT value is the same as before, that is acceptable and can be useful for changing the speed
while keeping the target the same. If the application has newer information about the desired
target, the PT value can be different than previous values in order to correct the target position.

l Relative mode (initiated with a PRT command) will always calculate a new ending position by
adding PRT to the current position. This is important to understand because a G command issued
while in motion will not remember the previous relative target. In indexing applications like
rotary tables, this could lead to an offset from the original indexed locations. Therefore, this
mode must be used carefully.

Assuming there are no faults, an MP command immediately followed by a G command turns on the
servo. The servo-off flag (Bo) is set to 0; the trajectory flag (Bt) is set to 1. The motion is restricted by
the current value of EL. The motion is also subject to the currently defined activity of the limit
switches. RMODE responds with a P.

EXAMPLE:
MV 'Velocity mode
ADT=1000 'Set accel/decel
VT=50000 'Set velocity
G 'Start motion
WAIT=6000 'Wait 6000 samples
MP 'Position mode
ADT=50 'Set accel/decel
VT=40000 'Set velocity
PT=1000 'Set position
G 'Start (change) motion
WAIT=200 'Wait 200 samples
VT=45000 'Change velocity
PT=0 'Update position
G 'Start motion

EXAMPLE: (Routine homes motor against a hard stop)

MDS 'Using Sine mode commutation
KP=3200 'Increase stiffness from default
KD=10200 'Increase damping from default
F 'Activate new tuning parameters
AMPS=100 'Lower current limit to 10%
VT=-10000 'Set maximum velocity
ADT=100 'Set maximum accel/decel
MV 'Set Velocity mode
G 'Start motion
WHILE EA>-100 'Loop while position error is small
LOOP 'Loop back to WHILE
O=-100 'While pressed, declare home offset
S 'Abruptly stop trajectory
MP 'Switch to Position mode
VT=20000 'Set higher maximum velocity
PT=0 'Set target position to be home
G 'Start motion
TWAIT 'Wait for motion to complete
AMPS=1023 'Restore current limit to maximum
END 'End program

Part 2: Commands: MP

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 615 of 969

RELATED COMMANDS:

ADT=formula Acceleration/Deceleration Target (see page 263)
R EL=formula Error Limit (see page 426)
G Start Motion (GO) (see page 473)
MV Mode Velocity (see page 624)
R PRT=formula Position, Relative Target (see page 683)
R PT=formula Position, (Absolute) Target (see page 690)
R VT=formula Velocity Target (see page 828)

Part 2: Commands: MP

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 616 of 969

MS0
Mode Step, Zero External Counter

APPLICATION: Motion control

DESCRIPTION: Request step-and-direction counter mode; zero the external counter

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: Step-and-direction input available

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: Motor default is MS0; however, it is best practice to issue MS0
before beginning program that uses step and direction

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MS0:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

WARNING: For Class 5 D-series motors, certain special features may override the
brake function. In particular, the MFR, MSR, MF0, MS0 commands, or any similar
feature from a network interface (including CANopen modes of operation: -1, -3, -
11), may interfere with a brake assignment to I/O 0 or 1). Therefore, use of I/O 0 or
1 is not recommended for the brake in the Class 5 D-series if follow or step modes
are used, regardless of SRC setting. For a programming example, refer to MS0 on
page 616.

The MS0 command zeroes the second encoder register (see CTR(enc) on page 380) without changing
the current motion mode of the SmartMotor™.

Following MS0, the A and B pins will be interpreted as a step-and-direction signal. MF0 is the opposite
input mode.

l On the D-style motor, these are inputs 0 and 1.

l On the M-style motor, these encoder inputs are differential and are labeled separately from
general I/O signals.

If the Mode Step with Ratio (MSR) or the Cam mode does not meet your requirements, you can write
your own loop and define a unique relationship between the incoming secondary encoder signal and the
motor’s position.

Part 2: Commands: MS0

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 617 of 969

It is not necessary to use the inputs for motion. Any application that needs to count an input signal can
use this feature.

Step-and-direction inputs are most commonly used to emulate a simple stepper motor drive. In MSR
mode, the MFMUL and MFDIV commands can be used to allow a specific travel distance with each
incoming pulse, just as a stepper drive would do.

NOTE: As with most stepping systems, opto-isolation modules are recommended to assure robust
step-and-direction operation.

EXAMPLE:
MS0 'Reset CTR to zero

'CTR value follows step-and-direction inputs

RELATED COMMANDS:
R CTR(enc) Counter, Encoder, Step and Direction (see page 380)
MF0 Mode Follow, Zero External Counter (see page 578)
R MFDIV=formula Mode Follow Divisor (see page 588)
R MFMUL=formula Mode Follow Multiplier (see page 598)
MFR Mode Follow Ratio (see page 600)
MSR Mode Step Ratio (see page 618)

Part 2: Commands: MS0

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 618 of 969

MSR
Mode Step Ratio

APPLICATION: Motion control

DESCRIPTION: Request step mode with ratio

EXECUTION: Buffered until a G command is issued

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: MP

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MSR:3 or MSR(0):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

WARNING: For Class 5 D-series motors, certain special features may override the
brake function. In particular, the MFR, MSR, MF0, MS0 commands, or any similar
feature from a network interface (including CANopen modes of operation: -1, -3, -
11), may interfere with a brake assignment to I/O 0 or 1). Therefore, use of I/O 0 or
1 is not recommended for the brake in the Class 5 D-series if follow or step modes
are used, regardless of SRC setting. For a programming example, refer to MSR on
page 618.

The MSR command operation is nearly identical to the MFR command. The only difference is that the
encoder input is configured as a step-and-direction signal. For a more detailed description of how the
following ratio is set and how to use the profile commands such as MFA, MFSLEW, etc., see MFR on
page 600. Those commands also apply in the MSR motion.

NOTE: MFMUL and MFDIV are each set to 1 by default (1 to 1 ratio). Therefore, it is only necessary
to specify either or both if you want to change the default ratio.

NOTE: MFR and MSR are used to enable the desired Electronic Gearing mode (Mode Follow or Mode
Step, respectively). They are not needed to enable a change to the ratio—the "G" command will do
that.

MSR is typically used in applications where the input signal is from a controller using stepper motors.
The SmartMotor™ can be used in place of a stepper drive and stepper motor. By carefully applying
MFMUL and MFDIV, you can select a wide range of motion per input step.

Part 2: Commands: MSR

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 619 of 969

NOTE: As with most stepping systems, opto-isolation modules are recommended to assure robust
step-and-direction operation.

EXAMPLE:
MS0 'Reset CTR
MFMUL=21 'Numerator = 21
MFDIV=-10 'Denominator = -10
MSR 'Example: input 100 external encoder counts,

'resulting motion is -210 counts
MP(1) 'Position mode in trajectory 1 while also

'keeping MSR active
PRT=0 'No phase shift
G(2) 'Start following

'Implementing phase adjust:
PRT=500 ' Set relative position target
VT=5000 ' Set velocity target
ADT=100 ' Set accel/decel target
G(1) ' Start phase adjust

RELATED COMMANDS:
R CTR(enc) Counter, Encoder, Step and Direction (see page 380)
G Start Motion (GO) (see page 473)
MFA(distance[,m/s]) Mode Follow Ascend (see page 580)
MFCTP(arg1,arg2) Mode Follow Control Traverse Point (see page 583)
MFD(distance[,m/s]) Mode Follow Descend (see page 585)
R MFDIV=formula Mode Follow Divisor (see page 588)
MFH(distance[,m/s]) Mode Follow, High Ascend/Descend Rate (see page 590)
R MFHTP=formula Mode Follow, High Traverse Point (see page 592)
MFL(distance[,m/s]) Mode Follow, Low Ascend/Descend Rate (see page 594)
R MFLTP=formula Mode Follow, Low Traverse Point (see page 596)
R MFMUL=formula Mode Follow Multiplier (see page 598)
MFR Mode Follow Ratio (see page 600)
MFSDC(distance,mode) Mode Follow, Stall-Dwell-Continue (see page 603)
MFSLEW(distance[,m/s]) Mode Follow Slew (see page 605)
SRC(enc_src) Source, Follow and/or Cam Encoder (see page 759)

Part 2: Commands: MSR

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 620 of 969

MT
Mode Torque

APPLICATION: Motion control

DESCRIPTION: Request torque mode

EXECUTION: Buffered until a G command is issued

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: MP

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MT:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The MT (Mode Torque) command enables Torque mode. In this mode, the motor is commanded to
develop a specific output effort, set by T=formula.

l T=32767 results in 100% PWM in the positive direction

l T=-32767 results in 100% PWM in the negative direction

While in this mode, the encoder still tracks position and can still be read with the PA variable. However,
the PID loop is off, and the motor is not servoing or running a trajectory.

For any given torque and no applied load, there will be a velocity at which the Back EMF (BEMF) of the
motor stops acceleration and holds an almost-constant velocity. Therefore, under the no-load condition,
the T command will control velocity. As the delivered torque increases, the velocity decreases.

NOTE: MT does not regulate torque in the D-style motor. Instead, it delivers a fixed amount of
voltage (PWM) to the motor coils.

Assuming there are no faults, an MT command and then a G command immediately activates the servo.
The servo off flag (Bo) is set to 0; the trajectory flag (Bt) will indicate if a TS ramp has been set. The
motion is not restricted by the current EL value. For instance, issuing EL=0 would have no effect on the
current motion. The motion is subject to the currently defined activity of the limit switches.

The ramp-up rate for the T value can be controlled with the TS command. For details, see TS=formula
on page 786.

Part 2: Commands: MT

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 621 of 969

CAUTION: Do not attempt to regulate speed with Torque mode. It is not designed
for that and will give poor results. Likewise, it is difficult to place a speed limit on
Torque mode. If the load decreases, it causes the motor shaft speed to increase to
a new equilibrium because power must remain constant.

EXAMPLE: (Increases torque, one unit every PID sample period, up to 8000 units)

MT 'Select torque mode
T=8000 'Final torque after the TS ramp that we want
TS=65536 'Increase the torque by 1 unit of T per PID sample
G 'Begin move

RELATED COMMANDS:
R Bt Bit, Trajectory In Progress (see page 345)
R T=formula Torque, Open-Loop Commanded (see page 769)
R TS=formula Torque Slope (see page 786)

Part 2: Commands: MT

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 622 of 969

MTB
Mode Torque Brake

APPLICATION: Motion control

DESCRIPTION: Enables torque brake mode, which dynamically brakes the motor

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: MP

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: MTB:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The MTB (Mode Torque Brake) command places the SmartMotor™ into dynamic brake mode. In this
mode, the motor coils are shorted together. Any motion of the shaft would normally produce Back EMF
(BEMF) that is proportional to speed. However, having the windings shorted out causes this BEMF to be
dissipated immediately. The result is a magnetic-damping counterforce to any attempted motion of the
shaft from an external source.

If MTB is issued while moving at a given speed, the shaft will come to a stop at a rate proportional to
the BEMF that was being generated when the MTB command was issued. The shaft doesn’t stop at any
predetermined or commanded position, and its trajectory is uncontrolled.

While in MTB, the motor will not produce any external DC-bus voltage rise if the shaft is rotated
because all windings are shorted together. As a result, the DC bus is protected against bus overvoltage
to within the drive stage current limits.

MTB automatically engages when the motor is off. The only way to prevent that automatic action is to
manually "freewheel" the motor by issuing a BRKRLS command and then an OFF command (in that
order). Those two commands do not need to be in immediate sequence—i.e., other commands, except
MTB, can be between them. To re-enable the automatic MTB function, issue an MTB command.

NOTE: To ensure the motor remains in “freewheel” state, issue the FSA command (with action 1,
servo off / freewheel) before issuing the BRKRLS OFF command sequence. For details, see FSA
(cause,action) on page 465.

Also, by default, MTB is automatically issued when the motor faults on overtemperature, position
errors or travel limits. For information on changing this action, refer to FSA(cause,action) on page 465.

Part 2: Commands: MTB

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 623 of 969

EXAMPLE: (Fault-handler subroutine, shows use of MTB and US)

C0 'Fault handler
MTB:0 'Motor will turn off with Dynamic

'braking, tell other motors to stop.
US(0):0 'Set User Status Bit 0 to 1 (Status

'Word 12 bit zero)
US(ADDR):0 'Set User Status Bit "address" to 1

'(Status Word 12 Bit "address")
RETURNI

RELATED COMMANDS:

BRKRLS Brake Release (see page 335)
FSA(cause,action) Fault Stop Action (see page 465)
G Start Motion (GO) (see page 473)
OFF Off (Drive Stage Power) (see page 636)

Part 2: Commands: MTB

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 624 of 969

MV
Mode Velocity

APPLICATION: Motion control; supports the DS2020 Combitronic system

DESCRIPTION: Request velocity mode

EXECUTION: Buffered until a G command is issued

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: MP

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: MV:3 or MV(0):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The MV (Mode Velocity) command enables velocity mode. In this mode, the value of VT, the target
velocity, can be negative or positive. In contrast, position mode (MP) only uses the magnitude of the
velocity parameter. Acceleration and velocity can be changed at any time, even during motion. The G
command will initiate "on the fly" changes to any of the parameters.

If the actual velocity is greater that the value defined by VT, then on reception of the next G command,
the motor shaft will decelerate at the rate set by ADT until the excess velocity is removed. Conversely,
if the actual velocity is less than VT when the G command is entered, then the motor shaft motion will
accelerate at the rate set by ADT until the requested velocity is reached. Similarly, if the actual
velocity is in the opposite direction of VT when the G command is entered, then the motor shaft motion
will first decelerate and then accelerate at the rate set by ADT until the requested velocity is reached.

When the commanded velocity VT is reached, motion continues at that rate (i.e., maintains uniform
velocity until the commanded velocity is changed or the mode is otherwise terminated). The encoder
count may "wrap around" during this mode, but no position error will be declared during the wrap.

The PID (servo) will be active. The MV mode calculates a ramp up to the specified velocity based on the
specified acceleration (ADT). The profile will stay at the velocity until commanded to stop with an X
command, which will decelerate the motor to a stop. The velocity mode calculates position as a function
of time. This is different than simpler velocity controls that do not track position but only track
velocity error. The PID uses this ideal calculated position (PC) and compares it to the actual position
(PA). This allows any accumulated speed errors to be corrected on average with a high degree of
accuracy. Therefore, any loading that slowed the motor will be "caught up". The PID will apply torque to

Part 2: Commands: MV

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 625 of 969

the motor to follow this profile with minimal actual error (EA). Position error is due to basic physics of
friction, inertia, gravity or any other force on the motor.

A velocity-error based system can be emulated by commanding the motor to ignore position error
limits.

WARNING: This method is not appropriate where a position-error limit fault is
required for safety protection.

Refer to EL=formula on page 426 and the KI=formula on page 532. By disabling these two features and
possibly reducing KP, it is possible to have a "softer" velocity controller that will not attempt to strictly
adhere to a position error of 0.

Assuming there are no faults, an MV command and then a G command immediately turns on the servo.
The servo-off flag (Bo) is set to 0; the trajectory flag (Bt) is set to 1. The motion is restricted by the
current value of EL. The motion is also subject to the currently defined activity of the limit switches.
RMODE responds with a V.

EXAMPLE: (Routine homes motor against a hard stop)

MDS 'Using Sine mode commutation
KP=3200 'Increase stiffness from default
KD=10200 'Increase damping from default
F 'Activate new tuning parameters
AMPS=100 'Lower current limit to 10%
VT=-10000 'Set maximum velocity
ADT=100 'Set maximum accel/decel
MV 'Set Velocity mode
G 'Start motion
WHILE EA>-100 'Loop while position error is small
LOOP 'Loop back to WHILE
O=-100 'While pressed, declare home offset
S 'Abruptly stop trajectory
MP 'Switch to Position mode
VT=20000 'Set higher maximum velocity
PT=0 'Set target position to be home
G 'Start motion
TWAIT 'Wait for motion to complete
AMPS=1023 'Restore current limit to maximum
END 'End program

RELATED COMMANDS:

ADT=formula Acceleration/Deceleration Target (see page 263)
R EL=formula Error Limit (see page 426)
G Start Motion (GO) (see page 473)
MP Mode Position (see page 613)
R VT=formula Velocity Target (see page 828)

Part 2: Commands: MV

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 626 of 969

NMT
Send NMT State

APPLICATION: Communications control

DESCRIPTION: Send NMT state (broadcast or to a specific node)

EXECUTION: Immediate

CONDITIONAL TO: Enabled through CANCTL(17,value), see CANCTL(function,value) on
page 359.

LIMITATIONS: Does not apply to Class 6 systems

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x.4.30 (D/M) requires CAN option; 6.4.2.x (D)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The NMT command transmits an NMT message to the network; it can command a either a specific or all
follower devices to enter the commanded state. To do this, use:

NMT(follower addr, state)

where:

follower
addr

is a variable such as: x, ab[x], aw[x], al[x], or a constant such as: 2 (a motor with CAN
address 2). Range is 1 to 127; use 0 for a broadcast. If follower addr is to itself,
then internal loopback is used instead.

state is the desired NMT state from one of these values:
1 Operational state (PDO and SDO communications are functional)
2 Stopped state (no SDO or PDO communications)

128 Pre-operational state (SDO communications are allowed; no PDO com-
munications) DEFAULT state at power up

129 Reset application (resets the whole motor)
130 Reset communications (resets the CANopen stack mappings, etc., but

motor program, variables, etc retains current state)

Part 2: Commands: NMT

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 627 of 969

EXAMPLE:

NMT(0,1) 'Tell everyone to go operational.
NMT(2,128) 'Tell motor 2 to go pre-operational.
x=CAN(4)
IF x!=0

' NMT command failed.
ENDIF

RELATED COMMANDS:
R CAN, CAN(arg) CAN Bus Status (see page 357)
CANCTL(function,value) CAN Control (see page 359)
SDORD(...) SDO Read (see page 730)
SDOWR(...) SDO Write (see page 732)

Part 2: Commands: NMT

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 628 of 969

O=formula, O
(trj#)=formula

Origin

APPLICATION: Motion control; supports the DS2020 Combitronic system

DESCRIPTION: Set the SmartMotor origin

EXECUTION: Immediate

CONDITIONAL TO: Present trajectory position

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: Assignment

UNITS: Encoder counts
DS2020 Combitronic system: user increments, see FD=expression on
page 461

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -2147483648 to 2147483647

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: O:3=1234 or O(0):3=1234
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

CAUTION: For motors with absolute encoders (Class 5M-style with -FB01 option; Class
6 D-style), use of the O= or OSH= command will confuse the absolute position
information. Therefore, do not use these commands. Instead, use the ENCCTL
command. For details, see ENCCTL(function,value).

The O (Origin) command allows the current commanded (trajectory) position to be set to any value. The
actual position is also updated by the same difference. However, the position error remains the same
before and after executing this command. You may declare the current trajectory position as zero by
entering O=0 (the capital letter "O" = the number zero). Similarly, you may declare the current position
to be 1234 by entering O=1234.

NOTE: Using the O=formula does not modify previously entered PT or PRT registers.

NOTE: The DS2020 Combitronic system supports the O=formula format only.

Instead, the O(trj#)= form of the command changes the virtual position of trajectory 1 and 2. There are
no actual positions to change in those cases. Positions PA and PC are not affected by O(1)= or O(2)=.

The O command shifts the position counters, as shown in the next table:

Part 2: Commands: O=formula, O(trj#)=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 629 of 969

Command Trajectory Position Actual Position
O=formula PC set to 'formula value' PA set to PC - EA
O(0)=formula PC set to 'formula value' PA set to PC - EA
O(1)=formula PC(1) set to 'formula value' N/A
O(2)=formula PC(2) set to 'formula value' N/A

NOTE: Consider using the OSH command when the amount of position shift is already known. In
other words, if you know that you want to remove 1000 counts from the present position, then use
the command OSH=-1000 instead. For details, see OSH=formula, OSH(trj#)=formula on page 642.

EXAMPLE: (Reassigning origin does not modify buffered PT and PRT values)

ADT=20 'Set accel/decel target
VT=100000 'Set velocity target
PT=5000 'Set position target
MP 'Set Position mode
O=-1000 'Current position set to negative 10000
GOSUB5
O=12345 'Current position set to 12345
GOSUB5
PRT=5000
O=3000 'Current position set to 3000
GOSUB5
END
C5

PRINT(#13,"Move origin is ",PA)
G
WHILE Bt LOOP
WAIT=4000
PRINT(#13,"Position is ")
RPA

RETURN

Program output is:

Move origin is -1000
Position is 5000
Move origin is 12345
Position is 5000
Move origin is 3000
Position is 8000

RELATED COMMANDS:
R EA Error Actual (see page 401)
R FD=expression Resolution to Set Units of Position/Velocity/Acceleration (see page 461)
OSH=formula, OSH(trj#)=formula Origin Shift (see page 642)
R PA Position, Actual (see page 646)
R PC, PC(axis) Position, Commanded (see page 650)

Part 2: Commands: O=formula, O(trj#)=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 630 of 969

OC(...)
Output Condition

APPLICATION: I/O control

DESCRIPTION: Read current output driving state of 24 Volt I/O

EXECUTION: Immediate

CONDITIONAL TO: Class 5 M-style, or D-style with AD1 option

LIMITATIONS: Command is not available for any Class 6 motors

READ/REPORT: ROC(...)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: Output: Depends on command format and motor model (see details)

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); no Class 6

COMBITRONIC: N/A

DETAILED DESCRIPTION:

NOTE: The OC command applies to only Class 5 M-style motors or D-style motors with the AD1
option. It is designed for 24V I/O, and therefore, does not apply to the D-style 5V I/O. In that case,
refer to the IN/RIN commands (with bitmask), see IN(...) on page 509.

The OC command reads the specified output or a block of outputs. This applies to the 24 volt sourcing
I/O. When the output is set high (24 volts), the value is represented by this command as a 1. It can be
used in these ways:

l =OC(IO)
Individual output status of I/O number; result is 1 if output is ON and 0 if it is OFF.

o D-style: IO is 16–25
o M-style: IO is 0–10

l =OC(W,word)
Get output status for a whole word of I/O bits; result is a bitfield (e.g., bits 0–10 are represented
with a range of numbers from 0 to 2047).

o D-style: word is 1; result is 0–1023
o M-style: word is 0; result is 0–2047

NOTE: This does not represent the state of the inputs. Only the commanded outputs are
represented.

Part 2: Commands: OC(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 631 of 969

EXAMPLE: (Subroutine reports the status of the 24V expansion IO)

'This code reports the status of the 24V expansion IO
a=0 'Set loop start point for first IO
WHILE a<10 'While less than number of IO

b=a+16 'Set b to IO number for 24V expansion
c=OC(b) 'Set c to IO condition status
d=OF(b) 'Set d to IO fault status
PRINT("Output ",b," on pin ",a)
IF d==1 'If d represents overcurrent

PRINT(" is FAULTED overcurrent.",#13)
ELSEIF d==2 'If d represents a possible short

PRINT(" is FAULTED short.",#13)
ELSEIF c 'If c is true

PRINT(" is HIGH.",#13)
ELSE 'If c is not true

PRINT(" is LOW.",#13)
ENDIF
a=a+1 'Increment loop counter

LOOP

Program output is:

Output 16 on pin 0 is HIGH.
Output 17 on pin 1 is HIGH.
Output 18 on pin 2 is LOW.
Output 19 on pin 3 is LOW.
Output 20 on pin 4 is LOW.
Output 21 on pin 5 is LOW.
Output 22 on pin 6 is LOW.
Output 23 on pin 7 is LOW.
Output 24 on pin 8 is LOW.
Output 25 on pin 9 is LOW.

RELATED COMMANDS:
R OF(...) Output Fault (see page 634)
OR(value) Output, Reset (see page 638)
OS(...) Output, Set (see page 640)

Part 2: Commands: OC(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 632 of 969

OCHN(...)
Open Channel

APPLICATION: Communications control; supports the DS2020 Combitronic system

DESCRIPTION: Open a communications channel

EXECUTION: Immediate

CONDITIONAL TO: External communication I/O connections

LIMITATIONS: Hardware capabilities

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: See detailed description

TYPICAL VALUES: See detailed description

DEFAULT VALUE: D-style: OCHN (RS2, 0, N, 9600, 1, 8, C)
M-style: OCHN (RS4, 0, N, 9600, 1, 8, C)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)
OCHN channel 1 requires: 5.x (D/M); 6.4.2.x (D)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

CAUTION: The OCHN command will cause the SmartMotor to ignore incoming
commands and can lock you out. Therefore, during development, prevent this by
using the RUN? command at the start of each program.

NOTE: If you get locked out and are unable to communicate with the SmartMotor, you may be able
to recover communications using the SMI software's Communication Lockup Wizard. For more
details, see Communication Lockup Wizard on page 31.

OCHN(Type,Channel,Parity,Baud,StopBits,DataBits,Mode[,Timeout]) opens a serial channel with these
specifications:

NOTE: Not all combinations of values are permitted; see the next tables showing the allowed
combinations.

Allowed Values for D-style Motors

Type Chnl Parity Baud Stop
bits

Data
bits Mode Timeout

(optional)
RS2 0 E, O, N 100, 300, 600, 1200, 2400,

4800, 9600, 19200, 38400,
57600, 115200

1, 2 8 C, D Relevant in C
(command) mode

RS4 0, 1 E, O, N 100, 300, 600, 1200, 2400,
4800, 9600, 19200, 38400,

1, 2 8 C, D Relevant in C
(command) mode

Part 2: Commands: OCHN(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 633 of 969

Allowed Values for D-style Motors

Type Chnl Parity Baud Stop
bits

Data
bits Mode Timeout

(optional)
57600, 115200

MB4 1 E, O, N 100, 300, 600, 1200, 2400,
4800, 9600, 19200, 38400,
57600, 115200

1, 2 8 D N/A

DMX 1 N 250000 2 8 D N/A
IIC 1 N/A 60000 to

1000000
N/A N/A D N/A

Parity: O=odd, E=even, N=none; Mode: C=command, D=data

NOTE: For the D-style motor, opening channel 0 as an RS-485 port dedicates I/O pin 6 to the
RS-485 control function. This is required for use with Moog Animatics RS-232 to RS-485
converters like the RS485 and RS485-ISO.

Allowed Values for M-style Motors

Type Chnl Parity Baud Stop
bits

Data
bits Mode Timeout

(optional)
RS4 0 E, O, N 100, 300, 600, 1200, 2400,

4800, 9600, 19200, 38400,
57600, 115200

1, 2 8 C, D Relevant in C
(command)
mode

MB4 0 E, O, N 100, 300, 600, 1200, 2400,
4800, 9600, 19200, 38400,
57600, 115200

1, 2 8 D N/A

DMX 0 N 250000 2 8 D N/A
Parity: O=odd, E=even, N=none; Mode: C=command, D=data

EXAMPLE: (Shows use of ECHO_OFF1 and OCHN)

EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
OCHN(RS4,1,N,9600,1,8,C) 'Open aux communications channel
ECHO_OFF1 'Turn echo off for aux communications channel
END

RELATED COMMANDS:

CCHN(type,channel) Close Communications Channel (RS-232 or RS-485) (see page 365)
R CHN(channel) Communications Error Flag (see page 367)

Part 2: Commands: OCHN(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 634 of 969

OF(...)
Output Fault

APPLICATION: I/O control

DESCRIPTION: Get output faults (24 volt I/O)

EXECUTION: Immediate

CONDITIONAL TO: M-style, or D-style with AD1 option

LIMITATIONS: Command is not available for any Class 6 motors

READ/REPORT: ROF(...)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: Depends on command format and motor model (see details)

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); no Class 6

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The OF command reads the specified output or a block of outputs. It can be used in these ways:
l =OF(IO)

Returns the current fault state for that I/O number, where the returned value: 0 = no fault , 1 =
overcurrent, 2 = possible shorted

o D-style: IO is 16–25
o M-style: IO is 0–10

l =OF(S,word)
Returns the bit mask of current faulted I/O points, where word is the 16-bit word number, 0 is
Controller I/O Status Word 16.
If any of these bits are set due to a fault, then the I/O fault status flag (Motor Status Word 3, bit
7) is also set.

o D-style: word is 1; result is 0–1023
o M-style: word is 0; result is 0–2047

l =OF(L,word)
Returns the bit mask of Latched Faulted I/O points, where word is the 16-bit word number.
Reading a 16-bit word will attempt to clear the I/O word latch.

o D-style: word is 1; result is 0–1023
o M-style: word is 0; result is 0–2047

Part 2: Commands: OF(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 635 of 969

l =OF(D,word)
Returns an error code from the controller associated with this I/O word.

o D-style: word is 1
o M-style: word is 0

EXAMPLE: (Subroutine reports the status of the 24V expansion IO)

'This code reports the status of the 24V expansion IO
a=0 'Set loop start point for first IO
WHILE a<10 'While less than number of IO

b=a+16 'Set b to IO number for 24V expansion
c=OC(b) 'Set c to IO condition status
d=OF(b) 'Set d to IO fault status
PRINT("Output ",b," on pin ",a)
IF d==1 'If d represents overcurrent

PRINT(" is FAULTED overcurrent.",#13)
ELSEIF d==2 'If d represents a possible short

PRINT(" is FAULTED short.",#13)
ELSEIF c 'If c is true

PRINT(" is HIGH.",#13)
ELSE 'If c is not true

PRINT(" is LOW.",#13)
ENDIF
a=a+1 'Increment loop counter

LOOP

Program output is:

Output 16 on pin 0 is HIGH.
Output 17 on pin 1 is HIGH.
Output 18 on pin 2 is LOW.
Output 19 on pin 3 is LOW.
Output 20 on pin 4 is LOW.
Output 21 on pin 5 is LOW.
Output 22 on pin 6 is LOW.
Output 23 on pin 7 is LOW.
Output 24 on pin 8 is LOW.
Output 25 on pin 9 is LOW.

RELATED COMMANDS:
R OC(...) Output Condition (see page 630)
OR(value) Output, Reset (see page 638)
OS(...) Output, Set (see page 640)

Part 2: Commands: OF(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 636 of 969

OFF
Off (Drive Stage Power)

APPLICATION: Motion control; supports the DS2020 Combitronic system

DESCRIPTION: Turn servo off

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: OFF

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: OFF:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The OFF command turns off the power to the motor coils and terminates the activity of the current
motion mode. The motor off system flag, Bo, will be set to 1. The shaft will be free to coast to a stop or
rotated by other external means. The trajectory in progress system flag, Bt, will be set to zero.

NOTE: When commanded OFF, the motor will still track any shaft movement and continue to update
the current encoder position.

By default, the motor will activate MTB. To prevent that automatic action, manually "freewheel" the
motor by issuing a BRKRLS command and then an OFF command (in that order). Those two commands
do not need to be in immediate sequence—i.e., other commands, except MTB, can be between them. To
re-enable the automatic MTB function, issue an MTB command. For more details on MTB, see MTB on
page 622.

NOTE: To ensure the motor remains in “freewheel” state, issue the FSA command (with action 1,
servo off / freewheel) before issuing the BRKRLS OFF command sequence. For details, see FSA
(cause,action) on page 465.

Part 2: Commands: OFF

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 637 of 969

EXAMPLE:
'Set an interrupt on input 6 to freewheel motor
ITR(0,16,6,0,100) 'Setup interrupt 0 to run C100
EITR(0) 'Enable interrupt 0
ITRE 'Global enable interrupts
PAUSE 'Pause program to keep interrupts running
END 'End of program

C100 'Interrupt subroutine
BRKRLS 'Turn off MTB or brake
OFF 'Freewheel the motor
'Remain here while input 6 is low
WHILE IN(6)==0 LOOP

RETURNI 'Return from interrupt

EXAMPLE: (Shows use of "freewheel")

PT=PA 'Set Target position to current position
G 'Holds position
OFF 'Drive stage off, but MTB (dynamic braking) active
G 'Holds again
BRKRLS 'No change seen yet
OFF 'Now motor freewheels
G 'Motor holds in place again
OFF 'Motor freewheels
MTB 'Motor has dynamic braking
G 'Motor holds position
OFF 'Motor off but WITH dynamic braking
BRKRLS 'No change seen yet
G 'Motor holds position
OFF 'Motor freewheels
G 'Motor holds position
OFF 'Motor freewheels
MTB 'Returns back to default of dynamic braking when OFF is issued

RELATED COMMANDS:
R B(word,bit) Status Byte (see page 297)
BRKRLS Brake Release (see page 335)
FSA(cause,action) Fault Stop Action (see page 465)
G Start Motion (GO) (see page 473)
MTB Mode Torque Brake (see page 622)
R W(word) Report Specified Status Word (see page 833)

Part 2: Commands: OFF

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 638 of 969

OR(value)
Output, Reset

APPLICATION: I/O control

DESCRIPTION: Reset (turn off) the specified output

EXECUTION: Immediate

CONDITIONAL TO: I/O available for general output (not assigned to special function)

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Depends on command format and motor model (see details)

TYPICAL VALUES: Depends on command format and motor model (see details)

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: OR(0):3 or OR(W,0):3 or OR(W,0,7):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The OR (Output Reset) command resets (turns off) the output specified by value:
l OR(IO)

Reset a single output to logic 0 (off).
l OR(W,word)

Simultaneously resets all outputs in the specified word.
l OR(W,word[,mask])

Reset outputs in the specified word if those bits are also a "1" in the bitmask.

Motor
Type

word
Allowed
Values

IO
Allowed
Range

Logic 0
Voltage

Logic 1
Voltage

Bitmask
Range

D-style 0 0-6 0 5 0 to 255
7 (virtual only, not con-

nected)
N/A N/A

D-style with AD1
option

0 0-6 0 5 0 to 255
0 7 (virtual only, not con-

nected)
N/A N/A

1 16-25 0 24 0 to 1023

Part 2: Commands: OR(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 639 of 969

Motor
Type

word
Allowed
Values

IO
Allowed
Range

Logic 0
Voltage

Logic 1
Voltage

Bitmask
Range

M-style 0 0-10 0 24 0 to 2047

EXAMPLE:
WHILE 1 '1 is always true

OS(0) 'Set output to 1
OR(0) 'Set output to 0

LOOP 'Will loop forever

RELATED COMMANDS:

EIGN(...) Enable as Input for General-Use (see page 412)
R IN(...) Specified Input (see page 509)
R OC(...) Output Condition (see page 630)
R OF(...) Output Fault (see page 634)
OS(...) Output, Set (see page 640)
OUT(...)=formula Output, Activate/Deactivate (see page 644)

Part 2: Commands: OR(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 640 of 969

OS(...)
Output, Set

APPLICATION: I/O control

DESCRIPTION: Set (turn on) the specified output

EXECUTION: Immediate

CONDITIONAL TO: I/O available for general output (not assigned to a special function)

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Depends on command format and motor model (see details)

TYPICAL VALUES: Depends on command format and motor model (see details)

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: OS(0):3 or OS(W,0):3 or OS(W,0,7):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The OS (Output Set) command sets (turns on) the output specified by value:
l OS(IO)

Sets a single output to logic 1 (on).
l OS(W,word)

Simultaneously sets all outputs in the specified word.
l OS(W,word[,mask])

Sets outputs in the specified word if those bits are also a "1" in the bitmask.

Motor
Type

word
Allowed
Values

IO
Allowed

Range

Logic 0
Voltage

Logic 1
Voltage

Bitmask
Range

D-style 0 0-6 0 5 0 to 255
7 (virtual only, not con-

nected)
N/A N/A

D-style with AD1
option

0 0-6 0 5 0 to 255
0 7 (virtual only, not con-

nected)
N/A N/A

1 16-25 0 24 0 to 1023

Part 2: Commands: OS(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 641 of 969

Motor
Type

word
Allowed
Values

IO
Allowed

Range

Logic 0
Voltage

Logic 1
Voltage

Bitmask
Range

M-style 0 0-10 0 24 0 to 2047

EXAMPLE:
WHILE 1 '1 is always true

OS(0) 'Set output to 1
OR(0) 'Set output to 0

LOOP 'Will loop forever

EXAMPLE: (turn on multiple ports)

WHILE a<4
OS(a+4) 'turn ON I/O ports 4 thru 7.
a=a+1

LOOP

EXAMPLE: (set all I/O to 5V)

i=0
WHILE i<=6 'Program loops until i = 6

OS(i) 'Each output is enabled (set to 5V) as program loops
i=i+1 'Increment i by 1 to enable the next input on next loop

LOOP 'Loop back to WHILE

RELATED COMMANDS:

EIGN(...) Enable as Input for General-Use (see page 412)
R IN(...) Specified Input (see page 509)
R OC(...) Output Condition (see page 630)
R OF(...) Output Fault (see page 634)
OR(value) Output, Reset (see page 638)
OUT(...)=formula Output, Activate/Deactivate (see page 644)

Part 2: Commands: OS(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 642 of 969

OSH=formula, OSH
(trj#)=formula

Origin Shift

APPLICATION: Motion control

DESCRIPTION: Shifts the origin of the position counter during motion

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: Assignment

UNITS: Encoder counts

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -2147483648 to 2147483647

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: OSH:3=1234 or OSH(0):3=1234
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

CAUTION: For motors with absolute encoders (Class 5M-style with -FB01 option; Class
6 D-style), use of the O= or OSH= command will confuse the absolute position
information. Therefore, do not use these commands. Instead, use the ENCCTL
command. For details, see ENCCTL(function,value).

The OSH (origin shift) command allows the current commanded (trajectory) position to be shifted. The
shift is relative, which can be useful in applications where the origin needs to be shifted during motion
without losing any position counts. Additionally, the actual position is updated by the same difference.
However, the position error remains the same before and after executing this command.

Instead, the OSH(trj#)= form of the command changes the virtual position of trajectory 1 and 2. There
are no actual positions to change in those cases. Positions PA and PC are not affected by OSH(1)=, or
OSH(2)=.

The OSH command shifts the position counters, as shown in the next table:

Part 2: Commands: OSH=formula, OSH(trj#)=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 643 of 969

Command Trajectory Position Actual Position
OSH=formula PC=PC+'formula value' PA=PA+'formula value'
OSH(0)=formula PC=PC+'formula value' PA=PA+'formula value'
OSH(1)=formula PC(1)=PC(1)+'formula value' N/A
OSH(2)=formula PC(2)=PC(2)+'formula value' N/A

EXAMPLE:
'Patterning a move can be done using the same routine
'by simply shifting the origin between moves.

PT=0 'Move to the origin.
G TWAIT
GOSUB(30) 'Run a subroutine to perform a set of absolute

'position moves.
OSH=40000 'Shift the origin.
PT=0 'Move to the origin.
G TWAIT
GOSUB(30) 'Run the same subroutine with shifted origin.
OFF 'Turn off motor.
END 'End of program.

C30
'Absolute position motion profile.

RETURN

RELATED COMMANDS:
R EA Error Actual (see page 401)
O=formula, O(trj#)=formula Origin (see page 628)
R PA Position, Actual (see page 646)
R PC, PC(axis) Position, Commanded (see page 650)

Part 2: Commands: OSH=formula, OSH(trj#)=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 644 of 969

OUT(...)=formula
Output, Activate/Deactivate

APPLICATION: I/O control; supports the DS2020 Combitronic system

DESCRIPTION: Set or reset outputs according to assigned value

EXECUTION: Immediate

CONDITIONAL TO: I/O available for general output (not assigned to a special function)

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Depends on command format and motor model (see details)

TYPICAL VALUES: Depends on command format and motor model (see details)

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: OUT(0):3=1 or OUT(W,0):3=32 or OUT(W,0,7)=32
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The OUT command activates (turns on) or deactivates (turns off) the output specified by IO. If the
formula least-significant bit = 1, then it's true (on); otherwise, it's false (off).

l OUT(IO)=formula
If bit 0 in the formula to the right of "=" is 1, then set I/O ON; otherwise, when it is even or zero,
turn it OFF.

l OUT(W,word)=formula
Set the group of bits in the specified I/O word to the bitwise value from the formula.

l OUT(W,word[,mask])=formula
Set the group of bits in the specified I/O word to the bitwise value from the formula. However,
leave bits as-is if they are bitwise set to 0 in the bitmask value.

Motor
Type

word
Allowed
Values

IO
Allowed

Range

Logic 0
Voltage

Logic 1
Voltage

Formula
Value
Range

Bitmask
Range

D-style 0 0-6 0 5 0 to 255 0 to 255
7 (virtual only,

not con-
nected)

N/A N/A

D-style with 0 0-6 0 5 0 to 255 0 to 255

Part 2: Commands: OUT(...)=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 645 of 969

Motor
Type

word
Allowed
Values

IO
Allowed

Range

Logic 0
Voltage

Logic 1
Voltage

Formula
Value
Range

Bitmask
Range

AD1 option 0 7 (virtual only,
not con-
nected)

N/A N/A

1 16-25 0 24 0 to 1023 0 to 1023
M-style 0 0-10 0 24 0 to 2047 0 to 2047
DS2020 Com-
bitronic sys-
tem

N/A 5 0 24

EXAMPLE: (For pulse width)

. . .
WHILE 1>0

O=0 'Reset origin for move
PT=40000 'Set final position
G 'Start motion
WHILE PA<20000 'Loop while motion continues
LOOP 'Wait for desired position to pass
OUT(1)=0 'Set output lo
TMR(0,400) 'Use timer 0 for pulse width
TWAIT WAIT=1000 'wait 1 second

LOOP
. . .

EXAMPLE: (Set all I/O to outputs, and set their level to the value of x)

x=1 'x can be 1 (ON) or 0 (OFF)
i=0
WHILE i<=6 'Loops until i=6

OUT(i)=x 'Set to output and turn on or off based on value of x
i=i+1 'Increment i by 1

LOOP 'Loop back to WHILE

RELATED COMMANDS:

EIGN(...) Enable as Input for General-Use (see page 412)
R IN(...) Specified Input (see page 509)
R OC(...) Output Condition (see page 630)
R OF(...) Output Fault (see page 634)
OR(value) Output, Reset (see page 638)
OS(...) Output, Set (see page 640)

Part 2: Commands: OUT(...)=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 646 of 969

PA
Position, Actual

APPLICATION: Motion control

DESCRIPTION: Actual absolute position

EXECUTION: Next PID sample

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RPA
; supports the DS2020 Combitronic system

WRITE: Read only

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Encoder counts
Report for DS2020 Combitronic system: user increments, see FD=e-
expression on page 461

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -2147483648 to 2147483647

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: RPA:3, x=PA:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The PA (Position Actual) command is used to access the value of the main axis encoder. This number
may be called the current position or actual position.

The main axis is assigned with the ENC0 or ENC1 command. If the motor shaft moves, the value of PA
will be changed by the net number of encoder counts occurring during the shaft motion. The primary
encoder is tracked at all times — it is independent of the operation mode of the SmartMotor™ or any
error condition.

For details on adjusting the value of PA, see the commands O=formula, O(trj#)=formula on page 628
and OSH=formula, OSH(trj#)=formula on page 642.

Part 2: Commands: PA

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 647 of 969

EXAMPLE:
ADT=100 'Set buffered accel/decel
VT=40000 'Set buffered velocity
MV 'Set to Mode Velocity
G 'GO, start motion trajectory
WHILE PA<=5000 'Wait until real-time position
LOOP 'Exceeds 5000 counts
PRINT("Position is above 5000",#13)

NOTE: PA follows the primary encoder that is used to close the loop. For example, if you issue
ENC1, then it will follow an external encoder. For more details, see ENC0 on page 432 and ENC1 on
page 433.

RELATED COMMANDS:
R CTR(enc) Counter, Encoder, Step and Direction (see page 380)
ENC0 Encoder Zero (Close Loop on Internal Encoder) (see page 432)
ENC1 Encoder Zero (Close Loop on External Encoder) (see page 433)
R FD=expression Resolution to Set Units of Position/Velocity/Acceleration (see page 461)
R PC, PC(axis) Position, Commanded (see page 650)
R PMA Position, Modulo Actual (see page 657)
R PT=formula Position, (Absolute) Target (see page 690)

Part 2: Commands: PA

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 648 of 969

PAUSE
Pause Program Execution

APPLICATION: Program execution and flow control

DESCRIPTION: Pause program execution; used for interrupts

EXECUTION: Immediate

CONDITIONAL TO: User program running

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: PAUSE:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

When executed, the PAUSE command suspends program execution until the RESUME command is
received. It will not affect the current state of the Interrupt Handler (i.e., if the Interrupt Handler is
enabled, it will still be enabled after a PAUSE), and its execution has no effect on the
interrupt/subroutine stack.

PAUSE is primarily used to put the main part of a program to sleep when a program is 100% driven by
interrupt events. Additionally, PAUSE is very useful for debugging. For instance, you may wish to pause
a program at key locations when trying to isolate a problem:

PRINT("Debug pause, type RESUME",#13)
PAUSE
PRINT("Resumed",#13)

There is a separate stack for PAUSE, which will restore the state of PAUSE (that existed before a
GOSUB from a terminal or an interrupt) after a RETURN or RETURNI. Any RESUME that occurred
during the time the GOSUB or interrupt routine was executing will not impact the PAUSE in the
previous context.

Part 2: Commands: PAUSE

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 649 of 969

EXAMPLE:
EIGN(W,0,12) 'Another way to disable Travel Limits
ZS 'Clear faults
ITR(0,0,0,0,0) 'Set Int 0 for: stat word 0, bit 0,

'shift to 0, to call C0
EITR(0) 'Enable Interrupt 0
ITRE 'Global Interrupt Enable
PAUSE 'Pause to prevent "END" from disabling

'Interrupt, no change to stack
'RESUME must be issued externally over communications;
'it is not allowed to be compiled within a program.
END
C0 'Fault handler

MTB:0 'Motor will turn off with Dynamic
'breaking, tell other motors to stop.

US(0):0 'Set User Status Bit 0 to 1 (Status
'Word 12 bit zero)

US(ADDR):0 'Set User Status Bit "address" to 1
'(Status Word 12 Bit "address")

RETURNI

RELATED COMMANDS:

RESUME Resume Program Execution (see page 704)

Part 2: Commands: PAUSE

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 650 of 969

PC, PC(axis)
Position, Commanded

APPLICATION: Motion control

DESCRIPTION: Commanded absolute position

EXECUTION: Next PID sample

CONDITIONAL TO: Mode of motion control, or drive OFF status

LIMITATIONS: N/A

READ/REPORT: RPC, RPC(axis)

WRITE: Read only

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Encoder counts

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -2147483648 to 2147483647

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: RPC(0):3, x=PC(0):3
where ":3" is the motor address — use the actual address or a variable

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The PC (Position, Commanded) command gets (reads) the commanded absolute position:
l =PC

Commanded position of the motor shaft as a result of motion trajectory generation. This may
include a sum of concurrent moves such as a Follow mode move combined with a position move.

l =PC(0)
Equivalent to: a=PC

l =PC(1)
Reports the commanded position in the frame of reference for trajectory generator one.

l =PC(2)
Reports the commanded position in the frame of reference for trajectory generator two.

The commanded position is the calculated trajectory position. It is the reference position where the
motor would ideally be positioned. However, the motor's actual position (PA) may vary — it depends on
how closely the PID tuning brings the position error (EA) to 0.

NOTE: If the drive is off, then PC and PC(0) simply follow the actual position PA.

PC(1) and PC(2) are more virtually calculated values. They do not have a direct effect on the
commanded position. However, they can be used to individually keep track of the relative changes in
those two calculated trajectories.

Part 2: Commands: PC, PC(axis)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 651 of 969

EXAMPLE: (Shows the use of PC, PRA and PRC)

'NOTE: This example requires an external encoder.
EIGN(W,0,12) ZS 'Disable overtravel limits and clear errors
O(0)=0 O(1)=0 O(2)=0 'Zero PC(0),PC(1) and PC(2)
MF0 MFDIV=1 MFMUL=1 'Reset CTR(1) Divisor=1 Multiplier=1
MFR 'Enable Follow mode at specified ratio
MP(1) 'Mode Position in trajectory 1 while keeping Mode Follow active
PRT=0 G(2) 'Set PRT=0 and start following with phase adjust active
PRINT("Adjust external encoder to ~1000 counts.",#13)
PRINT("Then type GOSUB10",#13)
END
C10

x=CTR(1) PRINT("The external encoder CTR(1)=",x,#13)
x=PC(0) PRINT("PC(0)=",x,#13)
x=PC(1) PRINT("PC(1)=",x,#13)
x=PC(2) PRINT("PC(2)=",x,#13)
PRINT("PRA=",PRA,#13) 'PRA will be zero because PRT=0
PRINT("PRC=",PRC,#13) 'PRC will be zero because PRT=0
'Set relative distance, velocity target, and Accel/Decel values
PRT=2000 VT=5000 ADT=100 G(1) TWAIT(1) 'Start Position Relative phase adjust
PRINT("After relative move, the values are...",#13)
x=CTR(1) PRINT("The external encoder CTR(1)=",x,#13)
x=PC(0) PRINT("PC(0)=",x,#13)
x=PC(1) PRINT("PC(1)=",x,#13)
x=PC(2) PRINT("PC(2)=",x,#13)
PRINT("PRA=",PRA,#13) 'PRA=PRC-PositionError; note default PID tuning values
PRINT("PRC=",PRC,#13) 'PRC=2000 because PRT=2000
PRINT("Position Error=",EA,#13)

RETURN

Program output is:

RUN
Adjust external encoder to ~1000 counts.
Then type GOSUB10
GOSUB10
The external encoder CTR(1)=1000
PC(0)=1000
PC(1)=0
PC(2)=1000
PRA=0
PRC=0
After relative move, the values are...
The external encoder CTR(1)=1000
PC(0)=3000
PC(1)=2000
PC(2)=1000
PRA=1991
PRC=2000
Position Error=9

Part 2: Commands: PC, PC(axis)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 652 of 969

RELATED COMMANDS:
R PA Position, Actual (see page 646)
R PT=formula Position, (Absolute) Target (see page 690)

Part 2: Commands: PC, PC(axis)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 653 of 969

PI
Pi Constant

APPLICATION: Math function

DESCRIPTION: Gets the mathematical value pi

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: Accurate to six digits (single-precision float)

READ/REPORT: RPI

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: 3.141592

TYPICAL VALUES: 3.141592

DEFAULT VALUE: 3.141592

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The PI (pi constant) command gets the mathematical value of pi (3.141592).

The trigonometric functions SIN, COS and TAN require degrees as input. The functions ASIN, ACOS and
ATAN return values in units of degrees. Therefore, this constant is useful, especially in cases where you
need to convert radians to degrees.

EXAMPLE:
af[7]=ATAN(af[6])*180/PI 'Set af[7] to arctan result converted to radians

RELATED COMMANDS:
R af[index]=formula Array Float [index] (see page 267)
R ACOS(value) Arccosine (see page 259)
R ASIN(value) Arcsine (see page 284)
R ATAN(value) Arctangent (see page 289)
R COS(value) Cosine (see page 372)
R SIN(value) Sine (see page 738)
R TAN(value) Tangent (see page 775)

Part 2: Commands: PI

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 654 of 969

PID#
Proportional-Integral-Differential Filter Rate

APPLICATION: Motion control

DESCRIPTION: Set PID sample rate to basic rate

EXECUTION: Next PID update

CONDITIONAL TO: N/A

LIMITATIONS: Command is not available for any Class 6 motors

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: PID Modulo samples

RANGE OF VALUES: Valid values: 1, 2 (default), 4 and 8

TYPICAL VALUES: N/A

DEFAULT VALUE: PID2

FIRMWARE VERSION: 5.x (D/M); no Class 6

COMBITRONIC: N/A

DETAILED DESCRIPTION:

NOTE: The motor will turn off (freewheel) when this command is issued.

The PID parameter sets the PID sample rate. Valid values are PID1, PID2, PID4 and PID8. PID2 (8000
samples per second) is the default value. For details on determining the actual sample rate of your
SmartMotor™, see the RSP on page 710.

During each PID sample period, the motor firmware scans and updates the encoder position, trajectory
generator and serial communications ports. It uses position error to perform the PID calculation to
control the servo drive stage. The user program code, if any, is executed when the microprocessor is
not involved in these activities.

Both velocity and acceleration, SRC(2) and SRC(-2), are impacted by the PID setting. However, there
are no effects from the PID setting on CLK and WAIT.

The values of 1, 2, 4 and 8 mean the PID filter will react and update on position error to correct drive
power at different rates (refer to the next table). This does not change how code is executed, but it
does change how much time is given to that execution. As a result, a program run at PID8 will typically
run faster than one run at PID1. However, because the frequency of PID updates to the drive stage are
changed and samples of position error are done at different intervals, PID8 will result in a more coarse
or abrasive motion than PID1. Therefore, special care should be taken when using the PID command, as
improper usage could result in very sporadic motion.

The current PID rate can be reported through the SAMP command.

Command PID / Trajectory
Update Rate

Period
(µsec)

SAMP
Report

RSP
Report

PID1 16 kHz 62.5 16000 06250/5...

Part 2: Commands: PID#

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 655 of 969

Command PID / Trajectory
Update Rate

Period
(µsec)

SAMP
Report

RSP
Report

PID2 8 kHz (default) 125 8000 12500/5...
PID4 4 kHz 250 4000 25000/5...
PID8 2 kHz 500 2000 50000/5...

EXAMPLE: (comparison of the different PID values)

'For a 4000 count encoder SmartMotor:
'Using three fixed values under each of the PID settings

v=655360 'use to Set commanded Velocity (4000 count encoder)
a=256 'use to Set commanded Acceleration
w=1000 'use to set Wait time

PID1 'Default PID updates every servo sample
WAIT=w 'Wait time = 1 second
VT=v 'Velocity = 2400 RPM
ADT=a 'Accel/Decel = 250 RPS^2

PID2 'PID updates every 2 servo samples
WAIT=w 'Wait time = 1 second
VT=v 'Velocity = 1200 RPM
ADT=a 'Accel/Decel = 62.5 RPS^2

PID4 'PID updates every 4 servo samples
WAIT=w 'Wait time = 1 second
VT=v 'Velocity = 600 RPM
ADT=a 'Accel/Decel = 15.625 RPS^2

PID8 'PID updates every 8 servo samples
WAIT=w 'Wait time = 1 second
VT=v 'Velocity = 300 RPM
ADT=a 'Accel/Decel = 3.9063 RPS^2

PID2 'Return to Default PID
WAIT=w 'Wait time = 1 second

END

In the previous example, although the values used for Velocity, Acceleration/Deceleration, and Wait
times remained the same, their effect was changed by the PID setting. As a result, much care should be
taken if changes are made in the middle of a program.

While the motor is motionless, the PID parameter can be changed from PID1 to PID8, to increase I/O
scanning efficiency or other code execution, and then returned to PID1 just before the next move. This
is a technique used to increase response time for input triggers or mathematical calculations when
there is no trajectory in progress.

Part 2: Commands: PID#

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 656 of 969

RELATED COMMANDS:

ADT=formula Acceleration/Deceleration Target (see page 263)
R AT=formula Acceleration Target (see page 286)
R DT=formula Deceleration Target (see page 396)
RSP Report Sampling Rate and Firmware Revision (see page 710)
R SAMP Sampling Rate (see page 722)
SRC(enc_src) Source, Follow and/or Cam Encoder (see page 759)
R VT=formula Velocity Target (see page 828)

Part 2: Commands: PID#

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 657 of 969

PMA
Position, Modulo Actual

APPLICATION: Motion control

DESCRIPTION: Gets (reads) the actual position in modulo counts

EXECUTION: Next PID sample

CONDITIONAL TO: PML limit

LIMITATIONS: N/A

READ/REPORT: RPMA

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Encoder counts

RANGE OF VALUES: 0 to 2147483646

TYPICAL VALUES: 0 to 1000000

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: RPMA:3, x=PMA:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The PMA (Position Modulo Actual) command reads the actual motor position in modulo counts. This
counter is affected by the O= and OSH= commands.

NOTE: The value of PMA is always positive.

The PML command is used to configure the modulo-rollover point. When the encoder travels in a
positive direction, the modulo count will increase. When the count equals or exceeds the value set by
PML, then the counter rolls over to 0. If the encoder travels in the negative direction, the count
decreases until it is less than 0. At that point, it will be automatically rolled to PML-1.

The PML command will reset the PMA counter to 0.

The RPMA (report PMA) command updates according to the active encoder selected by ENC0 or ENC1.

Part 2: Commands: PMA

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 658 of 969

EXAMPLE: (Shows the use of the PMA, PML and PMT commands)

EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
MP VT=20000 ADT=100 O=0 'Mode Position, velocity, accel/decel, zero enc.
PML=RES 'RES on NEMA 23 is 4000, NEMA 34 is 8000
GOSUB(10) 'Print positions
PT=6000 G TWAIT 'Absolute move
WAIT=1000 'Wait 1 second
GOSUB(10) 'Print positions
PMT=3000 G TWAIT 'Modulo move
WAIT=1000 'Wait 1 second
GOSUB(10) 'Print positions
PMT=1000 G TWAIT 'Modulo move
WAIT=1000 'Wait 1 second
GOSUB(10) 'Print positions
END
C10 'Subroutine 10
PRINT("Actual absolute position: ",PA,#13)
PRINT("Actual modulo position: ",PMA,#13)
RETURN 'Return to command after GOSUB

RELATED COMMANDS:

ENC0 Encoder Zero (Close Loop on Internal Encoder) (see page 432)
ENC1 Encoder Zero (Close Loop on External Encoder) (see page 433)
R PML=formula Modulo Position Limit (see page 659)
R PMT=formula Position, Modulo Target (see page 661)

Part 2: Commands: PMA

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 659 of 969

PML=formula
Modulo Position Limit

APPLICATION: Motion control

DESCRIPTION: Get/set the modulo position limit

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: PML minimum and maximum values are speed dependent (see details)

READ/REPORT: RPML

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Encoder counts

RANGE OF VALUES: 1 - 2147483647
PML minimum and maximum values are speed dependent (see details)

TYPICAL VALUES: 100 - 1000000
PML minimum and maximum values are speed dependent (see details)

DEFAULT VALUE: 1000

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: PML:3=1234, a=PML:3, RPML:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The PML command is used to get (read) or set the modulo limit. The modulo counter (PMA) can have a
range of values where the lowest value is 0 and the highest value is PML-1. For more details, see PMA
on page 657.

NOTE: PML resets PMA to 0.

The PML value must be greater than the motor speed in terms of encoder counts per PID sample.
However, the PML value must be smaller than 2147483647 encoder counts per sample — this prevents
overflow.

Part 2: Commands: PML=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 660 of 969

EXAMPLE: (Shows the use of the PMA, PML and PMT commands)

EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
MP VT=20000 ADT=100 O=0 'Mode Position, velocity, accel/decel, zero enc.
PML=RES 'RES on NEMA 23 is 4000, NEMA 34 is 8000
GOSUB(10) 'Print positions
PT=6000 G TWAIT 'Absolute move
WAIT=1000 'Wait 1 second
GOSUB(10) 'Print positions
PMT=3000 G TWAIT 'Modulo move
WAIT=1000 'Wait 1 second
GOSUB(10) 'Print positions
PMT=1000 G TWAIT 'Modulo move
WAIT=1000 'Wait 1 second
GOSUB(10) 'Print positions
END
C10 'Subroutine 10
PRINT("Actual absolute position: ",PA,#13)
PRINT("Actual modulo position: ",PMA,#13)
RETURN 'Return to command after GOSUB

RELATED COMMANDS:

ENC0 Encoder Zero (Close Loop on Internal Encoder) (see page 432)
ENC1 Encoder Zero (Close Loop on External Encoder) (see page 433)
R PMA Position, Modulo Actual (see page 657)
R PMT=formula Position, Modulo Target (see page 661)

Part 2: Commands: PML=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 661 of 969

PMT=formula
Position, Modulo Target

APPLICATION: Motion control

DESCRIPTION: Gets/sets the modulo target

EXECUTION: Buffered until a G command is issued

CONDITIONAL TO: PML for allowed range

LIMITATIONS: N/A

READ/REPORT: RPMT

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Encoder counts

RANGE OF VALUES: 0 to 2147483646

TYPICAL VALUES: 0 to 1000000

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: PMT:3=1234, a=PMT:3, RPMT:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The PMT command is used to get (read) or set the modulo target. When in position mode (MP), the
trajectory will compute the shortest distance to get from the current position to the requested position
with respect to the PML limit. Therefore, the motor may move in either a clockwise or counterclockwise
direction based on the one that produces the shortest motion in modulo terms.

For example, assume PML=4000 and the current commanded position (PC) is 0. If PMT=3000, then the
motor will actually move counterclockwise by 1000 counts. At the end of this move, PC will be -1000
and PMA will be 3000.

Because PMA is an actual encoder position and not given in terms of commanded trajectory, the PMT
target will take into account the current position error. This helps to prevent accumulated error in the
target position based on the position error at the time the move is started. Note that the PT, PRT and
PMT targets all act on the ideal currently commanded position instead of the actual position, which may
be subject to position error (EA).

Part 2: Commands: PMT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 662 of 969

EXAMPLE: (Shows the use of the PMA, PML and PMT commands)

EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
MP VT=20000 ADT=100 O=0 'Mode Position, velocity, accel/decel, zero enc.
PML=RES 'RES on NEMA 23 is 4000, NEMA 34 is 8000
GOSUB(10) 'Print positions
PT=6000 G TWAIT 'Absolute move
WAIT=1000 'Wait 1 second
GOSUB(10) 'Print positions
PMT=3000 G TWAIT 'Modulo move
WAIT=1000 'Wait 1 second
GOSUB(10) 'Print positions
PMT=1000 G TWAIT 'Modulo move
WAIT=1000 'Wait 1 second
GOSUB(10) 'Print positions
END
C10 'Subroutine 10
PRINT("Actual absolute position: ",PA,#13)
PRINT("Actual modulo position: ",PMA,#13)
RETURN 'Return to command after GOSUB

RELATED COMMANDS:

ENC0 Encoder Zero (Close Loop on Internal Encoder) (see page 432)
ENC1 Encoder Zero (Close Loop on External Encoder) (see page 433)
R PMA Position, Modulo Actual (see page 657)
R PML=formula Modulo Position Limit (see page 659)

Part 2: Commands: PMT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 663 of 969

PRA
Position, Relative Actual

APPLICATION: Motion control

DESCRIPTION: Get actual position relative to move start

EXECUTION: Next PID sample

CONDITIONAL TO: MV or MP mode

LIMITATIONS: Origin change affects the value reported from PRA during the next
move

READ/REPORT: RPRA

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Encoder counts

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -2147483648 to 2147483647

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The PRA (Position Relative Actual) command is used to get (read) the actual position relative to the
point where the move started. This includes position error in addition to the commanded relative move.

NOTE: This command is primarily for use in MP mode but will also work in MV mode. Other modes of
motion do not support this command.

The value reported from PRA is calculated using the value of PC(1) at the time the move began.
Therefore, for accurate PRA calculation, if the origin is changed (i.e., O=0), then also correct trajectory
1 to the same value at that time: O(1)=0.

Part 2: Commands: PRA

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 664 of 969

EXAMPLE: (Shows the use of PC, PRA and PRC)

'NOTE: This example requires an external encoder.
EIGN(W,0,12) ZS 'Disable overtravel limits and clear errors
O(0)=0 O(1)=0 O(2)=0 'Zero PC(0),PC(1) and PC(2)
MF0 MFDIV=1 MFMUL=1 'Reset CTR(1) Divisor=1 Multiplier=1
MFR 'Enable Follow mode at specified ratio
MP(1) 'Mode Position in trajectory 1 while keeping Mode Follow active
PRT=0 G(2) 'Set PRT=0 and start following with phase adjust active
PRINT("Adjust external encoder to ~1000 counts.",#13)
PRINT("Then type GOSUB10",#13)
END
C10

x=CTR(1) PRINT("The external encoder CTR(1)=",x,#13)
x=PC(0) PRINT("PC(0)=",x,#13)
x=PC(1) PRINT("PC(1)=",x,#13)
x=PC(2) PRINT("PC(2)=",x,#13)
PRINT("PRA=",PRA,#13) 'PRA will be zero because PRT=0
PRINT("PRC=",PRC,#13) 'PRC will be zero because PRT=0
'Set relative distance, velocity target, and Accel/Decel values
PRT=2000 VT=5000 ADT=100 G(1) TWAIT(1) 'Start Position Relative phase adjust
PRINT("After relative move, the values are...",#13)
x=CTR(1) PRINT("The external encoder CTR(1)=",x,#13)
x=PC(0) PRINT("PC(0)=",x,#13)
x=PC(1) PRINT("PC(1)=",x,#13)
x=PC(2) PRINT("PC(2)=",x,#13)
PRINT("PRA=",PRA,#13) 'PRA=PRC-PositionError; note default PID tuning values
PRINT("PRC=",PRC,#13) 'PRC=2000 because PRT=2000
PRINT("Position Error=",EA,#13)

RETURN

Program output is:

RUN
Adjust external encoder to ~1000 counts.
Then type GOSUB10
GOSUB10
The external encoder CTR(1)=1000
PC(0)=1000
PC(1)=0
PC(2)=1000
PRA=0
PRC=0
After relative move, the values are...
The external encoder CTR(1)=1000
PC(0)=3000
PC(1)=2000
PC(2)=1000
PRA=1991
PRC=2000
Position Error=9

Part 2: Commands: PRA

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 665 of 969

RELATED COMMANDS:
R PA Position, Actual (see page 646)
R PC, PC(axis) Position, Commanded (see page 650)
R PRC Position, Relative Commanded (see page 666)

Part 2: Commands: PRA

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 666 of 969

PRC
Position, Relative Commanded

APPLICATION: Motion control

DESCRIPTION: Get commanded position relative to move start

EXECUTION: Next PID sample

CONDITIONAL TO: MV or MP mode

LIMITATIONS: Origin change affects the value reported from PRA during the next
move

READ/REPORT: RPRC

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Encoder counts

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -2147483648 to 2147483647

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The PRC (Position Relative Commanded) command is used to get (read) the commanded position
relative to the point where the move started. This mode does not consider position error; it only
reports the change in the trajectory-calculated position from the start of the move.

NOTE: This is primarily for use in MP mode but will also work in MV mode. Other motion modes do
not support this command.

The value reported from PRC is calculated using the value of PC(1) at the time the move began.
Therefore, for accurate PRC calculations, if the origin is changed (i.e., O=0), then also correct trajectory
1 to the same value at that time: O(1)=0.

Part 2: Commands: PRC

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 667 of 969

EXAMPLE: (Shows the use of PC, PRA and PRC)

'NOTE: This example requires an external encoder.
EIGN(W,0,12) ZS 'Disable overtravel limits and clear errors
O(0)=0 O(1)=0 O(2)=0 'Zero PC(0),PC(1) and PC(2)
MF0 MFDIV=1 MFMUL=1 'Reset CTR(1) Divisor=1 Multiplier=1
MFR 'Enable Follow mode at specified ratio
MP(1) 'Mode Position in trajectory 1 while keeping Mode Follow active
PRT=0 G(2) 'Set PRT=0 and start following with phase adjust active
PRINT("Adjust external encoder to ~1000 counts.",#13)
PRINT("Then type GOSUB10",#13)
END
C10

x=CTR(1) PRINT("The external encoder CTR(1)=",x,#13)
x=PC(0) PRINT("PC(0)=",x,#13)
x=PC(1) PRINT("PC(1)=",x,#13)
x=PC(2) PRINT("PC(2)=",x,#13)
PRINT("PRA=",PRA,#13) 'PRA will be zero because PRT=0
PRINT("PRC=",PRC,#13) 'PRC will be zero because PRT=0
'Set relative distance, velocity target, and Accel/Decel values
PRT=2000 VT=5000 ADT=100 G(1) TWAIT(1) 'Start Position Relative phase adjust
PRINT("After relative move, the values are...",#13)
x=CTR(1) PRINT("The external encoder CTR(1)=",x,#13)
x=PC(0) PRINT("PC(0)=",x,#13)
x=PC(1) PRINT("PC(1)=",x,#13)
x=PC(2) PRINT("PC(2)=",x,#13)
PRINT("PRA=",PRA,#13) 'PRA=PRC-PositionError; note default PID tuning values
PRINT("PRC=",PRC,#13) 'PRC=2000 because PRT=2000
PRINT("Position Error=",EA,#13)

RETURN

Program output is:

RUN
Adjust external encoder to ~1000 counts.
Then type GOSUB10
GOSUB10
The external encoder CTR(1)=1000
PC(0)=1000
PC(1)=0
PC(2)=1000
PRA=0
PRC=0
After relative move, the values are...
The external encoder CTR(1)=1000
PC(0)=3000
PC(1)=2000
PC(2)=1000
PRA=1991
PRC=2000
Position Error=9

Part 2: Commands: PRC

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 668 of 969

RELATED COMMANDS:
R PA Position, Actual (see page 646)
R PC, PC(axis) Position, Commanded (see page 650)
R PRA Position, Relative Actual (see page 663)

Part 2: Commands: PRC

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 669 of 969

PRINT(...)
Print Data to Communications Port

APPLICATION: Data conversion

DESCRIPTION: Serial communications PRINT function

EXECUTION: Immediate, at current baud rate

CONDITIONAL TO: Appropriate communications port open (see details)

LIMITATIONS: Maximum command length: 63 characters (includes the PRINT
statement)

PRINT command not executed until transmit buffer is cleared from
previous PRINT statements

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: See details

TYPICAL VALUES: See details

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

For Class 6 motors, the PRINT command corresponds with the value of STDOUT, which is 8 (USB port)
by default for M-style and 0 (COM 0/RS-232 port) by default for D-style. For STDOUT details, see
STDOUT=formula on page 764.

l To explicitly output to the Class 6 SmartMotor's communication port 0, use the PRINT0
command. For details, see PRINT0(...) on page 673.

l To explicitly output to the Class 6 SmartMotor's USB port, use the PRINT8 command. For
details, see PRINT8(...) on page 680.

For Class 5 motors, the PRINT command outputs only to communications port 0.

One or more items (see the next list) may be transmitted using the PRINT command. The items are
separated with commas. Therefore, the number of arguments to the PRINT command is flexible.

l Strings of ASCII text can be specified with quotes: PRINT("Hello world")

l Variables may be specified: PRINT(a), PRINT(al[0]), PRINT(af[0])

These values will print in decimal form (with ASCII character encoding).
l System variables may be printed as long as they do not require () parenthesis: PRINT(VA)

l Literal values for characters may be specified (one 8-bit character at a time): PRINT(#32)

Part 2: Commands: PRINT(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 670 of 969

l Binary data may be specified (one 8-bit character at a time): PRINT(#ab[0], #ab[1])

This is useful in data mode when communicating with non-ASCII mode systems.

Combinations of these methods are permitted:

PRINT("The value of a is: ",a,#13)

This prints the text, the actual value of variable "a" (as a decimal value in ASCII text), and
the newline with the #13.

PRINT() commands are typically entered in a user program to send output to a terminal for display,
communicate with third party devices, or send commands to other motors.

Raw ASCII code values are prefixed by the # sign, as shown in the next table:

Character Format
space #32
tab #9
carriage return #13
line feed #10

CAUTION: Do not use a comment marker (') within PRINT(). It will cause a compiler
error.

PRINT() will wait to begin execution until previous commands have completed transmission from the
transmit buffer.

There is a practical difference between PRINT(a,b,c) and the sequence PRINT(a) PRINT(b) PRINT(c).
Executing from within a program PRINT(a,b,c) will output the values of a, b, and c without the possibility
of another command from the terminal interfering. However, executing PRINT(a) PRINT(b) PRINT(c)
from within a program while the host terminal is transmitting GOSUB5 to the motor could lead to the
GOSUB5 routine executing between the PRINT commands, which would result in the PRINT sequence
not outputting as desired.

The PRINT buffer size is 31 bytes. However, that does not impact the timing (unless a single PRINT
statement is generating a very long numeric output from variables—then it should be broken apart into
multiple PRINT statements). Additionally,

l PRINT waits until the buffer is totally empty before starting (so that each PRINT can buffer the
same amount of data)

l The buffer is there to ensure the PRINT can move on to the next line of code while those
characters are transmitting

l The next PRINT that is encountered will wait until the current PRINT finishes. Report commands
in a program like RPA will act the same as a PRINT in terms of timing (but x=PA is not actually
printing anything, so there is no delay).

Also, see the EXAMPLE: (Print time delay), later in this topic.

Part 2: Commands: PRINT(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 671 of 969

EXAMPLE:
OFF
KP=100 'Set Proportional Gain
O=1234 'Set origin to 1234
a=1
b=2
PRINT("Demonstration:",#13)
PRINT("a=",a)
PRINT(" and b=",b,#13)
PRINT("a+b=",a+b,#13)
PRINT("Position: ",PA,#13)
WAIT=10 'Allow time for serial buffer processing
PRINT("KP=",KP,#13)
PRINT("Hello World",#13,#13)
PRINT("Run Subroutines",#13)
WAIT=10
PRINT(#128,"GOSUB5 ",#13) 'Tell all motors to run subroutine
C5

WAIT=10
PRINT(#129,"GOSUB10",#13) 'Tell Motor-1 to run subroutine

C10
WAIT=10
PRINT(#130,"GOSUB20",#13) 'Tell Motor-2 to run subroutine

C20
WAIT=10
PRINT(#131,"GOSUB30",#13) 'Tell Motor-3 to run subroutine

C30
x=123
PRINT(#132,"GOSUB",x,#13) 'Tell Motor-4 to run subroutine

C123
v=100000
a=100
p=2000
PRINT(#130,"ADT=",a," VT=",v,#13) 'Set speed and accel/decel in motor 2
WAIT=10
PRINT(#130,"MP PT=",p," G",#13) 'Command Motor-2 to position 2000
WAIT=10
PRINT(#13,#13,"End of Demonstration.",#13)

END

Program output is:

Demonstration:
a=1 and b=2
a+b=3
Position: 1234
KP=100
Hello World

Part 2: Commands: PRINT(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 672 of 969

Run Subroutines
GOSUB5
GOSUB10
GOSUB20
GOSUB30
GOSUB123
ADT=100 VT=100000
MP PT=2000 G

End of Demonstration.

EXAMPLE: (Print time delay)

RUN?
WAIT=1000 'Make sure anything previous has finished printing
' O=1000000000 'For RPA test below
CLK=0
a=CLK
PRINT("asdfasdklfjasldkfjaslkdj",#13)
b=CLK
' x=PA 'Does not delay timing
' RPA 'Delays the same as PRINT
PRINT("01234567890123456789012345678",#13)
c=CLK
PRINT("tyuityuityuityuityuity",#13)
d=CLK

PRINT("a time: ",a,#13)
PRINT("b time: ",b,#13)
PRINT("c time: ",c,#13)
PRINT("d time: ",d,#13)

END

RELATED COMMANDS:
R BAUD(channel)=formula Set BAUD Rate (RS-232 and RS-485) (see page 303)
CCHN(type,channel) Close Communications Channel (RS-232 or RS-485) (see page 365)
OCHN(...) Open Channel (see page 632)
PRINT0(...) Print Data to Communications Port 0 (see page 673)
PRINT1(...) Print Data to Communications Port 1 (see page 677)
PRINT8(...) Print Data to USB Port (see page 680)

Part 2: Commands: PRINT(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 673 of 969

PRINT0(...)
Print Data to Communications Port 0

APPLICATION: Data conversion

DESCRIPTION: Serial communications channel 0 PRINT function

EXECUTION: Immediate, at current baud rate

CONDITIONAL TO: Channel 0 serial port open

LIMITATIONS: Maximum command length: 63 characters (includes the PRINT0
statement)

PRINT0 command not executed until transmit buffer is cleared from
previous PRINT statements

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: See details

TYPICAL VALUES: See details

DEFAULT VALUE: N/A

FIRMWARE VERSION: 6.x (D/M); no Class 5

COMBITRONIC: N/A

DETAILED DESCRIPTION:

NOTE: For firmware versions earlier than version 6.0, refer to the PRINT command. For details, see
PRINT(...) on page 669.

One or more items (see the next list) may be transmitted from COM 0 using the PRINT0 command. The
items are separated with commas. Therefore, the number of arguments to the PRINT0 command is
flexible.

l Strings of ASCII text can be specified with quotes: PRINT0("Hello world")

l Variables may be specified: PRINT0(a), PRINT0(al[0]), PRINT0(af[0])

These values will print in decimal form (with ASCII character encoding).
l System variables may be printed as long as they do not require () parenthesis: PRINT0(VA)

l Literal values for characters may be specified (one 8-bit character at a time): PRINT0(#32)

l Binary data may be specified (one 8-bit character at a time): PRINT0(#ab[0], #ab[1])

This is useful in data mode when communicating with non-ASCII mode systems.

Part 2: Commands: PRINT0(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 674 of 969

Combinations of these methods are permitted:

PRINT0("The value of a is: ",a,#13)

This prints the text, the actual value of variable "a" (as a decimal value in ASCII text), and
the newline with the #13.

PRINT0() commands are typically entered in a user program to send output to a terminal for display,
communicate with third party devices, or send commands to other motors.

Raw ASCII code values are prefixed by the # sign, as shown in the next table:

Character Format
space #32
tab #9
carriage return #13
line feed #10

CAUTION: Do not use a comment marker (') within PRINT0(). It will cause a
compiler error.

PRINT0() will wait to begin execution until previous commands have completed transmission from the
transmit buffer.

There is a practical difference between PRINT0(a,b,c) and the sequence PRINT0(a) PRINT0(b) PRINT0
(c). Executing from within a program PRINT0(a,b,c) will output the values of a, b, and c without the
possibility of another command from the terminal interfering. However, executing PRINT0(a) PRINT0(b)
PRINT0(c) from within a program while the host terminal is transmitting GOSUB5 to the motor could
lead to the GOSUB5 routine executing between the PRINT0 commands, which would result in the
PRINT0 sequence not outputting as desired.

Part 2: Commands: PRINT0(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 675 of 969

EXAMPLE:
OFF
KP=100 'Set Proportional Gain
O=1234 'Set origin to 1234
a=1
b=2
PRINT0("Demonstration:",#13)
PRINT0("a=",a)
PRINT0(" and b=",b,#13)
PRINT0("a+b=",a+b,#13)
PRINT0("Position: ",PA,#13)
WAIT=10 'Allow time for serial buffer processing
PRINT0("KP=",KP,#13)
PRINT0("Hello World",#13,#13)
PRINT0("Run Subroutines",#13)
WAIT=10
PRINT0(#128,"GOSUB5 ",#13) 'tell all motors to run subroutine
C5

WAIT=10
PRINT0(#129,"GOSUB10",#13) 'Tell Motor-1 to run subroutine

C10
WAIT=10
PRINT0(#130,"GOSUB20",#13) 'Tell Motor-2 to run subroutine

C20
WAIT=10
PRINT0(#131,"GOSUB30",#13) 'Tell Motor-3 to run subroutine

C30
x=123
PRINT0(#132,"GOSUB",x,#13) 'Tell Motor-4 to run subroutine

C123
v=100000
a=100
p=2000
PRINT0(#130,"ADT=",a," VT=",v,#13) 'Set speed and accel/decel in motor 2
WAIT=10
PRINT0(#130,"MP PT=",p," G",#13) 'Command Motor-2 to position 2000
WAIT=10
PRINT0(#13,#13,"End of Demonstration.",#13)

END

Part 2: Commands: PRINT0(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 676 of 969

Program output is:

Demonstration:
a=1 and b=2
a+b=3
Position: 1234
KP=100
Hello World

Run Subroutines
GOSUB5
GOSUB10
GOSUB20
GOSUB30
GOSUB123
ADT=100 VT=100000
MP PT=2000 G

End of Demonstration.

RELATED COMMANDS:
R BAUD(channel)=formula Set BAUD Rate (RS-232 and RS-485) (see page 303)
CCHN(type,channel) Close Communications Channel (RS-232 or RS-485) (see page 365)
OCHN(...) Open Channel (see page 632)
PRINT(...) Print Data to Communications Port (see page 669)
PRINT1(...) Print Data to Communications Port 1 (see page 677)
PRINT8(...) Print Data to USB Port (see page 680)

Part 2: Commands: PRINT0(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 677 of 969

PRINT1(...)
Print Data to Communications Port 1

APPLICATION: Data conversion

DESCRIPTION: Serial communications channel 1 PRINT function

EXECUTION: Immediate, at current baud rate

CONDITIONAL TO: Channel 1 serial port open

LIMITATIONS: Maximum command length: 63 characters (includes the PRINT1
statement)

PRINT1 command not executed until transmit buffer is cleared from
previous PRINT1 statements

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: See details

TYPICAL VALUES: See details

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.0.x, 5.16.x or 5.32.x series (D); 6.4.2.x (D)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

NOTE: The PRINT1 command is not available for version 6.0 or later firmware.

The PRINT1() command is used to transmit (output) data to serial communications channel 1. On a
Class 5 D-style motor, I/O pins 4 and 5 are used, which is also known as the secondary serial channel;
on a Class 6 D-style motor, I/O pins 19 and 20 are used. This option is not available for the M-style
motor.

NOTE: The proper OCHN command is required before using PRINT1().

PRINT1 explicitly outputs to COM 1(where available) and is not influenced by the STDOUT setting.
Refer to PRINT(...) on page 669 for more PRINT/PRINT1 details.

Part 2: Commands: PRINT1(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 678 of 969

EXAMPLE:
OFF
KP=100 'Set Proportional Gain
O=1234 'Set origin to 1234
a=1
b=2
PRINT1("Demonstration:",#13)
PRINT1("a=",a)
PRINT1(" and b=",b,#13)
PRINT1("a+b=",a+b,#13)
PRINT1("Position: ",PA,#13)
WAIT=10 'Allow time for serial buffer processing
PRINT1("KP=",KP,#13)
PRINT1("Hello World",#13,#13)
PRINT1("Run Subroutines",#13)
WAIT=10
PRINT1(#128,"GOSUB5 ",#13) 'Tell all motors to run subroutine
C5

WAIT=10
PRINT1(#129,"GOSUB10",#13) 'Tell Motor-1 to run subroutine

C10
WAIT=10
PRINT1(#130,"GOSUB20",#13) 'Tell Motor-2 to run subroutine

C20
WAIT=10
PRINT1(#131,"GOSUB30",#13) 'Tell Motor-3 to run subroutine

C30
x=123
PRINT1(#132,"GOSUB",x,#13) 'Tell Motor-4 to run subroutine

C123
v=100000
a=100
p=2000
PRINT1(#130,"ADT=",a," VT=",v,#13) 'Set speed and accel/decel in motor 2
WAIT=10
PRINT1(#130,"MP PT=",p," G",#13) 'Command Motor-2 to position 2000
WAIT=10
PRINT1(#13,#13,"End of Demonstration.",#13)

END

Part 2: Commands: PRINT1(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 679 of 969

Program output is:

Demonstration:
a=1 and b=2
a+b=3
Position: 1234
KP=100
Hello World

Run Subroutines
GOSUB5
GOSUB10
GOSUB20
GOSUB30
GOSUB123
ADT=100 VT=100000
MP PT=2000 G

End of Demonstration.

RELATED COMMANDS:
R BAUD(channel)=formula Set BAUD Rate (RS-232 and RS-485) (see page 303)
CCHN(type,channel) Close Communications Channel (RS-232 or RS-485) (see page 365)
OCHN(...) Open Channel (see page 632)
PRINT(...) Print Data to Communications Port (see page 669)
PRINT0(...) Print Data to Communications Port 0 (see page 673)
PRINT8(...) Print Data to USB Port (see page 680)

Part 2: Commands: PRINT1(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 680 of 969

PRINT8(...)
Print Data to USB Port

APPLICATION: Data conversion

DESCRIPTION: USB port PRINT function

EXECUTION: Immediate, at current baud rate

CONDITIONAL TO: USB port open

LIMITATIONS: Maximum command length: 63 characters (includes the PRINT8
statement)

PRINT8 command not executed until transmit buffer is cleared from
previous PRINT8 statements

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: See details

TYPICAL VALUES: See details

DEFAULT VALUE: N/A

FIRMWARE VERSION: 6.x (D/M); no Class 5

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The PRINT8() command is used to transmit (output) data to the Class 6 SmartMotor's USB port.

The only difference between PRINT0 and PRINT8 is the destination (output): PRINT0 explicitly outputs
to COM 0, PRINT8 explicitly outputs to the USB port. Refer to PRINT0(...) on page 673 for more PRINT
details.

Part 2: Commands: PRINT8(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 681 of 969

EXAMPLE:
OFF
KP=100 'Set Proportional Gain
O=1234 'Set origin to 1234
a=1
b=2
PRINT8("Demonstration:",#13)
PRINT8("a=",a)
PRINT8(" and b=",b,#13)
PRINT8("a+b=",a+b,#13)
PRINT8("Position: ",PA,#13)
WAIT=10 'Allow time for serial buffer processing
PRINT8("KP=",KP,#13)
PRINT8("Hello World",#13,#13)
PRINT8("Run Subroutines",#13)
WAIT=10
PRINT8(#128,"GOSUB5 ",#13) 'Tell all motors to run subroutine
C5

WAIT=10
PRINT8(#129,"GOSUB10",#13) 'Tell Motor-1 to run subroutine

C10
WAIT=10
PRINT8(#130,"GOSUB20",#13) 'Tell Motor-2 to run subroutine

C20
WAIT=10
PRINT8(#131,"GOSUB30",#13) 'Tell Motor-3 to run subroutine

C30
x=123
PRINT8(#132,"GOSUB",x,#13) 'Tell Motor-4 to run subroutine

C123
v=100000
a=100
p=2000
PRINT8(#130,"ADT=",a," VT=",v,#13) 'Set speed and accel/decel in motor 2
WAIT=10
PRINT8(#130,"MP PT=",p," G",#13) 'Command Motor-2 to position 2000
WAIT=10
PRINT8(#13,#13,"End of Demonstration.",#13)

END

Part 2: Commands: PRINT8(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 682 of 969

Program output is:

Demonstration:
a=1 and b=2
a+b=3
Position: 1234
KP=100
Hello World

Run Subroutines
GOSUB5
GOSUB10
GOSUB20
GOSUB30
GOSUB123
ADT=100 VT=100000
MP PT=2000 G

End of Demonstration.

RELATED COMMANDS:
R BAUD(channel)=formula Set BAUD Rate (RS-232 and RS-485) (see page 303)
CCHN(type,channel) Close Communications Channel (RS-232 or RS-485) (see page 365)
OCHN(...) Open Channel (see page 632)
PRINT(...) Print Data to Communications Port (see page 669)
PRINT0(...) Print Data to Communications Port 0 (see page 673)
PRINT1(...) Print Data to Communications Port 1 (see page 677)

Part 2: Commands: PRINT8(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 683 of 969

PRT=formula
Position, Relative Target

APPLICATION: Motion control

DESCRIPTION: Gets/sets the relative target position

EXECUTION: Buffered until a G command is issued

CONDITIONAL TO: MP (position mode)

LIMITATIONS: Wait until previous relative move is complete before commanding G

READ/REPORT: RPRT

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Encoder counts

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -2147483648 to 2147483647

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: PRT:3=1234, a=PRT:3, RPRT:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The PRT command is used to get (read) or set the relative target position. It allows a relative-distance
move to be specified when the motor is in Position mode.

l PRT=formula
Sets the relative target position.

l x=PRT
Gets the relative target position and assigns it to the variable x.

The target is in terms of encoder counts to travel in the range -2147483648 to +2147483647. Either
during or after a move, the relative distance will be added to the current trajectory position and not the
actual position. Therefore, if a previous move is still in progress, then the relative distance will be
added to the current trajectory position at the time that G is commanded.

NOTE: If the total distance traveled needs to directly correspond to the number of moves made,
then make sure a move has finished before commanding G again.

Status word 3, bit 8 reports 1 when acting on a PRT target (relative position).

PRT acts on the ideal currently commanded position and not the actual position, which may be subject
to position error (EA).

Part 2: Commands: PRT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 684 of 969

EXAMPLE: (Dual-trajectory spool winding program)

SRC(2) 'Set signal source to internal 8K counts/sec
MFMUL=100 'Default is 1
MFDIV=100 'Default is 1
MFA(500,1) 'Set ascend ratio distance of 500 follower counts
MFD(500,1) 'Set descend ratio distance of 500 follower counts
MFR(2) 'Enable Follow mode at specified ratio for SECOND TRAJECTORY
MFSLEW(8000,1) 'Stay at slew ratio for 8000 counts of the follower
MFSDC(100,1) 'Dwell for 100 counts, auto repeat in reverse direction
G(2) 'Begin to follow controller signal in SECOND trajectory
MP(1) 'Set FIRST TRAJECTORY mode to Position mode
VT=100000 'Set velocity to run over top of gearing
ADT=100 'Set accel/decel to run over gearing
PRT=1000 'Set relative move
G(1) 'Shift all motion 1000 counts in positive direction

RELATED COMMANDS:

ADT=formula Acceleration/Deceleration Target (see page 263)
R EL=formula Error Limit (see page 426)
G Start Motion (GO) (see page 473)
MP Mode Position (see page 613)
R PRA Position, Relative Actual (see page 663)
R PRC Position, Relative Commanded (see page 666)
R PT=formula Position, (Absolute) Target (see page 690)
R VT=formula Velocity Target (see page 828)

Part 2: Commands: PRT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 685 of 969

PRTS(...)
Position, Relative Target, Synchronized

APPLICATION: Motion control

DESCRIPTION: Sets the synchronized relative target position

EXECUTION: Buffered until a GS is issued

CONDITIONAL TO: Motors in the sync group are positioned at the their target position:
PT=PC

ADTS and VTS commands must be set before issuing this command

LIMITATIONS: Up to three axes of motion; must be orthogonal (Cartesian) coordin-
ates, not radial or polar

READ/REPORT: None

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: Encoder counts

RANGE OF VALUES: Input:
 Position: -2147483648 to 2147483647
 Axis: 1-127

TYPICAL VALUES: Input:
 Position: -2147483648 to 2147483647
 Axis: 1-127

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M), not ver. 5.32.x.x; 6.x (D/M), M requires EIP option

COMBITRONIC: N/A

DETAILED DESCRIPTION:

NOTE: This command requires a Combitronic-supported motor. Although this command does not
support Combitronic syntax, it does use Combitronic communication to pass information between
other motors.

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The PRTS command is used to set the synchronized relative target position. It allows you to identify
two or three axis positions (posn) and their associated CAN addresses (axisn) to cause a synchronized,
relative, multi-axis move where the combined path velocity is controlled as shown:

PRTS(pos1;axis1,pos2;axis2[,pos3;axis3])

NOTE: There is a three-axis limitation for this command.

Additional axes can be synchronized using the PTSS and PRTSS commands.

The synchronized motion is initiated with a GS command. For more details, see Synchronized Motion on
page 179.

Part 2: Commands: PRTS(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 686 of 969

Some gantry-type, multiple-axis machines have two motors operating the same axis of motion (see the
next figure). Below is the full syntax for the PTS command, which shows additional/optional parameters
(enclosed in braces "{ }") for support of two motors operating the same axis. The optional parameter
contains the motor address for the second motor of the axis. (For the PRTS command, replace PTS with
PRTS.)

PTS(pos1;addr1{;addr1'},pos2;addr2{;addr2'}[,pos3;addr3{;axis3'}])

This is illustrated in the next example. (If you are using the PRTS command, substitute PRTS in place of
PTS below.)

Position target X = 2000

Position target Y = 1000

Position target Z = 500

Motor address X = 5

Motor address X' = 6

Motor address Y = 7

Motor address Z = 8

PTS(2000;5;6,1000;7) 'Two-motor X axis (X, X'), plus Y axis

PTS(2000;5;6,1000;7,500;8) 'Two-motor X axis (X, X'), plus Y & Z axes

In these cases, the same position, velocity and acceleration data sent to motor address 5 is also sent to
motor address 6, with both motors driving the gantry's X axis.

EXAMPLE: (3-axis synchronized relative move to position x:y:z for motors 1, 2 and 3)

This sample code may be executed by any motor sharing the same CAN bus network with the motors
being commanded to move.

NOTE: Ensure no motor drive faults exist prior to calling this subroutine.

. . .
C20

OFF:0 MP:0 PRT:0=0 G TWAIT 'Initialize to stationary in position mode
PT:1=PC:1 PT:2=PC:2 PT:3=PC:3 'Set target and commanded positions equal
WAIT=50
VTS=v 'Set target path velocity
ADTS=a 'Set target path accel/decel
PRTS(x;1,y;2,z;3) 'Use Position Target Synchronized moves
PRTSS(a;4) 'Supplemental synchronized relative target
IF PTSD!=0 'Prevent 0-length (divide by zero) move

GS 'Go Synchronized
TSWAIT 'Wait until path move time is complete

ENDIF
RETURN

For additional examples, see A Note About PTS and PRTS on page 181.

RELATED COMMANDS:

ADTS=formula Acceleration/Deceleration Target, Synchronized (see page 265)
GS Start Synchronized Motion (GO Synchronized) (see page 487)
PRTSS(...) Position, Relative Target, Synchronized, Supplemental (see page 688)

Part 2: Commands: PRTS(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 687 of 969

PTS(...) Position Target, Synchronized (see page 692)
PTSS(...) Position Target, Synchronized Supplemental (see page 696)
TSWAIT Trajectory Synchronized Wait (see page 788)
VTS=formula Velocity Target, Synchronized Move (see page 831)

Part 2: Commands: PRTS(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 688 of 969

PRTSS(...)
Position, Relative Target, Synchronized, Supplemental

APPLICATION: Motion control

DESCRIPTION: Sets the supplemental synchronized relative-target position

EXECUTION: Buffered until a GS is issued

CONDITIONAL TO: Motors in the sync group are positioned at the their target position:
PT=PC

Must be issued after PRTS and before GS

LIMITATIONS: N/A

READ/REPORT: None

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: Encoder counts

RANGE OF VALUES: Input:
 Position: -2147483648 to 2147483647
 Axis: 1-127

TYPICAL VALUES: Input:
 Position: -2147483648 to 2147483647
 Axis: 1-127

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M), not ver. 5.32.x.x; 6.x (D/M), M requires EIP option

COMBITRONIC: N/A

DETAILED DESCRIPTION:

NOTE: This command requires a Combitronic-supported motor. Although this command does not
support Combitronic syntax, it does use Combitronic communication to pass information between
other motors.

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The PRTSS command allows supplemental axis moves to be added and synchronized with the previous
motion commanded by PTS() or PRTS(). Issue the additional axis commands after a PTS() or PRTS()
command but before the next GS command.

The PRTSS command allows you to specify an axis position (posn) and its associated CAN address
(axisn):

PRTSS(posn;axisn)

By the time the PRTSS or PTSS command is issued, the move time has already been determined by the
PTS or PRTS command. The command may be issued as many times as desired. There are no additional
resources consumed by adding more axes.

Part 2: Commands: PRTSS(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 689 of 969

The supplemental axis motions will start with the next GS at exactly the same time as the main PTS()
or PRTS() motion. Further, they will transition from their accelerations to their slew velocities at
exactly the same time, and they will decelerate and stop at exactly the same time.

It is important to ensure that the target position in each motor is equal to the motor's current position.
The best way to ensure this is to use an absolute position move (using PT=) in all participating motors
before issuing the PTS command.

For more details, see Synchronized Motion on page 179.

EXAMPLE: (3-axis synchronized relative move to position x:y:z for motors 1, 2 and 3)

This sample code may be executed by any motor sharing the same CAN bus network with the motors
being commanded to move.

NOTE: Ensure no motor drive faults exist prior to calling this subroutine.

. . .
C20

OFF:0 MP:0 PRT:0=0 G TWAIT 'Initialize to stationary in position mode
PT:1=PC:1 PT:2=PC:2 PT:3=PC:3 'Set target and commanded positions equal
WAIT=50
VTS=v 'Set target path velocity
ADTS=a 'Set target path accel/decel
PRTS(x;1,y;2,z;3) 'Use Position Target Synchronized moves
PRTSS(a;4) 'Supplemental synchronized relative target
IF PTSD!=0 'Prevent 0-length (divide by zero) move

GS 'Go Synchronized
TSWAIT 'Wait until path move time is complete

ENDIF
RETURN

For additional examples, see A Note About PTS and PRTS on page 181.

RELATED COMMANDS:

ADTS=formula Acceleration/Deceleration Target, Synchronized (see page 265)
GS Start Synchronized Motion (GO Synchronized) (see page 487)
R PRT=formula Position, Relative Target (see page 683)
PRTS(...) Position, Relative Target, Synchronized (see page 685)
PTS(...) Position Target, Synchronized (see page 692)
PTSS(...) Position Target, Synchronized Supplemental (see page 696)
TSWAIT Trajectory Synchronized Wait (see page 788)
VTS=formula Velocity Target, Synchronized Move (see page 831)

Part 2: Commands: PRTSS(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 690 of 969

PT=formula
Position, (Absolute) Target

APPLICATION: Motion control; supports the DS2020 Combitronic system

DESCRIPTION: Get/set absolute target position

EXECUTION: Buffered until a G command is issued

CONDITIONAL TO: MP (position mode)

LIMITATIONS: N/A

READ/REPORT: RPT

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Encoder counts
DS2020 Combitronic system: user increments, see FD=expression on
page 461

RANGE OF VALUES: -2147483648 to 2147483647 (see NOTE in Detailed Description)

TYPICAL VALUES: -1000000000 to 1000000000

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: PT:3=1234, a=PT:3, RPT:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The PT command is used to get (read) or set absolute target position.

To specify an absolute target position to the SmartMotor’s position origin, set PT=target position
(either positive or negative) and then issue a G command.

PT=formula sets the target position in Position mode.

NOTE: While PT= allows a range of -2,147,483,648 to +2,147,483,647, at these extremes, the
relative distance from one end to the other is greater than 32-bits. Therefore, the calculated move
within the motor will overflow and may move opposite of the expected direction. To avoid this
problem, a best practice is to keep the motor target position within the "typical values" range: -
1000000000 to +1000000000.

For the DS2020 Combitronic system, PT=I(0) command (available only via RS-232) will set the target
position to the last captured index position of the feedback sensor.

If the appropriate trajectory parameters ADT and VT are specified, then the motor will move, when the
G command is issued, to the position specified by the last PT value requested.

Status word 3, bit 8 reports 0 when acting on a PT target (absolute position).

Part 2: Commands: PT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 691 of 969

RPT will report the actual position. However, if you set a variable equal to PT, such as a=PT, that
variable will be loaded with the last-entered target position rather than the actual position. If you want
to use the actual position in your program, then use a PA variable such as a=PA.

EXAMPLE: (Shows use of ADT, PT and VT)

MP 'Set mode position
ADT=5000 'Set target accel/decel
PT=20000 'Set absolute position
VT=10000 'Set velocity
G 'Start motion
END 'End program

EXAMPLE: (Routine homes motor against a hard stop)

MDS 'Using Sine mode commutation
KP=3200 'Increase stiffness from default
KD=10200 'Increase damping from default
F 'Activate new tuning parameters
AMPS=100 'Lower current limit to 10%
VT=-10000 'Set maximum velocity
ADT=100 'Set maximum accel/decel
MV 'Set Velocity mode
G 'Start motion
WHILE EA>-100 'Loop while position error is small
LOOP 'Loop back to WHILE
O=-100 'While pressed, declare home offset
S 'Abruptly stop trajectory
MP 'Switch to Position mode
VT=20000 'Set higher maximum velocity
PT=0 'Set target position to be home
G 'Start motion
TWAIT 'Wait for motion to complete
AMPS=1023 'Restore current limit to maximum
END 'End program

RELATED COMMANDS:

ADT=formula Acceleration/Deceleration Target (see page 263)
R EL=formula Error Limit (see page 426)
R FD=expression Resolution to Set Units of Position/Velocity/Acceleration (see page 461)
G Start Motion (GO) (see page 473)
MP Mode Position (see page 613)
R PA Position, Actual (see page 646)
R PRT=formula Position, Relative Target (see page 683)
R VT=formula Velocity Target (see page 828)

Part 2: Commands: PT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 692 of 969

PTS(...)
Position Target, Synchronized

APPLICATION: Motion control

DESCRIPTION: Sets the synchronized target position

EXECUTION: Buffered until a GS is issued

CONDITIONAL TO: Motors in the sync group are positioned at the their target position:
PT=PC

ADTS and VTS commands must be set before issuing this command

LIMITATIONS: Up to three axes of motion; must be orthogonal (Cartesian) coordin-
ates, not radial or polar.

READ/REPORT: None

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: Encoder counts

RANGE OF VALUES: Input:
 Position: -2147483648 to 2147483647
 Axis: 1-127

TYPICAL VALUES: Input:
 Position: -2147483648 to 2147483647
 Axis: 1-127

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M), not ver. 5.32.x.x; 6.x (D/M), M requires EIP option

COMBITRONIC: N/A

DETAILED DESCRIPTION:

NOTE: This command requires a Combitronic-supported motor. Although this command does not
support Combitronic syntax, it does use Combitronic communication to pass information between
other motors.

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The PTS command is used to set the synchronized target position. It allows you to identify two or three
axis positions (posn) and their associated CAN axis addresses (axisn) to cause a synchronized-relative,
multi-axis move. For multiple-axis machines that are not using two motors to drive an axis, the
combined path velocity is controlled as shown:

PTS(pos1;axis1,pos2;axis2[,pos3;axis3])

NOTE: There is a three-axis limitation for this command.

Additional axes can be synchronized using the PTSS and PRTSS commands.

The command is illustrated in the next example:

Part 2: Commands: PTS(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 693 of 969

Position target X = 1000

Position target Y = 2000

Motor address X = 5

Motor address Y = 7

PTS(1000;5,2000;7) 'X axis and Y axis

The synchronized motion is initiated with a GS command.

It is important to ensure that the target position in each motor is equal to the motor's current position.
The best way to ensure this is to use an absolute position move (using PT=) in all participating motors
before issuing the PTS command. For more details, see Synchronized Motion on page 179.

Some gantry-type, multiple-axis machines have two motors operating the same axis of motion (see the
next figure). Below is the full syntax for the PTS command, which shows additional/optional parameters
(enclosed in braces "{ }") for support of two motors operating the same axis. The optional parameter
contains the motor address for the second motor of the axis. (For the PRTS command, replace PTS with
PRTS.)

PTS(pos1;addr1{;addr1'},pos2;addr2{;addr2'}[,pos3;addr3{;axis3'}])

This is illustrated in the next example. (If you are using the PRTS command, substitute PRTS in place of
PTS below.)

Position target X = 2000

Position target Y = 1000

Position target Z = 500

Motor address X = 5

Motor address X' = 6

Motor address Y = 7

Motor address Z = 8

PTS(2000;5;6,1000;7) 'Two-motor X axis (X, X'), plus Y axis

PTS(2000;5;6,1000;7,500;8) 'Two-motor X axis (X, X'), plus Y & Z axes

In these cases, the same position, velocity and acceleration data sent to motor address 5 is also sent to
motor address 6, with both motors driving the gantry's X axis.

Part 2: Commands: PTS(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 694 of 969

EXAMPLE: (2-axis synchronized absolute move to position x:y for motors 1 and 2)

This sample code may be executed by any motor sharing the same CAN bus network with the motors
being commanded to move.

NOTE: Ensure no motor drive faults exist prior to calling this subroutine.

. . .
C20

OFF:0 MP:0 PRT:0=0 G TWAIT 'Initialize to stationary in position mode
PT:1=PC:1 PT:2=PC:2 'Set target and commanded positions equal
WAIT=50
VTS=v 'Set target path velocity
ADTS=a 'Set target path accel/decel
PTS(x;1,y;2) 'Use Position Target Synchronized moves
PTSS(a;3) 'Supplemental synchronized target
IF PTSD!=0 'Prevent 0-length (divide by zero) move

GS 'Go Synchronized
TSWAIT 'Wait until path move time is complete

ENDIF
RETURN

For additional examples, see A Note About PTS and PRTS on page 181.

RELATED COMMANDS:

ADTS=formula Acceleration/Deceleration Target, Synchronized (see page 265)
GS Start Synchronized Motion (GO Synchronized) (see page 487)
PRTSS(...) Position, Relative Target, Synchronized, Supplemental (see page 688)
PTSS(...) Position Target, Synchronized Supplemental (see page 696)
TSWAIT Trajectory Synchronized Wait (see page 788)
VTS=formula Velocity Target, Synchronized Move (see page 831)

Part 2: Commands: PTS(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 695 of 969

PTSD
Position Target, Synchronized Distance

APPLICATION: Motion control

DESCRIPTION: Gets the synchronized target move linear distance

EXECUTION: Immediate

CONDITIONAL TO: PTS or PRTS command

LIMITATIONS: N/A

READ/REPORT: RPTSD

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Encoder counts

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -2147483648 to 2147483647

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M), not ver. 5.32.x.x; 6.x (D/M), M requires EIP option

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The PTSD command reports the linear distance of the synchronized target move. This distance
represents the vector distance of 2- or 3-dimensional moves computed by the PTS() or PRTS()
command.

After a PTS() or PRTS() command, the combined distance is stored in the PTSD variable so that it may
be read by the programmer.

For more details, see Synchronized Motion on page 179.

EXAMPLE: (Assign a value for a frame of reference)

d=PTSD 'Assign to "d" the vector sum distance in encoder counts
'of a predefined synchronized move

RELATED COMMANDS:

ADTS=formula Acceleration/Deceleration Target, Synchronized (see page 265)
GS Start Synchronized Motion (GO Synchronized) (see page 487)
PRTS(...) Position, Relative Target, Synchronized (see page 685)
PTS(...) Position Target, Synchronized (see page 692)
R PTST Position Target, Synchronized Time (see page 698)
TSWAIT Trajectory Synchronized Wait (see page 788)
VTS=formula Velocity Target, Synchronized Move (see page 831)

Part 2: Commands: PTSD

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 696 of 969

PTSS(...)
Position Target, Synchronized Supplemental

APPLICATION: Motion control

DESCRIPTION: Sets the supplemental synchronized target position

EXECUTION: Buffered until a GS is issued

CONDITIONAL TO: Motors in the sync group are positioned at the their target position:
PT=PC

Must be issued after PTS and before GS

LIMITATIONS: N/A

READ/REPORT: None

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: Encoder counts

RANGE OF VALUES: Input:
 Position: -2147483648 to 2147483647
 Axis: 1-127

TYPICAL VALUES: Input:
 Position: -2147483648 to 2147483647
 Axis: 1-127

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M), not ver. 5.32.x.x; 6.x (D/M), M requires EIP option

COMBITRONIC: N/A

DETAILED DESCRIPTION:

NOTE: This command requires a Combitronic-supported motor. Although this command does not
support Combitronic syntax, it does use Combitronic communication to pass information between
other motors.

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The PTSS command allows supplemental axis moves to be added and synchronized with the previous
PTS() or PRTS() commanded motion.

Issue the additional axis commands after a PTS() or PRTS() command but before the next GS
command.

The PTSS command allows you to identify one axis position (posn) and its associated axis CAN address
(axisn):

PTSS(posn;axisn)

By the time the PRTSS or PTSS command is issued, the move time has already been determined by the
PTS or PRTS command. The command may be issued as many times as desired. There are no additional
resources consumed by adding more axes.

Part 2: Commands: PTSS(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 697 of 969

The supplemental axis motions will start with the next GS at exactly the same time as the main PTS()
or PRTS() motion. Further, they will transition from their accelerations to their slew velocities at
exactly the same time, and they will decelerate and stop at exactly the same time.

It is important to ensure that the target position in each motor is equal to the motor's current position.
The best way to ensure this is to use an absolute position move (using PT=) in all participating motors
before issuing the PTS command.

For more details, see Synchronized Motion on page 179.

EXAMPLE: (2-axis synchronized absolute move to position x:y for motors 1 and 2)

This sample code may be executed by any motor sharing the same CAN bus network with the motors
being commanded to move.

NOTE: Ensure no motor drive faults exist prior to calling this subroutine.

. . .
C20

OFF:0 MP:0 PRT:0=0 G TWAIT 'Initialize to stationary in position mode
PT:1=PC:1 PT:2=PC:2 'Set target and commanded positions equal
WAIT=50
VTS=v 'Set target path velocity
ADTS=a 'Set target path accel/decel
PTS(x;1,y;2) 'Use Position Target Synchronized moves
PTSS(a;3) 'Supplemental synchronized target
IF PTSD!=0 'Prevent 0-length (divide by zero) move

GS 'Go Synchronized
TSWAIT 'Wait until path move time is complete

ENDIF
RETURN

For additional examples, see A Note About PTS and PRTS on page 181.

RELATED COMMANDS:

ADTS=formula Acceleration/Deceleration Target, Synchronized (see page 265)
GS Start Synchronized Motion (GO Synchronized) (see page 487)
PRTSS(...) Position, Relative Target, Synchronized, Supplemental (see page 688)
PTS(...) Position Target, Synchronized (see page 692)
TSWAIT Trajectory Synchronized Wait (see page 788)
VTS=formula Velocity Target, Synchronized Move (see page 831)

Part 2: Commands: PTSS(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 698 of 969

PTST
Position Target, Synchronized Time

APPLICATION: Motion control

DESCRIPTION: Stores the time for a synchronized move to the target position

EXECUTION: Immediate

CONDITIONAL TO: PTS or PRTS command

LIMITATIONS: N/A

READ/REPORT: RPTST

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: milliseconds

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -2147483648 to 2147483647

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M), not ver. 5.32.x.x; 6.x (D/M), M requires EIP option

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The PTST command stores the time (in milliseconds) for a synchronized move to the target position.
After a PTS() or PRTS() command, the combined distance is stored in the PTST variable (in
milliseconds) so that it may be used by the programmer.

For more details, see Synchronized Motion on page 179.

EXAMPLE:
t=PTST/2 'Calculate time in milliseconds to complete half of

'a predefined synchronized move.
TMR(0,t) 'Start timer that will timeout halfway through the move.
GS 'Start synchronized move.

RELATED COMMANDS:

ADTS=formula Acceleration/Deceleration Target, Synchronized (see page 265)
GS Start Synchronized Motion (GO Synchronized) (see page 487)
PRTS(...) Position, Relative Target, Synchronized (see page 685)
PTS(...) Position Target, Synchronized (see page 692)
R PTSD Position Target, Synchronized Distance (see page 695)
TSWAIT Trajectory Synchronized Wait (see page 788)
VTS=formula Velocity Target, Synchronized Move (see page 831)

Part 2: Commands: PTST

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 699 of 969

RANDOM=formula
Random Number

APPLICATION: Math function

DESCRIPTION: Seeds the random number generator; gets (reads) the next value from
the random number generator

EXECUTION: Immediate

CONDITIONAL TO: Previous calls to RANDOM

LIMITATIONS: N/A

READ/REPORT: RRANDOM

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: Output: 0 to 2147483647
Input: -2147483648 to 2147483647

TYPICAL VALUES: Output: 0 to 2147483647
Input: -2147483648 to 2147483647

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The RANDOM command is used to get (read) the next value from the pseudorandom number generator.
RANDOM can also be assigned to seed the random-number generator.

l RANDOM=formula
Sets the random seed value. Any 32-bit value is accepted.

l x=RANDOM
Gets the next value from the random number generator and assigns it to the variable x.

The output of the random number generator is an integer (whole number) in the range from 0 to
2147483647.

The number generated is not truly random— it does use a predictable sequence if the starting point
(seed) and algorithm are known. This allows a test sequence to be repeated and use the random
generator to exercise a wide range of values. However, if this were used in programs expecting
unpredictability (e.g., a game or secret number generator), the results may be disappointing.

If an unpredictable seed is desired, then a more creative approach must be used to initialize the value
based on events in the real world. For example, you could measure the time between some real-world
inputs that are somewhat random.

Typically, an application will need this number reduced to a more useful range. The modulo operator can
be used to accomplish this. For instance, if you need numbers in the range from -100 to +100, then this
formula may be helpful:

Part 2: Commands: RANDOM=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 700 of 969

a=(RANDOM%201)-100

EXAMPLE:
x=200000 'Max distance (full stroke) of actuator

'in encoder counts.
PT=RANDOM%x 'Use Modulo function and RANDOM function

'to create random position targets within max stroke.

RELATED COMMANDS:

N/A

Part 2: Commands: RANDOM=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 701 of 969

RCKS
Report Checksum

APPLICATION: Program access

DESCRIPTION: Reports the program checksum

EXECUTION: Immediate

CONDITIONAL TO: User program downloaded.

LIMITATIONS: No CKS or x=CKS form of this command

READ/REPORT: RCKS

WRITE: Read only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: ASCII alphanumeric string, see description

TYPICAL VALUES: N/A

DEFAULT VALUE: 000000 0000E1 P ("END" program)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The RCKS command reports the program checksum. Typically, this is automatically used by the SMI
software to verify the integrity of the program that is being downloaded. For example, if the download
process is interrupted and only part of the program is loaded, then the RCKS value will not match the
value expected by the host.

When the user program is erased with the "Clear EEPROM" feature of SMI (technically, a simple
program with an END command is loaded), then the returned value from RCKS is:

000000 0000E1 P

The first group of six hex digits are related to program labels. For example, C100 is a target for
GOSUB. The second group of six hex digits are the program itself. The last character is either P or F,
representing pass or fail, respectively.

NOTE: There is no CKS or x=CKS form of the command, as this command is not meant for use in a
user program. Typically, only SMI or other serial hosts would use this command to verify download
of the user program to the motor.

EXAMPLE: (Commanded from the terminal window)

RCKS

The command reports:

000000 0000E1 P

RELATED COMMANDS:
R Bk Bit, Program EEPROM Data Status (see page 315)

Part 2: Commands: RCKS

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 702 of 969

RES
Resolution

APPLICATION: System

DESCRIPTION: Gets (reads) the encoder resolution

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RRES
; supports the DS2020 Combitronic system

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Encoder counts
Report for DS2020 Combitronic system: user increments, see FD=e-
expression on page 461

RANGE OF VALUES: N/A
Report for DS2020 Combitronic system: 0 to 4294967295

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: RRES:3, x=RES:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The RES command is used to get the resolution of the encoder (for example, a=RES). This command is
the preferred method for obtaining the encoder resolution. It is simple to include it in user programs,
and it takes into account any special scaling or compensation.

NOTE: Any program that requires the encoder resolution should use this command instead of placing
a hard-coded value in the program.

This command can also serve as a check at the beginning of a program to ensure that the program is
running on a motor with the expected encoder type. Refer to the next example.

EXAMPLE: (Check for proper encoder type)

IF RES!=4000
OFF PRINT("Wrong encoder.",#13) END
ENDIF

Part 2: Commands: RES

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 703 of 969

EXAMPLE: (Scale Factor Multipliers)

' SAMP: motor sample time in samples per second
' RES: encoder resolution in counts per rev
' 65536: internal fractional constant for motor unit calculations
' 60: conversion between seconds and minutes
' *1.0: way to typecast integer values out to full floating-point values
' af[2] thru af[7]: 32-bit, floating-point array variables

'These abbreviations are used in this code:
' NatAD (Native Accel{decel})
' NatVel (Native Velocity)
' RPM (revolutions per minute)
' RPS (revolutions per second)

'Calculating multipliers 'Input Output
af[2]=(((SAMP*1.0)/RES)*60)/65536 'NatVel -> RPM Multiplier
af[3]=(((RES*1.0)/SAMP)/60)*65536 'RPM -> NatVel Multiplier
af[4]=((SAMP*1.0)/RES)/65536 'NatVel -> RPS Multiplier
af[5]=((RES*1.0)/SAMP)*65536 'RPS -> NatVel Multiplier
af[6]=af[5]/SAMP 'RPS^2 -> NatAD Multiplier
af[7]=af[4]*SAMP 'NatAD -> RPS^2 Multiplier

'Examples
'Suppose you wish to set a Velocity of 3000 RPM:
'(This method simply uses the above multiplier)
VT=3000*af[3] '3000 RPM desired speed multiplied by af[3]

'(RPM to Native Velocity multiplier)

'Suppose you wish to read real time velocity in units of RPS:
s=VA*af[5] 'Converts native VA (actual velocity) into RPS

'and assigns it to the variable "s"

END

RELATED COMMANDS:
R FD=expression Resolution to Set Units of Position/Velocity/Acceleration (see page 461)
R FW Firmware Version (see page 471)
R SAMP Sampling Rate (see page 722)

Part 2: Commands: RES

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 704 of 969

RESUME
Resume Program Execution

APPLICATION: Program execution and flow control

DESCRIPTION: Resume program execution

EXECUTION: Immediate

CONDITIONAL TO: A user program started and PAUSEd

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: RESUME:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

When executed, the RESUME command starts program execution from the location after the PAUSE
command (where the user program is currently paused). It is designed to be issued externally over
communications and should not be compiled within a program.

NOTE: RESUME is intended to manually resume a program from a command terminal for debugging
purposes — the program must be at a PAUSE and not executing an interrupt or subroutine.

The RESUME command only operates on PAUSE in the current context of the program. Examples of
different contexts are the main program versus a subroutine or interrupt routine. PAUSE used outside
the context of the currently executed command will continue to PAUSE (e.g., if there is a PAUSE in the
main program and a PAUSE in an interrupt, then the PAUSE that is active at the time will be resumed).
If a main program is at a PAUSE but other commands are executing in the interrupt, then a RESUME at
that time will not affect the PAUSE in the main program— it will remain paused.

Part 2: Commands: RESUME

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 705 of 969

EXAMPLE:
EIGN(W,0,12) 'Another way to disable travel limits.
ZS 'Clear faults.
ITR(0,0,0,0,0) 'Set Int 0 for: stat word 0, bit 0,

'shift to 0, to call C0.
EITR(0) 'Enable Interrupt 0.
ITRE 'Global Interrupt Enable.
PAUSE 'Pause to prevent "END" from disabling

'Interrupt, no change to stack.
'RESUME must be issued externally over communications;
'it is not allowed to be compiled within a program.
END
C0 'Fault handler.

MTB:0 'Motor will turn off with Dynamic
'breaking, tell other motors to stop.

US(0):0 'Set User Status Bit 0 to 1 (Status
'Word 12 bit zero).

US(ADDR):0 'Set User Status Bit "address" to 1
'(Status Word 12 Bit "address").

RETURNI

RELATED COMMANDS:

PAUSE Pause Program Execution (see page 648)

Part 2: Commands: RESUME

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 706 of 969

RETURN
Return From Subroutine

APPLICATION: Program execution and flow control

DESCRIPTION: Return program execution to next statement after current subroutine
call

EXECUTION: Immediate

CONDITIONAL TO: A previous GOSUBn program statement was performed

LIMITATIONS: Up to nine nested GOSUB or interrupt subroutines may occur at one
time

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The RETURN command is used to terminate a subroutine within a user program.

NOTE: Subroutines present a great opportunity to partition and organize your code.

When the RETURN command is invoked, program execution continues immediately after the GOSUB
that initiated the subroutine call. RETURN is normally executed from within a program, but with care,
the HOST terminal may also be used to issue a RETURN instruction.

In order to execute the RETURN program statement, the processor needs to be able to recall (from the
stack) the program address point where it should return. The "stack" is a memory region where these
addresses are stored. A maximum of nine address locations can be stored within the stack. Therefore,
do not use more than nine nested subroutines; otherwise, it may cause a stack overflow and crash the
program.

NOTE: RETURNI must be used to return from interrupt subroutines; RETURN must always be used
to return from GOSUB subroutines.

Part 2: Commands: RETURN

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 707 of 969

EXAMPLE:
PRINT("WAIT FOR HOST TERMINAL COMMANDS",#13)
GOSUB10 'Start of subroutine 10.
PRINT("PROGRAM RECEIVED EXTERNAL RETURN")
END
C10 'Start of subroutine 10.
WHILE 1 'Wait for terminal commands.

WAIT=100 'Report terminal errors.
IF Bs

PRINT(#13,"SCAN ERROR",#13)
Zs

ENDIF
LOOP
RETURN 'Return to line just below GOSUB10 command.

RELATED COMMANDS:

C{number} Command Label (see page 353)
END End Program Code Execution (see page 439)
GOSUB(label) Subroutine Call (see page 480)
RETURNI Return Interrupt (see page 708)
RUN Run Program (see page 714)
RUN? Halt Program Execution Until RUN Received (see page 716)

Part 2: Commands: RETURN

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 708 of 969

RETURNI
Return Interrupt

APPLICATION: Program execution and flow control

DESCRIPTION: Return program execution to next statement after current interrupt
subroutine call

EXECUTION: Immediate

CONDITIONAL TO: Interrupts configured and have caused an interrupt subroutine to
execute

LIMITATIONS: Up to nine nested GOSUB or interrupt subroutines may occur at one
time

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The RETURNI command is used to terminate an interrupt subroutine within a user program. This is
different than terminating a subroutine with the RETURN command. For details, see RETURN on page
706.

NOTE: Subroutines present a great opportunity to partition and organize your code.

Interrupt subroutines end with the RETURNI command to distinguish them from ordinary subroutines.
After the interrupt code execution reaches the RETURNI command, it will return to the program at
exactly the point where it was interrupted. An interrupt subroutine must not be called directly with a
GOSUB command.

NOTE: RETURNI must be used to return from interrupt subroutines; RETURN must always be used
to return from GOSUB subroutines.

For more details, see Interrupt Programming on page 195.

Part 2: Commands: RETURNI

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 709 of 969

EXAMPLE:
EIGN(W,0,12) 'Another way to disable travel limits.
ZS 'Clear faults.
ITR(0,0,0,0,0) 'Set interrupt 0 for Status Word 0, Bit 0,

'Shift to 0, to call C0.
EITR(0) 'Enable interrupt 0.
ITRE 'Global interrupt enable.
PAUSE 'Pause to prevent "END" from disabling

'interrupt; no change to stack.
'RESUME must be issued externally over communications;
'it is not allowed to be compiled within a program.
END
C0 'Fault handler.

MTB:0 'Motor will turn off with dynamic
'braking; tell other motors to stop.

US(0):0 'Set User Status Bit 0 to 1 (Status
'Word 12 bit zero).

US(ADDR):0 'Set User Status Bit "address" to 1
'(Status Word 12 Bit "address").

RETURNI

RELATED COMMANDS:

C{number} Command Label (see page 353)
DITR(int) Disable Interrupts (see page 394)
EITR(int) Enable Interrupts (see page 424)
END End Program Code Execution (see page 439)
GOSUB(label) Subroutine Call (see page 480)
ITR(Int#,StatusWord,Bit#,BitState,Label#) Interrupt Setup (see page 517)
ITRD Interrupt Disable, Global (see page 520)
ITRE Enable Interrupts, Global (see page 522)
RETURN Return From Subroutine (see page 706)
RUN Run Program (see page 714)
RUN? Halt Program Execution Until RUN Received (see page 716)

Part 2: Commands: RETURNI

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 710 of 969

RSP
Report Sampling Rate and Firmware Revision

APPLICATION: System; supports the DS2020 Combitronic system

DESCRIPTION: Report PID sample period and firmware revision

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: No SP or x=SP form of this command

READ/REPORT: RSP

WRITE: Read only

LANGUAGE ACCESS: N/A

UNITS: See details

RANGE OF VALUES: ASCII alphanumeric string, see description

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The RSP report command returns a five-digit value of the PID sample period followed by an ASCII
string code representing the firmware version. For the DS2020 Combitronic system, it reports the
firmware version in the format "xxx...xxx/DS2020".

NOTE: There is no SP or x=SP form of the command, as this command is not meant for use in a user
program.

The next table shows PID rates and RSP responses.

Command PID / Trajectory
Update Rate

Period
(µsec)

SAMP
Report

RSP
Report

PID1 16 kHz 62.5 16000 06250/5...
PID2 8 kHz (default) 125 8000 12500/5...
PID4 4 kHz 250 4000 25000/5...
PID8 2 kHz 500 2000 50000/5...

The PID sample period, in microseconds, is the five-digit number reported/100.

The sample period is followed by a "/" character and the firmware version string.

Part 2: Commands: RSP

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 711 of 969

EXAMPLE: (Terminal command sent to an SM23165D SmartMotor with 5.0.3.44 firmware)

RSP

The command reports:

12500/5.0.3.44

RELATED COMMANDS:

PID# Proportional-Integral-Differential Filter Rate (see page 654)
RSP1 Report Firmware Compile Date (see page 712)
R SP2 Bootloader Version (see page 755)
RSP5 Report Network Card Firmware Version (see page 713)
R SP6 Serial Number (see page 756)
R SAMP Sampling Rate (see page 722)

Part 2: Commands: RSP

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 712 of 969

RSP1
Report Firmware Compile Date

APPLICATION: System

DESCRIPTION: Report the firmware compile date and time

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: No SP1 or x=SP1 form of this command

READ/REPORT: RSP1

WRITE: Read only

LANGUAGE ACCESS: N/A

UNITS: See description

RANGE OF VALUES: ASCII alphanumeric string, see description

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The RSP1 report command returns the date and time that the motor firmware was compiled.

NOTE: There is no SP1 or x=SP1 form of the command, as this command is not meant for use in a
user program.

All version 5.xx series motors respond in the form of:

Month Day, Year HH:MM:SS

EXAMPLE: (Terminal command sent to an SM23165D SmartMotor with 5.0.3.44 firmware)

RSP1

The command reports:

Dec 20 2012 13:08:28

RELATED COMMANDS:
R FW Firmware Version (see page 471)
RSP Report Sampling Rate and Firmware Revision (see page 710)
R SP2 Bootloader Version (see page 755)
RSP5 Report Network Card Firmware Version (see page 713)
R SP6 Serial Number (see page 756)

Part 2: Commands: RSP1

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 713 of 969

RSP5
Report Network Card Firmware Version

APPLICATION: System

DESCRIPTION: Reports network interface card firmware version

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: No SP5 or x=SP5 form of this command

READ/REPORT: RSP5

WRITE: Read only

LANGUAGE ACCESS: N/A

UNITS: See description

RANGE OF VALUES: ASCII alphanumeric string, see description

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 6.x (D/M); no Class 5

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The RSP5 command reports the network interface card firmware version.

NOTE: There is no SP5 or x=SP5 form of the command, as this command is not meant for use in a
user program.

All version 6.x series SmartMotors respond in the form of:

n.n.n.n

Refer to the next example.

EXAMPLE: (Terminal command sent to a SmartMotor)

RSP5

The command reports the motor's firmware version, for example:

2.5.28.0

RELATED COMMANDS:
R FW Firmware Version (see page 471)
RSP Report Sampling Rate and Firmware Revision (see page 710)
RSP1 Report Firmware Compile Date (see page 712)
R SP2 Bootloader Version (see page 755)
R SP6 Serial Number (see page 756)

Part 2: Commands: RSP5

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 714 of 969

RUN
Run Program

APPLICATION: Program execution and flow control

DESCRIPTION: Execute user EEPROM program beginning at initial command

EXECUTION: Immediate

CONDITIONAL TO: No effect if no EEPROM program exists

LIMITATIONS: Valid EEPROM stored program commands

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: RUN at power recycle or software reset

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: RUN:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The RUN command starts a stored (downloaded) user EEPROM program. Issuing a RUN command does
not reset any motion, variable or I/O state. However, it does reset the program-execution pointer
(stack pointer) to zero, and resets the internal GOSUB stack.

NOTE: To test your program with a truly fresh start, use the Z command to completely reset the
motor as if it were just powered up. For details, see Z on page 846.

If a program exists within the SmartMotor™ user EEPROM, it will automatically run every time the
motor is turned on. To prevent this, make RUN? the first command of your user program. Or, if you
wish, place a RUN? command further down in your program. At power up, the program will automatically
execute only down to the RUN? statement. The program execution will stop at that point.

NOTE: Programs that are deliberately started with the RUN command (usually from the serial
terminal), will start from the top of the program and skip over the RUN? command.

Because user programs start automatically, it is possible to write a program that prevents SMI
communications with the motor. For instance, a Z (reset) or CCHN command at the beginning of the
program can make it difficult to connect to the motor.

NOTE: If you get locked out and are unable to communicate with the SmartMotor, you may be able
to recover communications using the SMI software's Communication Lockup Wizard. For more
details, see Communication Lockup Wizard on page 31.

Part 2: Commands: RUN

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 715 of 969

EXAMPLE: (user program with possible halt)

In Class 5, issuing the RUN command causes top-down execution through the entire program no matter
where the RUN? command is placed.

PRINT(" Enter RUN to start",#13) 'Prompt user for RUN
RUN? 'Run command requested; stop program

'execution until "RUN" command is received
PRINT(" LOADING TRAJECTORY",#13)
ADT=100 'Set target accel/decel
VT=1000000 'Set target velocity
PT=1000000 'Set target position
MP 'Mode Position
PRINT(" EXECUTING TRAJECTORY",#13)
G 'Begin motion.
END 'Required END

Program output is:

Enter RUN to start
LOADING TRAJECTORY
EXECUTING TRAJECTORY

RELATED COMMANDS:

END End Program Code Execution (see page 439)
GOSUB(label) Subroutine Call (see page 480)
GOTO(label) Branch Program Flow to a Label (see page 482)
LOAD Download Compiled User Program to Motor (see page 548)
LOCKP Lock Program (see page 551)
PAUSE Pause Program Execution (see page 648)
RESUME Resume Program Execution (see page 704)
RUN? Halt Program Execution Until RUN Received (see page 716)
UP Upload Compiled Program and Header (see page 797)
UPLOAD Upload Standard User Program (see page 799)

Part 2: Commands: RUN

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 716 of 969

RUN?
Halt Program Execution Until RUN Received

APPLICATION: Program execution and flow control

DESCRIPTION: Halt execution of user program started without RUN

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

If a program exists within the SmartMotor™ user EEPROM, it will automatically run every time the
motor is turned on. To prevent this, make RUN? the first command of your user program. Or, if you
wish, place a RUN? command further down in your program. At power up, the program will automatically
execute only down to the RUN? statement. The program execution will stop at that point.

NOTE: Programs that are deliberately started with the RUN command (usually from the serial
terminal), will start from the top of the program and skip over the RUN? command.

RUN? does not terminate the current motion mode or trajectory, change motion parameters such as EL,
ADT, VT or KP, or alter the current value of the user variables.

Part 2: Commands: RUN?

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 717 of 969

EXAMPLE: (user program with possible halt)

In Class 5, issuing the RUN command causes top-down execution through the entire program no matter
where the RUN? command is placed.

PRINT(" Enter RUN to start",#13) 'Prompt user for RUN
RUN? 'Run command requested; stop program

'execution until "RUN" command is received
PRINT(" LOADING TRAJECTORY",#13)
ADT=100 'Set target accel/decel
VT=1000000 'Set target velocity
PT=1000000 'Set target position
MP 'Mode Position
PRINT(" EXECUTING TRAJECTORY",#13)
G 'Begin motion.
END 'Required END

Program output is:

Enter RUN to start
LOADING TRAJECTORY
EXECUTING TRAJECTORY

RELATED COMMANDS:

END End Program Code Execution (see page 439)
GOSUB(label) Subroutine Call (see page 480)
GOTO(label) Branch Program Flow to a Label (see page 482)
LOAD Download Compiled User Program to Motor (see page 548)
LOCKP Lock Program (see page 551)
PAUSE Pause Program Execution (see page 648)
RESUME Resume Program Execution (see page 704)
RUN? Halt Program Execution Until RUN Received (see page 716)
UP Upload Compiled Program and Header (see page 797)
UPLOAD Upload Standard User Program (see page 799)

Part 2: Commands: RUN?

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 718 of 969

S (as command)
Stop Motion

APPLICATION: Motion control; supports the DS2020 Combitronic system

DESCRIPTION: Abruptly stop motor motion

EXECUTION: Immediate

CONDITIONAL TO: EL value

LIMITATIONS: If position error exceeds EL, motor will shut off and coast to a stop

REPORT VALUE: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: S:3 or S(0):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

CAUTION: Careful use of the S command is vital! It causes an emergency stop, and
the resulting motion is very abrupt.

The S command causes an emergency stop. It does not turn the motor off; it sets the target position to
the current position. The resulting commanded motion is very abrupt. In some cases, it will be so abrupt
that the amplifier can overcurrent or the servo error can exceed the maximum error set by the EL
command. This will, in turn, cause the motor to turn off and coast. Consequently, careful use of the S
command is vital.

For the DS2020 Combitronic system, the S command uses the velocity control system to stop the
motor by passing a zero velocity reference. If needed, the maximum current is used. This command
cannot be issued to stop the motor if the system becomes unstable when tuning KP, KI, KD, KV, because
the control loops are used by the S command. In that case, only an OFF command will effectively
disable the drive (and engage the brake if available and configured).

The S command also halts the homing operation. For more details on SmartMotor homing operations,
see the SmartMotor Homing Procedures and Methods Application Note.

Part 2: Commands: S (as command)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 719 of 969

EXAMPLE:
EIGN(W,0)
ZS
ADT=100
VT=1000000
PT=5000000
G
WHILE Bt 'While trajectory is active
IF PA>80000 'Set a position to look for

S 'Stop abruptly
PRINT("Emergency Stop")

ENDIF
LOOP

Program output is:

Emergency Stop

EXAMPLE: (Routine homes motor against a hard stop)

MDS 'Using Sine mode commutation
KP=3200 'Increase stiffness from default
KD=10200 'Increase damping from default
F 'Activate new tuning parameters
AMPS=100 'Lower current limit to 10%
VT=-10000 'Set maximum velocity
ADT=100 'Set maximum accel/decel
MV 'Set Velocity mode
G 'Start motion
WHILE EA>-100 'Loop while position error is small
LOOP 'Loop back to WHILE
O=-100 'While pressed, declare home offset
S 'Abruptly stop trajectory
MP 'Switch to Position mode
VT=20000 'Set higher maximum velocity
PT=0 'Set target position to be home
G 'Start motion
TWAIT 'Wait for motion to complete
AMPS=1023 'Restore current limit to maximum
END 'End program

RELATED COMMANDS:

ADT=formula Acceleration/Deceleration Target (see page 263)
R EL=formula Error Limit (see page 426)
G Start Motion (GO) (see page 473)
MP Mode Position (see page 613)
MV Mode Velocity (see page 624)
R PRT=formula Position, Relative Target (see page 683)
R PT=formula Position, (Absolute) Target (see page 690)
X Decelerate to Stop (see page 844)

Part 2: Commands: S (as command)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 720 of 969

SADDR#
Set Address

APPLICATION: Communications control; supports the DS2020 Combitronic system

DESCRIPTION: Set motor address

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT VALUE: N/A

WRITE: N/A

LANGUAGE ACCESS: Formulas and conditional testing through ADDR

UNITS: Number

RANGE OF VALUES: 1 to 120

TYPICAL VALUES: 1 to 4

DEFAULT VALUE: 0= global address

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The SADDR{value} command is used to set the unit address of a SmartMotor™, where "value" is an
integer between 0 and 120. Separate addresses allow multiple SmartMotors to share a common
communication channel and still differentiate themselves.

The SADDR command is typically one of the first commands in a downloaded program. In an RS-485
network, where all communications go over the same two parallel wires, the SADDR command must be
in the program. Whereas, in an RS-232 network, where communications travel from one motor to the
next, addressing can be accomplished from a host or controller motor.

The address can be from 0 to 120. Address 0 is the global address (the motor has no unique address); it
is used to talk to all motors on a network at once.

EXAMPLE:
SADDR1 'Set address to 1

When given a nonzero address, a SmartMotor begins to listen to commands after it receives its own
unique address or the global address byte from the network. There is no need to repeat the address
byte with subsequent commands intended for the same motor. The particular SmartMotor will continue
to listen to commands until it receives a different address byte, after which commands are ignored. The
echo function of the SmartMotor is not affected by the addressed state. That is, if told to echo, then a
SmartMotor will echo regardless of whether it is listening to commands or not.

Part 2: Commands: SADDR#

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 721 of 969

EXAMPLE:
'Example auto-addressing for four SmartMotors with SADDR command
'on an RS-232 daisy chain.
'This program code would be run at the same time
'in all motors on the chain at power-up.
ECHO 'Enable ECHO mode.
a=1 'User variable "a" to set address.
WAIT=2000 'Wait about 1/2 second to allow

'power-up to each motor.
PRINT(#128,"a=a+1 ",#13) 'Print downstream to each motor.
WAIT=2000 'Wait about 1/2 second for each

'motor to ECHO through the same
'string to the next motor.

'NOTE: At this point, each motor will have run the exact same code
'causing successive motors downstream to receive the same command
'string from the number of motors upstream.
SWITCH a 'Check the value of "a"

CASE 1
SADDR1 'Set address to 1

GOSUB10
BREAK
CASE 2

SADDR2 'Set address to 2
GOSUB20
BREAK
CASE 3

SADDR3 'Set address to 3
GOSUB30
BREAK
CASE 4

SADDR4 'Set address to 4
GOSUB40
BREAK

ENDS
END
C10 'MOTOR 1 CODE
RETURN
C20 'MOTOR 2 CODE
RETURN
C30 'MOTOR 3 CODE
RETURN
C40 'MOTOR 4 CODE
RETURN

RELATED COMMANDS:
R ADDR=formula Address (for RS-232 and RS-485) (see page 261)

Part 2: Commands: SADDR#

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 722 of 969

SAMP
Sampling Rate

APPLICATION: System

DESCRIPTION: Gets (reads) the sample rate in Hertz (Hz)

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RSAMP

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Hz

RANGE OF VALUES: 2000 to 16000

TYPICAL VALUES: 2000 to 16000

DEFAULT VALUE: 8000

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: RSAMP:3, x=SAMP:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The SAMP command is used to get (read) the sample rate in Hertz (Hz). You can issue SAMP to read
sample rate at any time. This represents the update rate of the motion trajectory and PID loop.
Therefore, knowing this rate can aid the choice of PID tuning parameters, or acceleration and velocity
values.

This command is the preferred method for obtaining the sample rate. It is simple to include it in user
programs.

NOTE: Instead of placing a hard-coded value in the program, any program that requires the sample
rate should use this command.

The next table shows the possible SAMP report values.

Command PID / Trajectory
Update Rate

Period
(µsec)

SAMP
Report

RSP
Report

PID1 16 kHz 62.5 16000 06250/5...
PID2 8 kHz (default) 125 8000 12500/5...
PID4 4 kHz 250 4000 25000/5...
PID8 2 kHz 500 2000 50000/5...

Part 2: Commands: SAMP

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 723 of 969

EXAMPLE:
a=SAMP 'Assign sample rate to variable a.
PRINT("The current sample rate is: ",a) 'Print info to terminal.
END

Program output is:

The current sample rate is: 8000

EXAMPLE: (Scale Factor Multipliers)

' SAMP: motor sample time in samples per second
' RES: encoder resolution in counts per rev
' 65536: internal fractional constant for motor unit calculations
' 60: conversion between seconds and minutes
' *1.0: way to typecast integer values out to full floating-point values
' af[2] thru af[7]: 32-bit, floating-point array variables

'These abbreviations are used in this code:
' NatAD (Native Accel{decel})
' NatVel (Native Velocity)
' RPM (revolutions per minute)
' RPS (revolutions per second)

'Calculating multipliers 'Input Output
af[2]=(((SAMP*1.0)/RES)*60)/65536 'NatVel -> RPM Multiplier
af[3]=(((RES*1.0)/SAMP)/60)*65536 'RPM -> NatVel Multiplier
af[4]=((SAMP*1.0)/RES)/65536 'NatVel -> RPS Multiplier
af[5]=((RES*1.0)/SAMP)*65536 'RPS -> NatVel Multiplier
af[6]=af[5]/SAMP 'RPS^2 -> NatAD Multiplier
af[7]=af[4]*SAMP 'NatAD -> RPS^2 Multiplier

'Examples
'Suppose you wish to set a Velocity of 3000 RPM:
'(This method simply uses the above multiplier)
VT=3000*af[3] '3000 RPM desired speed multiplied by af[3]

'(RPM to Native Velocity multiplier)

'Suppose you wish to read real time velocity in units of RPS:
s=VA*af[5] 'Converts native VA (actual velocity) into RPS

'and assigns it to the variable "s"

END

RELATED COMMANDS:
R FW Firmware Version (see page 471)
R RES Resolution (see page 702)

Part 2: Commands: SAMP

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 724 of 969

SCALEA(m,d)
Scale Acceleration Value

APPLICATION: Motion control

DESCRIPTION: Applies the specified scale factor to subsequent acceleration (decel-
eration) values.

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: Acceleration (deceleration) value is required

LIMITATIONS: Command is not available for any Class 6 motors

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: For both arg1 and arg2, range is 0 to 2147483647

TYPICAL VALUES: Typical range: 0 to 1000000

DEFAULT VALUE: Default: 0 (feature disabled)

FIRMWARE VERSION: 5.x.4.58 (D/M); no Class 6

COMBITRONIC: SCALEP(m,d):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The SCALEA(m,d) command applies a scale factor, which is calculated by m/d, to the acceleration
(deceleration) value in any subsequent commands. The command syntax is SCALEA(m,d), where:

l m = multiplier

l d = divisor

The acceleration (deceleration) value scale factor remains in effect until SCALEA(0,0) is issued.

NOTE: SCALEA(0,0) deactivates acceleration (deceleration) scaling.

For example SCALEA(10,1) AT=1 internally sets the acceleration (deceleration) target to 10 (i.e.,
multiplies the actual setting by 10). Reported acceleration (deceleration) values will do the reverse (i.e.,
it takes the actual acceleration (deceleration) and divides by 10).

To determine the correct values for m and d, use the Motor Scaling tool in SMI. For details, see the
SMI software help.

SCALEA(m,d)

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 725 of 969

AT= (mm/s2 or other

 desired units)

etc.

ma

da

Internal acceleration target

(65536*counts/sample2)

ma

da
RAT= (mm/s2 or other

 desired units)

etc.

RAC

SCALEA(ma , da) Diagram

Acceleration commanded

(counts/sample2)ma

da

For a table listing the commands that are affected by the SCALE commands, see Commands Affected
by SCALE on page 903.

EXAMPLE:
SCALEA(10,1) 'Sets the acceleration (deceleration) scale factor to 10x.
' All subsequent acceleration (deceleration) values will be affected by this
scaling.
AT=100 'Acceleration target of 100 is actually 1000 due to 10x

'scale factor.
SCALEA(0,0) 'Deactivates the acceleration (deceleration) scale factor.

RELATED COMMANDS:

SCALEP(m,d) Scale Position Value (see page 726)
SCALEV(m,d) Scale Velocity Value (see page 728)

Also, see Commands Affected by SCALE on page 903

SCALEA(m,d)

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 726 of 969

SCALEP(m,d)
Scale Position Value

APPLICATION: Motion control

DESCRIPTION: Applies the specified scale factor to subsequent position values.

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: Position value is required

LIMITATIONS: Command is not available for any Class 6 motors

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: For both arg1 and arg2, range is 0 to 2147483647

TYPICAL VALUES: Typical range: 0 to 1000000

DEFAULT VALUE: Default: 0 (feature disabled)

FIRMWARE VERSION: 5.x.4.58 (D/M); no Class 6

COMBITRONIC: SCALEP(m,d):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The SCALEP(m,d) command applies a scale factor, which is calculated by m/d, to the position value in
any subsequent commands. The command syntax is SCALEP(m,d), where:

l m = multiplier

l d = divisor

The position value scale factor remains in effect until SCALEP(0,0) is issued.

NOTE: SCALEP(0,0) deactivates position scaling.

For example SCALEP(10,1) PT=1 internally sets the position target to 10 actual encoder counts.
Reported position values will do the reverse (i.e., it takes the encoder position and divides by 10).

To determine the correct values for m and d, use the Motor Scaling tool in SMI. For details, see the
SMI software help.

SCALEP(m,d)

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 727 of 969

PT= (mm or other

 desired units)

PRT=, PMT=, etc.

mp

dp

Trajectory

(counts)

PC

(counts)

PIDEncoder

(counts)

mp

dp
RPA= (mm or other

 desired units)

RPMA=, RPT=, etc.

Position

error

(counts)

Enabled by default,

can be disabled

mp

dp

mp

dp

mp

dp

Error limit

(counts)

REA

REL

EL

SCALEP(mp , dp) Diagram

For a table listing the commands that are affected by the SCALE commands, see Commands Affected
by SCALE on page 903.

EXAMPLE:
SCALEP(10,1) 'Sets the position scale factor to 10x.
' All subsequent position values will be affected by this scaling.
PT=1 'Position target of 1 is actually 10 due to 10x position scale
factor.
SCALEP(0,0) 'Deactivates the position scale factor.

RELATED COMMANDS:

SCALEA(m,d) Scale Acceleration Value (see page 724)
SCALEV(m,d) Scale Velocity Value (see page 728)

Also, see Commands Affected by SCALE on page 903

SCALEP(m,d)

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 728 of 969

SCALEV(m,d)
Scale Velocity Value

APPLICATION: Motion control

DESCRIPTION: Applies the specified scale factor to subsequent velocity values.

EXECUTION: Immediate; remains in effect until otherwise commanded

CONDITIONAL TO: Position value is required

LIMITATIONS: Command is not available for any Class 6 motors

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: For both arg1 and arg2, range is 0 to 2147483647

TYPICAL VALUES: Typical range: 0 to 1000000

DEFAULT VALUE: Default: 0 (feature disabled)

FIRMWARE VERSION: 5.x.4.58 (D/M); no Class 6

COMBITRONIC: SCALEP(m,d):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The SCALEV(m,d) command applies a scale factor, which is calculated by m/d, to the velocity value in
any subsequent commands. The command syntax is SCALEV(m,d), where:

l m = multiplier

l d = divisor

The velocity value scale factor remains in effect until SCALEV(0,0) is issued.

NOTE: SCALEV(0,0) deactivates velocity scaling.

For example SCALEV(10,1) VT=1 internally scales the velocity target to 10 (i.e., multiplies the actual
setting by 10). Reported velocity values will do the reverse (i.e., it takes the actual velocity and divides
by 10).

To determine the correct values for m and d, use the Motor Scaling tool in SMI. For details, see the
SMI software help.

SCALEV(m,d)

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 729 of 969

VT= (mm/s or other

 desired units)

etc.

mv

dv

Internal velocity target

(65536*counts/sample)

mv

dv
RVT= (mm/s or other

 desired units)

etc.

RVA

SCALEV(mv , dv) Diagram

Velocity actual

(counts/sample)mv

dv

For a table listing the commands that are affected by the SCALE commands, see Commands Affected
by SCALE on page 903.

EXAMPLE:
SCALEV(10,1) 'Sets the velocity scale factor to 10x.
' All subsequent velocity values will be affected by this scaling.
VT=1000 'Velocity target of 1000 is actually 10000 due to 10x

'velocity scale factor.
SCALEP(0,0) 'Deactivates the velocity scale factor.

RELATED COMMANDS:

SCALEA(m,d) Scale Acceleration Value (see page 724)
SCALEP(m,d) Scale Position Value (see page 726)

Also, see Commands Affected by SCALE on page 903

SCALEV(m,d)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 730 of 969

SDORD(...)
SDO Read

APPLICATION: Communications control

DESCRIPTION: Reads the value from SDO; assigns value read to a variable

EXECUTION: Immediate

CONDITIONAL TO: Enabled through CANCTL(17,value), see CANCTL(function,value) on
page 359.

LIMITATIONS: Does not apply to Class 6 MT/MT2 systems

READ/REPORT: RSDORD

WRITE: Read only

LANGUAGE ACCESS: Communications control

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x.4.30 (D/M) requires CAN option; 6.4.2.x (D)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The SDORD command gets (reads) the value from the specified SDO on a specified device. It can assign
that value to a variable. To do this, use:

x=SDORD(follower addr, index, sub-index, length)

where:

follower
addr

is a variable such as: x, ab[x], aw[x], al[x], or a constant such as: 2 (a motor with CAN
address 2). The valid range is from 1 to 127. SDO’s cannot be broadcast. If follower
addr is to itself, then internal loopback is used instead.

index is a variable such as: x, ab[x], aw[x], al[x], or a constant such as: 24640 (for object
6040hex).

sub-index is a variable such as: x, ab[x], aw[x], al[x], or a constant such as: 0 (for sub-index 0).

length is a variable such as: x, ab[x], aw[x], al[x], or a constant such as: 4. This is the number
of bytes in the data; 1, 2, and 4 are the only valid values.

RSDORD(follower addr, index, sub-index, length) is the report version of the command. See above for a
description of the parameters.

The function will pause (not proceed) a user program until a confirmation is received or a timeout
occurs. In the event of a timeout, the value 0 is returned and an error code will be indicated. The
program is also responsible for checking the error status. Refer to the next section on error handling.

Part 2: Commands: SDORD(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 731 of 969

The value returned will be interpreted as a signed value. In other words, if the length is 1 or 2 and if
reporting or assigning it to a longer data type such as variable x, then the data is sign-extended.

Note that user interrupt events, ITR(…), can occur when waiting for an SDO operation to complete.
However, do not call an SDO operation from multiple interrupt levels concurrently. For example, if an
SDORD command is called in the main loop of a program, then do not call an SDORD or SDOWR in an
interrupt routine.

ERROR HANDLING:

Errors are handled in this manner:
l Errors during a read or write to CANopen objects through SDO may not specifically cause a CAN

error bit in status word 2. RCAN(4) command should always be inspected to verify success of the
SDORD, SDOWR, and NMT commands.

l After each SDO read or write or NMT the specific code returned from the device will be readable
using command RCAN(4)

l In the case of successful SDO read or write or NMT command, then the RCAN(4) shall report 0
immediately after such command. The user should always inspect for value 0 to know that an
operation was successful.

l The user program is responsible for implementing any strategy for retry and/or giving up after a
certain number of tries. The firmware simply reports the status of each attempt and will not
automatically retry.

EXAMPLE: Read an SDO

x=SDORD(1, 24592,0,2) ' Read 2 bytes from address 1,
' object 0x6010, sub-index 0.

e=CAN(4) ' Get any error information

y=SDORD(1, 24608,0,2) ' Read 2 bytes from address 1,
' object 0x6020, sub-index 0.

ee=CAN(4) ' Get any error information

IF (e|ee)==0 ' Confirm the status of both SDO operations.
' Success

b=x ' Set some example variable according
c=y ' to the data received.
GOSUB(3) ' Some routine to take action when this data is valid.

ELSE
GOSUB(8) ' Go do something to deal with error when read fails.

ENDIF

RELATED COMMANDS:
R CAN, CAN(arg) CAN Bus Status (see page 357)
CANCTL(function,value) CAN Control (see page 359)
NMT Send NMT State (see page 626)
SDOWR(...) SDO Write (see page 732)

Part 2: Commands: SDORD(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 732 of 969

SDOWR(...)
SDO Write

APPLICATION: Communications control

DESCRIPTION: Writes a value to the specified SDO on a specified device

EXECUTION: Immediate

CONDITIONAL TO: Enabled through CANCTL(17,value), see CANCTL(function,value) on
page 359.

LIMITATIONS: Does not apply to Class 6 MT/MT2 systems

READ/REPORT: Use SDORD and RSDORD

WRITE: Write only

LANGUAGE ACCESS: Communications control

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x.4.30 (D/M) requires CAN option; 6.4.2.x (D)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The SDOWR command writes a value to the specified SDO on a specified device. To do this, use:

SDOWR(follower addr, index, sub-index, length, value)

where:

follower
addr

is a variable such as: x, ab[x], aw[x], al[x], or a constant such as: 2 (a motor with CAN
address 2). The valid range is from 1 to 127. SDO’s cannot be broadcast. If follower
addr is to itself, then internal loopback is used instead.

index is a variable such as: x, ab[x], aw[x], al[x], or a constant such as: 24640 (for object
6040hex).

sub-index is a variable such as: x, ab[x], aw[x], al[x], or a constant such as: 0 (for sub-index 0).

length is a variable such as: x, ab[x], aw[x], al[x], or a constant such as: 4. This is the number
of bytes in the data; 1, 2, and 4 are the only valid values.

value is a variable such as: x, ab[x], aw[x], al[x], or a constant such as: 1234 (max 32-bits of
data). If the length is shorter than the variable or constant given, then the value is
truncated regardless of sign.

The function will pause (not proceed) a user program until a confirmation is received or a timeout
occurs. Refer to the next section on error handling.

Note that user interrupt events, ITR(…), can occur when waiting for an SDO operation to complete.
However, do not call an SDO operation from multiple interrupt levels concurrently. For example, if an

Part 2: Commands: SDOWR(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 733 of 969

SDOWR command is called in the main loop of a program, then do not call an SDORD or SDOWR in an
interrupt routine.

ERROR HANDLING:

Errors are handled in this manner:
l Errors during a read or write to CANopen objects through SDO may not specifically cause a CAN

error bit in status word 2. RCAN(4) command should always be inspected to verify success of the
SDORD, SDOWR, and NMT commands.

l After each SDO read or write or NMT the specific code returned from the device will be readable
using command RCAN(4)

l In the case of successful SDO read or write or NMT command, then the RCAN(4) shall report 0
immediately after such command. The user should always inspect for value 0 to know that an
operation was successful.

l The user program is responsible for implementing any strategy for retry and/or giving up after a
certain number of tries. The firmware simply reports the status of each attempt and will not
automatically retry.

EXAMPLE: Write an SDO

a=1234
SDOWR(1,9029,0,4,a) ' Write 4 bytes to address 1,
IF CAN(4)==0 ' Confirm the status of the most recent SDO operation.

' Success
GOSUB(4) ' Some routine to take action when the write succeeds.

ELSE
GOSUB(9) ' Go do something to deal with error when write fails.

ENDIF

RELATED COMMANDS:
R CAN, CAN(arg) CAN Bus Status (see page 357)
CANCTL(function,value) CAN Control (see page 359)
NMT Send NMT State (see page 626)
SDORD(...) SDO Read (see page 730)

Part 2: Commands: SDOWR(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 734 of 969

SILENT
Silence Outgoing Communications on Communications Port 0

APPLICATION: Communications control

DESCRIPTION: Motor prevented from printing to channel 0

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: TALK state

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The SILENT command causes the SmartMotor™ to suppress all PRINT messages from being
transmitted on channel 0. Report commands originating from a user program are also suppressed if
they are configured to transmit from COM channel 0 (see STDOUT=formula on page 764).

This command is typically used when a program has PRINT statements that may be interfering with
debugging efforts. For instance, when opening a polling window or issuing serial commands during
debugging, it may become necessary to suppress PRINT statements in a program.

The SILENT command does not prevent the SmartMotor from sending messages in response to
incoming serial report commands from the host. Also, it does not interfere with ECHOing received
serial communication over channel 0.

The TALK command negates the effect of SILENT and restores the motor's COM 0 port to its default
operating state. For details, see TALK on page 771.

SILENT may be issued from the terminal or within a user program. However, the command is typically
sent from a host.

Part 2: Commands: SILENT

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 735 of 969

EXAMPLE: (Shows the use of SILENT and TALK)

RUN? 'Wait here for the RUN command.
'Set a=1 in the Terminal window to
'allow print statements.

WHILE 1 'Endless loop
IF a==1 TALK ENDIF 'If variable a is set to 1, allow

'PRINT statements on channel 0.
IF a==0 SILENT ENDIF 'If variable a is set to 0, suppress

'PRINT statements on channel 0.
PRINT("Position=",PA,#13) 'Print the Actual Position.
WAIT=3000 'Wait 3 seconds.
LOOP 'Loop back to WHILE 1 command.
END

RELATED COMMANDS:

ECHO Echo Incoming Data on Communications Port 0 (see page 403)
ECHO_OFF Turn Off Echo on Communications Port 0 (see page 407)
PRINT(...) Print Data to Communications Port (see page 669)
STDOUT=formula Set Device Output (see page 764)
SILENT1 Silence Outgoing Communications on Communications Port 1 (see page 736)
TALK Talk on Communications Port 0 (see page 771)
TALK1 Talk on Communications Port 1 (see page 773)

Part 2: Commands: SILENT

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 736 of 969

SILENT1
Silence Outgoing Communications on Communications Port 1

APPLICATION: Communications control

DESCRIPTION: Motor prevented from printing to channel 1

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: TALK1 state

FIRMWARE VERSION: 5.0.x, 5.16.x or 5.32.x series (D); 6.4.2.x (D)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The SILENT1 command causes the SmartMotor™ to suppress all PRINT1 messages from being
transmitted on channel 1. Report commands originating from a user program are also suppressed if
they are configured to transmit from COM channel 1 (see STDOUT=formula on page 764).

This command is typically used when a program has PRINT1 statements that may be interfering with
debugging efforts. For instance, when opening a polling window or issuing serial commands during
debugging, it may become necessary to suppress PRINT1 statements in a program.

The SILENT1 command does not prevent the SmartMotor from sending messages in response to
incoming serial report commands from the host. Also, it does not interfere with ECHOing received
serial communication over channel 1.

The TALK1 command negates the effect of SILENT1 and restores the motor's COM 1 port to its
default operating state.

NOTE: These commands are typically sent from a host rather than existing within a program.

Part 2: Commands: SILENT1

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 737 of 969

EXAMPLE: (Shows use of SILENT1 and TALK1)

RUN? 'Wait here for the RUN command.
'Set a=1 in the Terminal window to allow print statements.

OCHN(RS4,1,N,9600,1,8,C) 'Open ports 4 and 5 as RS-485 channel 1.
WHILE 1 'Endless loop.
IF a==1 TALK1 ENDIF 'If variable a is set to 1, allow

'PRINT statements on channel 1.
IF a==0 SILENT1 ENDIF 'If variable a is set to 0, suppress

'PRINT statements on channel 1.
PRINT1("Position=",PA,#13) 'Print the actual position.
WAIT=3000 'Wait 3 seconds.
LOOP 'Loop back to WHILE 1 command.
END

RELATED COMMANDS:

ECHO1 Echo Incoming Data on Communications Port 1 (see page 406)
ECHO_OFF1 Turn Off Echo on Communications Port 1 (see page 409)
PRINT1(...) Print Data to Communications Port 1 (see page 677)
STDOUT=formula Set Device Output (see page 764)
SILENT Silence Outgoing Communications on Communications Port 0 (see page 734)
TALK Talk on Communications Port 0 (see page 771)
TALK1 Talk on Communications Port 1 (see page 773)

Part 2: Commands: SILENT1

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 738 of 969

SIN(value)
Sine

APPLICATION: Math function

DESCRIPTION: Gets the sine of the input value

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RSIN(value)

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Degrees input

RANGE OF VALUES: Input in degrees (floating-point): 0.0 to 360.0 (larger values can be
used, but it is not recommended; user should keep range within mod-
ulo 360)
Output (floating-point): ±1.0

TYPICAL VALUES: Input in degrees (floating-point): 0.0 to 360.0 (larger values can be
used, but it is not recommended; user should keep range within mod-
ulo 360)
Output (floating-point): ±1.0

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The SIN command takes an input angle in degrees and returns a floating-point sine:

af[1]=SIN(arg)

where arg is in degrees, and may be an integer (i.e., a, aw[0]) or floating-point variable (i.e., af[0]).
Integer or floating-point constants may also be used (i.e., 23 or 23.7, respectively).

This command cannot have within the parenthesis: math operators, other parenthetical functions, or a
Combitronic request from another motor. For example, x=FABS(PA) is allowed, but x=FABS(PA:3) is not
allowed.

The result of this function is a floating-point type. If used in an equation, the operations in the equation
that are processed after this function are automatically promoted to a float. This is dependent on the
mathematical order of operations in the equation. As with other equations (e.g., x=a+b), the variable to
the left of "=" may be an integer variable to accept the result. However, the value will be truncated to
fit to that integer type. For example, the assignment "aw[0]=" will drop any fractional amount and
truncate the result to the range -32768 to 32767 (aw[0]=100.5 will report as 100, and aw[0]=40000.0
will report as -25536).

Part 2: Commands: SIN(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 739 of 969

Although the floating-point variables and their standard binary operations conform to IEEE-754 double
precision, the floating-point square root and trigonometric functions only produce IEEE-754 single-
precision results. For more details, see Variables and Math on page 198.

EXAMPLE:
af[0]=SIN(57.3) 'Set array variable = SIN(57.3)
Raf[0] 'Report value of af[0] variable
RSIN(57.3) 'Report SIN(57.3)
af[1]=42.3 '42.3 degrees
af[0]=SIN(af[1]) 'Variables may be put in the parenthesis
Raf[0]
END

Program output is:

0.841510772
0.841510772
0.673012495

RELATED COMMANDS:
R ACOS(value) Arccosine (see page 259)
R ASIN(value) Arcsine (see page 284)
R ATAN(value) Arctangent (see page 289)
R COS(value) Cosine (see page 372)
R TAN(value) Tangent (see page 775)

Part 2: Commands: SIN(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 740 of 969

SLD
Software Limits, Disable

APPLICATION: Motion control

DESCRIPTION: Disables the software limits

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: None

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: By default, software limits are disabled

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: SLD:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The SLD command is used to disable the software limits. The limits are enabled using the SLE
command.

As an alternative to hardware limits connected to the limit inputs of the SmartMotor™, software limits
are "virtual" limit switches that offer distinct advantages. For example, in the event the actual position
of the motor strays beyond the desired region of operation, software limits can interrupt motion with a
fault. Further, the limit fault is directionally sensitive, so it will cause a fault if motion is commanded
beyond a limit that has been reached. For more details, see Limits and Fault Handling on page 207.

Part 2: Commands: SLD

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 741 of 969

EXAMPLE: (Shows use of SLD, SLE, SLM, SLN and SLP)

EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
SLD 'Disable software limits
O=0 'Zero the encoder position CTR(0)
SLM(1) 'SLM(1) will make a soft limit trigger the flag AND

'cause a fault
'SLM(0) will make a soft limit trigger the flag AND
'will NOT cause a fault

SLN=-8000 'Set the negative software limit to -8000 encoder counts
SLP=8000 'Set the positive software limit to 8000 encoder counts
SLE 'Enable software limits
MP 'Set the SmartMotor to position mode
ADT=100 'Set a value for accel/decel
VT=20000 'Set a value for velocity target
PT=7000 G TWAIT 'Move to absolute position 7000 (no fault)
PT=-7000 G TWAIT 'Move to absolute position -7000 (no fault)
PT=9000 G TWAIT 'Move to absolute position 9000

'The motor will fault at position 8000 and set
'these bits:
' Bo(Motor is off) in Status Word 0
' Brs(Historical positive S/W limit) in Status Word 1

WAIT=2000 'Wait two seconds
ZS 'Clear errors
PT=0 G TWAIT 'Move to absolute position 0 (no fault)
END

RELATED COMMANDS:

SLE Software Limits, Enable (see page 742)
R SLM(mode) Software Limit Mode (see page 748)
R SLN=formula Software Limit, Negative (see page 750)
R SLP=formula Software Limit, Positive (see page 752)

Part 2: Commands: SLD

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 742 of 969

SLE
Software Limits, Enable

APPLICATION: Motion control

DESCRIPTION: Enables the software limits

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: None

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: By default, software limits are disabled (SLD)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: SLE:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The SLE command is used to enable the software limits. The software limits are disabled using the SLD
command. For details, see SLD on page 740.

As an alternative to hardware limits connected to the limit inputs of the SmartMotor™, software limits
are "virtual" limit switches that offer distinct advantages. For example, in the event the actual position
of the motor strays beyond the desired region of operation, software limits can interrupt motion with a
fault. Further, the limit fault is directionally sensitive, so it will cause a fault if motion is commanded
beyond a limit that has been reached. For more details, see Limits and Fault Handling on page 207.

Part 2: Commands: SLE

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 743 of 969

EXAMPLE: (Shows use of SLD, SLE, SLM, SLN and SLP)

EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
SLD 'Disable software limits
O=0 'Zero the encoder position CTR(0)
SLM(1) 'SLM(1) will make a soft limit trigger the flag AND

'cause a fault
'SLM(0) will make a soft limit trigger the flag AND
'will NOT cause a fault

SLN=-8000 'Set the negative software limit to -8000 encoder counts
SLP=8000 'Set the positive software limit to 8000 encoder counts
SLE 'Enable software limits
MP 'Set the SmartMotor to position mode
ADT=100 'Set a value for accel/decel
VT=20000 'Set a value for velocity target
PT=7000 G TWAIT 'Move to absolute position 7000 (no fault)
PT=-7000 G TWAIT 'Move to absolute position -7000 (no fault)
PT=9000 G TWAIT 'Move to absolute position 9000

'The motor will fault at position 8000 and set
'these bits:
' Bo(Motor is off) in Status Word 0
' Brs(Historical positive S/W limit) in Status Word 1

WAIT=2000 'Wait two seconds
ZS 'Clear errors
PT=0 G TWAIT 'Move to absolute position 0 (no fault)
END

RELATED COMMANDS:

SLD Software Limits, Disable (see page 740)
R SLM(mode) Software Limit Mode (see page 748)
R SLN=formula Software Limit, Negative (see page 750)
R SLP=formula Software Limit, Positive (see page 752)

Part 2: Commands: SLE

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 744 of 969

SLEEP
Ignore Incoming Commands on Communications Port 0

APPLICATION: Communications control; supports the DS2020 Combitronic system

DESCRIPTION: Prevents motor from executing channel 0 commands

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: WAKE state

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The SLEEP command is used to put a SmartMotor™ into sleep mode with respect to channel 0 serial
commands. While in sleep mode, a SmartMotor will continue to echo (if in ECHO mode) all characters
received over the network, but it will ignore all commands other than a WAKE command.

The most common use of the SLEEP command is to keep daisy-chained SmartMotors from responding
to commands in a program that is being downloaded to another SmartMotor in the same chain.

If a program is running when a SmartMotor receives the SLEEP command, that program will continue to
run. Messages originating from within the running program of a sleeping SmartMotor will be
transmitted unless the motor is also in SILENT mode. For details, see SILENT on page 734.

SLEEP may be issued from the terminal or within a user program. SLEEP mode is terminated by the
WAKE command.

Part 2: Commands: SLEEP

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 745 of 969

EXAMPLE: (Shows use of SLEEP, SLEEP1, WAKE and WAKE1)

'These commands can be sent from the SMI software Terminal
'window to address three SmartMotors:
'0SADDR1
'1ECHO
'1SLEEP
'0SADDR2
'2ECHO
'2SLEEP
'0SADDR3
'3ECHO
'0WAKE
'A host program other than SMI can send the same commands, but the
'prefixed addressing is different. The 0, 1, 2 and 3 are actually
'0x80, 0x81, 0x82 and 0x83, respectively.
'The decimal equivalent of the hex values are 128, 129, 130 and 131.
'The next commands can be sent from a program in motor 1 to
'Motor 2:
PRINT(#130,"SLEEP",#13) 'Cause channel 0 (RS-232) of motor 2 to SLEEP.
PRINT(#130,"WAKE",#13) 'Cause channel 0 (RS-232) of motor 2 to WAKE.
PRINT(#130,"SLEEP1",#13) 'Cause channel 1 (RS-485) of motor 2 to SLEEP.

'through channel 0 (RS-232).
PRINT(#130,"WAKE1",#13) 'Cause channel 1 (RS-485) of motor 2 to WAKE

'through channel 0 (RS-232).

'Assuming channel 1 (RS-485) is open on all motors with the
'OCHN command, the same commands can be sent with the PRINT1
'command:
OCHN(RS4,1,N,9600,1,8,C) 'Open ports 4 and 5 as RS-485 channel 1.
PRINT1(#130,"SLEEP",#13) 'Cause channel 0 (RS-232) of motor 2 to SLEEP.
PRINT1(#130,"WAKE",#13) 'Cause channel 0 (RS-232) of motor 2 to WAKE.
PRINT1(#130,"SLEEP1",#13) 'Cause channel 1 (RS-485) of motor 2 to SLEEP.
PRINT1(#130,"WAKE1",#13) 'Cause channel 1 (RS-485) of motor 2 to WAKE.
END

RELATED COMMANDS:

ECHO Echo Incoming Data on Communications Port 0 (see page 403)
ECHO_OFF Turn Off Echo on Communications Port 0 (see page 407)
SLEEP1 Ignore Incoming Commands on Communications Port 1 (see page 746)
WAKE Wake Communications Port 0 (see page 837)
WAKE1 Wake Communications Port 1 (see page 839)

Part 2: Commands: SLEEP

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 746 of 969

SLEEP1
Ignore Incoming Commands on Communications Port 1

APPLICATION: Communications control

DESCRIPTION: Prevents motor from executing channel 1 commands

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: WAKE1 state

FIRMWARE VERSION: 5.0.x, 5.16.x or 5.32.x series (D); 6.4.2.x (D)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The SLEEP1 command is used to put a SmartMotor™ into sleep mode with respect to channel 1 serial
commands. While in sleep mode, a SmartMotor will continue to echo (if in ECHO mode) all characters
received over the network, but it will ignore all commands other than a WAKE1 command.

The most common use of the SLEEP1 command is to keep daisy-chained SmartMotors from responding
to commands in a program that is being downloaded to another SmartMotor in the same chain.

If a program is running when a SmartMotor receives the SLEEP1 command, that program will continue
to run. Messages originating from within the running program of a sleeping SmartMotor will be
transmitted unless the motor is also in SILENT1 mode. For details, see SILENT1 on page 736.

SLEEP1 may be issued from the terminal or within a user program. SLEEP1 mode is terminated by the
WAKE1 command.

Part 2: Commands: SLEEP1

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 747 of 969

EXAMPLE: (Shows use of SLEEP, SLEEP1, WAKE and WAKE1)

'These commands can be sent from the SMI software Terminal
'window to address three SmartMotors:
'0SADDR1
'1ECHO
'1SLEEP
'0SADDR2
'2ECHO
'2SLEEP
'0SADDR3
'3ECHO
'0WAKE
'A host program other than SMI can send the same commands, but the
'prefixed addressing is different. The 0, 1, 2 and 3 are actually
'0x80, 0x81, 0x82 and 0x83, respectively.
'The decimal equivalent of the hex values are 128, 129, 130 and 131.
'The next commands can be sent from a program in motor 1 to
'Motor 2:
PRINT(#130,"SLEEP",#13) 'Cause channel 0 (RS-232) of motor 2 to SLEEP.
PRINT(#130,"WAKE",#13) 'Cause channel 0 (RS-232) of motor 2 to WAKE.
PRINT(#130,"SLEEP1",#13) 'Cause channel 1 (RS-485) of motor 2 to SLEEP.

'through channel 0 (RS-232).
PRINT(#130,"WAKE1",#13) 'Cause channel 1 (RS-485) of motor 2 to WAKE

'through channel 0 (RS-232).

'Assuming channel 1 (RS-485) is open on all motors with the
'OCHN command, the same commands can be sent with the PRINT1
'command:
OCHN(RS4,1,N,9600,1,8,C) 'Open ports 4 and 5 as RS-485 channel 1.
PRINT1(#130,"SLEEP",#13) 'Cause channel 0 (RS-232) of motor 2 to SLEEP.
PRINT1(#130,"WAKE",#13) 'Cause channel 0 (RS-232) of motor 2 to WAKE.
PRINT1(#130,"SLEEP1",#13) 'Cause channel 1 (RS-485) of motor 2 to SLEEP.
PRINT1(#130,"WAKE1",#13) 'Cause channel 1 (RS-485) of motor 2 to WAKE.
END

RELATED COMMANDS:

ECHO1 Echo Incoming Data on Communications Port 1 (see page 406)
ECHO_OFF1 Turn Off Echo on Communications Port 1 (see page 409)
SLEEP Ignore Incoming Commands on Communications Port 0 (see page 744)
WAKE Wake Communications Port 0 (see page 837)
WAKE1 Wake Communications Port 1 (see page 839)

Part 2: Commands: SLEEP1

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 748 of 969

SLM(mode)
Software Limit Mode

APPLICATION: Motion control

DESCRIPTION: Gets or sets the soft limit mode

EXECUTION: Immediate

CONDITIONAL TO: Software limits enabled (SLE)

LIMITATIONS: N/A

READ/REPORT: RSLM

WRITE: Read/write

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: 0 or 1

TYPICAL VALUES: 0 or 1

DEFAULT VALUE: 1

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: SLM(0):3, a=SLM:3, RSLM:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The SLM command gets (reads) or sets the soft limit mode:
l SLM

Get soft limit mode (e.g., a=SLM)
l SLM(...)

Set soft limit mode

When setting the soft limit, it can be made to trigger a flag only (not cause a fault) or to trigger the flag
and cause a fault:

l SLM (0)
Make a soft limit trigger the flag only; will not cause a fault

l SLM (1)
Make a soft limit trigger the flag and cause a fault (default mode)

As an alternative to hardware limits connected to the limit inputs of the SmartMotor™, software limits
are "virtual" limit switches that offer distinct advantages. For example, in the event the actual position
of the motor strays beyond the desired region of operation, software limits can interrupt motion with a
fault. Further, the limit fault is directionally sensitive, so it will cause a fault if motion is commanded
beyond a limit that has been reached. For more details, see Limits and Fault Handling on page 207.

Part 2: Commands: SLM(mode)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 749 of 969

EXAMPLE: (Shows use of SLD, SLE, SLM, SLN and SLP)

EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
SLD 'Disable software limits
O=0 'Zero the encoder position CTR(0)
SLM(1) 'SLM(1) will make a soft limit trigger the flag AND

'cause a fault
'SLM(0) will make a soft limit trigger the flag AND
'will NOT cause a fault

SLN=-8000 'Set the negative software limit to -8000 encoder counts
SLP=8000 'Set the positive software limit to 8000 encoder counts
SLE 'Enable software limits
MP 'Set the SmartMotor to position mode
ADT=100 'Set a value for accel/decel
VT=20000 'Set a value for velocity target
PT=7000 G TWAIT 'Move to absolute position 7000 (no fault)
PT=-7000 G TWAIT 'Move to absolute position -7000 (no fault)
PT=9000 G TWAIT 'Move to absolute position 9000

'The motor will fault at position 8000 and set
'these bits:
' Bo(Motor is off) in Status Word 0
' Brs(Historical positive S/W limit) in Status Word 1

WAIT=2000 'Wait two seconds
ZS 'Clear errors
PT=0 G TWAIT 'Move to absolute position 0 (no fault)
END

RELATED COMMANDS:

SLD Software Limits, Disable (see page 740)
SLE Software Limits, Enable (see page 742)
R SLM(mode) Software Limit Mode (see page 748)
R SLN=formula Software Limit, Negative (see page 750)
R SLP=formula Software Limit, Positive (see page 752)

Part 2: Commands: SLM(mode)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 750 of 969

SLN=formula
Software Limit, Negative

APPLICATION: Motion control

DESCRIPTION: Gets (reads) or sets the left/negative software limit

EXECUTION: Immediate

CONDITIONAL TO: Software limits enabled (SLE)

LIMITATIONS: N/A

READ/REPORT: RSLN

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Encoder counts

RANGE OF VALUES: -2147483648 to 2147483647
NOTE: values at this extreme range may not trigger because they are
at the wrap point (see details)

TYPICAL VALUES: -1000000 to 0

DEFAULT VALUE: -2147483648 (effectively disabled)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: SLN:3=1234, a=SLN:3, RSLN:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The SLN command is used to get (read) or set the left/negative software limit:
l SLN

Get left/negative software limit
l SLN=...

Set left/negative software limit

The range of allowed values is from -2147483648 to 2147483647. However, this extreme range
should not be used because the soft limits may not trigger at the wrap point due to the mathematical
sign change. Further, it is not recommended to operate absolute-position applications near the wrap
point. This limitation is partly related to speed (encoder counts per PID sample).

Therefore, as a rough estimate, the range from -2147400000 to 2147400000 is more realistic.

NOTE: SLP should typically be set to a higher value than SLN.

As an alternative to hardware limits connected to the limit inputs of the SmartMotor™, software limits
are "virtual" limit switches that offer distinct advantages. For example, in the event the actual position
of the motor strays beyond the desired region of operation, software limits can interrupt motion with a

Part 2: Commands: SLN=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 751 of 969

fault. Further, the limit fault is directionally sensitive, so it will cause a fault if motion is commanded
beyond a limit that has been reached. For more details, see Limits and Fault Handling on page 207.

EXAMPLE: (Shows use of SLD, SLE, SLM, SLN and SLP)

EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
SLD 'Disable software limits
O=0 'Zero the encoder position CTR(0)
SLM(1) 'SLM(1) will make a soft limit trigger the flag AND

'cause a fault
'SLM(0) will make a soft limit trigger the flag AND
'will NOT cause a fault

SLN=-8000 'Set the negative software limit to -8000 encoder counts
SLP=8000 'Set the positive software limit to 8000 encoder counts
SLE 'Enable software limits
MP 'Set the SmartMotor to position mode
ADT=100 'Set a value for accel/decel
VT=20000 'Set a value for velocity target
PT=7000 G TWAIT 'Move to absolute position 7000 (no fault)
PT=-7000 G TWAIT 'Move to absolute position -7000 (no fault)
PT=9000 G TWAIT 'Move to absolute position 9000

'The motor will fault at position 8000 and set
'these bits:
' Bo(Motor is off) in Status Word 0
' Brs(Historical positive S/W limit) in Status Word 1

WAIT=2000 'Wait two seconds
ZS 'Clear errors
PT=0 G TWAIT 'Move to absolute position 0 (no fault)
END

RELATED COMMANDS:

SLD Software Limits, Disable (see page 740)
SLE Software Limits, Enable (see page 742)
R SLM(mode) Software Limit Mode (see page 748)
R SLP=formula Software Limit, Positive (see page 752)

Part 2: Commands: SLN=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 752 of 969

SLP=formula
Software Limit, Positive

APPLICATION: Motion control

DESCRIPTION: Gets (reads) or sets the right/positive software limit

EXECUTION: Immediate

CONDITIONAL TO: Software limits enabled (SLE)

LIMITATIONS: N/A

READ/REPORT: RSLP

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Encoder counts.

RANGE OF VALUES: -2147483648 to 2147483647
NOTE: values at this extreme range may not trigger because they are
at the wrap point. See details.

TYPICAL VALUES: 0 to 1000000

DEFAULT VALUE: 2147483647 (effectively disabled)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: SLP:3=1234, a=SLP:3, RSLP:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEP command. For details, see SCALEP(m,d) on page
726. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The SLP command is used to get (read) or set the right/positive software limit:
l SLP

Get right/positive software limit
l SLP=...

Set right/positive software limit

The range of allowed values is -2147483648 to 2147483647. However, this extreme range should not
be used because the soft limits may not trigger at the wrap point due to the mathematical sign change.
It is not recommended to operate absolute position applications near the wrap point. This limitation is
partly related to speed (encoder counts per PID sample). Therefore, as a rough estimate, the range
-2147400000 to 2147400000 is more realistic.

NOTE: SLP should typically be set to a higher value than SLN.

As an alternative to hardware limits connected to the limit inputs of the SmartMotor™, software limits
are "virtual" limit switches that offer distinct advantages. For example, in the event the actual position
of the motor strays beyond the desired region of operation, software limits can interrupt motion with a

Part 2: Commands: SLP=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 753 of 969

fault. Further, the limit fault is directionally sensitive, so it will cause a fault if motion is commanded
beyond a limit that has been reached. For more details, see Limits and Fault Handling on page 207.

EXAMPLE: (Shows use of SLD, SLE, SLM, SLN and SLP)

EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors
SLD 'Disable software limits
O=0 'Zero the encoder position CTR(0)
SLM(1) 'SLM(1) will make a soft limit trigger the flag AND

'cause a fault
'SLM(0) will make a soft limit trigger the flag AND
'will NOT cause a fault

SLN=-8000 'Set the negative software limit to -8000 encoder counts
SLP=8000 'Set the positive software limit to 8000 encoder counts
SLE 'Enable software limits
MP 'Set the SmartMotor to position mode
ADT=100 'Set a value for accel/decel
VT=20000 'Set a value for velocity target
PT=7000 G TWAIT 'Move to absolute position 7000 (no fault)
PT=-7000 G TWAIT 'Move to absolute position -7000 (no fault)
PT=9000 G TWAIT 'Move to absolute position 9000

'The motor will fault at position 8000 and set
'these bits:
' Bo(Motor is off) in Status Word 0
' Brs(Historical positive S/W limit) in Status Word 1

WAIT=2000 'Wait two seconds
ZS 'Clear errors
PT=0 G TWAIT 'Move to absolute position 0 (no fault)
END

RELATED COMMANDS:

SLD Software Limits, Disable (see page 740)
SLE Software Limits, Enable (see page 742)
R SLM(mode) Software Limit Mode (see page 748)
R SLN=formula Software Limit, Negative (see page 750)

Part 2: Commands: SLP=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 754 of 969

SNAME("string")
Set PROFINET Station Name

APPLICATION: Communications control

DESCRIPTION: Sets the PROFINET station name

EXECUTION: Immediate

CONDITIONAL TO: PROFINET versions of motors only.

LIMITATIONS: SmartMotor command length limit restricts the SNAME to 54
characters.

There are several important limitations imposed per PROFINET
standards, see below.

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: String

RANGE OF VALUES: Characters: 0 through 9, lowercase a through z; period (".") and hyphen
("-") with restrictions. See the Class 6 SmartMotor™ PROFINET Guide.

TYPICAL VALUES: axis1

DEFAULT VALUE: smc6dev01

FIRMWARE VERSION: 6.x (D/M) requires EPN option; no Class 5

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The SNAME command sets a unique PROFINET station name. For proper PROFINET operation, each
SmartMotor must have a unique station name set with the SNAME instruction.

The command setting is nonvolatile. Therefore, it will be remembered between power cycles.

There are specific limitations to the SNAME conventions imposed by PROFINET standards.

For more details, see the Class 6 SmartMotor™ PROFINET Guide.

EXAMPLE: (Change the nonvolatile station name for PROFINET within a user program)

...
SNAME("mymotor1")
a=ETH(0)
IF(a&2)

Z 'Execute reset if Station Name changed
ENDIF
...

RELATED COMMANDS:

ETHCTL(function,value) Control Industrial Ethernet Network Features (see page 456)
IPCTL(function,"string") Set IP Address, Subnet Mask or Gateway (see page 515)

Part 2: Commands: SNAME("string")

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 755 of 969

SP2
Bootloader Version

APPLICATION: System

DESCRIPTION: The bootloader revision

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RSP2

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: -1, 0-127

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: a=SP2:3, RSP2:3

where ":3" is the motor address — use the actual address or a
variable

DETAILED DESCRIPTION:

The SP2 command returns a single value of the bootloader revision. This number can be used in a
program to inspect the firmware version. For example:

x=SP2

assigns the value of the bootloader revision to the variable x.

A report version of the command, RSP2, is also available.

EXAMPLE:
RSP2 5

RELATED COMMANDS:
R FW Firmware Version (see page 471)
RSP Report Sampling Rate and Firmware Revision (see page 710)
RSP1 Report Firmware Compile Date (see page 712)
RSP5 Report Network Card Firmware Version (see page 713)

Part 2: Commands: SP2

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 756 of 969

SP6
Serial Number

APPLICATION: System

DESCRIPTION: Reports the serial number of the motor

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RSP6

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x.4.58 (D/M); 6.x.2.37 (M), 6.4.2.x (D)

COMBITRONIC: a=SP6:3, RSP6:3

where ":3" is the motor address — use the actual address or a
variable

DETAILED DESCRIPTION:

The SP6 command returns a single value of the serial number. This number can be used in a program to
inspect the serial number. For example:

x=SP6

assigns the value of the serial number to the variable x.

A report version of the command, RSP6, is also available.

EXAMPLE:
RSP6 123456

RELATED COMMANDS:
R FW Firmware Version (see page 471)
RSP Report Sampling Rate and Firmware Revision (see page 710)
R SP2 Bootloader Version (see page 755)
RSP1 Report Firmware Compile Date (see page 712)
RSP5 Report Network Card Firmware Version (see page 713)

SP6

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 757 of 969

SQRT(value)
Integer Square Root

APPLICATION: Math function

DESCRIPTION: Gets (reads) the integer square root

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RSQRT(value)

WRITE: Read only

LANGUAGE ACCESS: N/A

UNITS: Positive integer

RANGE OF VALUES: Input: Positive integer 0 - 2147483647
Output: Positive integer 0 - 46340

TYPICAL VALUES: Input: Positive integer 0 - 2147483647
Output: Positive integer 0 - 46340

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

NOTE: For a floating-point version, see FSQRT(value) on page 469.

The SQRT command gets (reads) the integer square root of a variable or value:

=SQRT(x)

where x = any positive integer ≥0.

The integer square root of x is the greatest integer ≤ the square root of x. For example, if x is 6, the
integer square root is 2 because 2 is the greatest integer ≤ the square root of 6. Therefore, all inputs
for x from 4 through 8 will give the result 2; when x is 9 through 15, the result changes to 3.

EXAMPLE:
a=9 'Set variable a = 9
r=SQRT(4) 'Set variable r = SQRT(4)
RSQRT(4)
s=SQRT(6) 'Set variable s = SQRT(6)
RSQRT(6)
t=SQRT(8) 'Set variable t = SQRT(8)
RSQRT(8)
u=SQRT(a) 'Set variable u = SQRT(a)
RSQRT(a)
PRINT(r,", ",s,", ",t,", ",u,#13) 'Print value of each variable
END

Part 2: Commands: SQRT(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 758 of 969

Program output is:

2
2
2
3
2, 2, 2, 3

RELATED COMMANDS:
R FSQRT(value) Floating-Point Square Root (see page 469)

Part 2: Commands: SQRT(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 759 of 969

SRC(enc_src)
Source, Follow and/or Cam Encoder

APPLICATION: Motion control

DESCRIPTION: Set the input source for Follow and Cam modes

EXECUTION: Buffered until a G command is issued

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: -2,-1,0,1,2

TYPICAL VALUES: -2,-1,0,1,2

DEFAULT VALUE: 1

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: SRC(2):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The SRC(enc_src) command is used to select the input source used in Follow and Cam modes.

The SRC command allows the SmartMotor to use the many advanced following and camming functions
even without an external encoder input. For example, through the use of the SRC command either the
external encoder or a fixed-rate "virtual encoder" can be used as the input source to the cam. This
fixed-rate encoder also works through the Follow mode, so the actual rate into the cam can be set. For
more details, see Follow Mode with Ratio (Electronic Gearing) on page 140.

Refer to the next table for valid enc_src values.

Value of
enc_src Result

-2 -1 * internal time base at PID rate
-1 -1 * external encoder: MF0 or MS0
 0 Null (no counts, standstill)
 1 External encoder: MF0 or MS0
 2 Internal time base at PID rate

Part 2: Commands: SRC(enc_src)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 760 of 969

EXAMPLE: (Cam program example; uses virtual encoder)

CTE(1) 'Erase all EEPROM tables.
CTA(7,4000) 'Create 7-point table at each 4K encoder increment.
CTW(0) 'Add 1st point.
CTW(1000) 'Add 2nd point; go to point 1000 from start.
CTW(3000) 'Add 3rd point; go to point 3000 from start.
CTW(4000) 'Add 4th point; go to point 4000 from start.
CTW(1000) 'Add 5th point; go to point 1000 from start.
CTW(-2000) 'Add 6th point; go to point -2000 from start.
CTW(0) 'Add 7th point; return to starting point.

'Table has now been written to EEPROM.
SRC(2) 'Use the virtual encoder.
MCE(0) 'Force linear interpolation.
MCW(1,0) 'Use table 1 from point 0.
MFMUL=1 'Simple 1:1 ratio from virtual encoder.
MFDIV=1 'Simple 1:1 ratio from virtual encoder.
MFA(0) MFD(0) 'Disable virtual encoder ramp-up/

'ramp-down sections.
MFSLEW(24000,1) 'Table is 6 segments * 4000 encoder

'counts each.
'Specify the second argument as a 1 to
'force this number as the output total of
'the virtual encoder into the cam.

MFSDC(-1,0) 'Disable virtual encoder profile repeat.
MC 'Enter Cam mode.
G 'Begin move.
END

RELATED COMMANDS:

G Start Motion (GO) (see page 473)
MFR Mode Follow Ratio (see page 600)
R MFDIV=formula Mode Follow Divisor (see page 588)
R MFMUL=formula Mode Follow Multiplier (see page 598)
MSR Mode Step Ratio (see page 618)

Part 2: Commands: SRC(enc_src)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 761 of 969

STACK
Stack Pointer Register, Clear

APPLICATION: Program execution and flow control

DESCRIPTION: Reset user program subroutine return stack

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT VALUE: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The STACK command empties the queue of pending (GOSUB) RETURN addresses, clears active
interrupts from the stack (but new interrupt events remain pending), and resets any PAUSE
statements.

NOTE: Use DITR() or EITR() before the STACK command to stop any pending interrupt events from
reoccurring. Additionally, DITR() will prevent future calls.

In order to execute the RETURN program statement, the processor needs to be able to recall the
program address point where it should return. The "stack" is a region where these addresses are stored.

A maximum of nine address locations can be stored within the stack. This means that if a tenth GOSUB
is called before any intervening RETURN statements, the stack will overflow and the program execution
may fail. The stack region is managed using a pointer to the currently effective return address storage
location. The STACK command directly resets this pointer to its initial (starting) condition. By doing
this, the STACK command clears all RETURN addresses in the stack queue.

NOTE: Care should be taken when the STACK command is used. Issuing STACK will cause any
subsequent RETURN command to be ignored. Therefore, proper program flow, with GOTO
commands or otherwise, should be used to prevent a memory mapping error.

Because the GOSUB command may be issued serially to the SmartMotor, it may be possible to
overflow the stack regardless of the downloaded program code. The STACK command could also be
issued through serial communications to clear the stack and prevent overflow. However, that method is
not recommended because it would be difficult to know what line of code the motor may be running at
that time.

Part 2: Commands: STACK

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 762 of 969

EXAMPLE:
x=0 'Set variable x equal to zero
GOTO0 'Go directly to the C0 label
C10
PRINT(#13, "NO PROGRAM CRASH")
RETURN
END
'These commands intentionally call subroutines without RETURN commands
C0 x=x+1 PRINT("x=",x,#13) GOSUB1 'First GOSUB without return.
C1 x=x+1 PRINT("x=",x,#13) GOSUB2 'Second GOSUB without return.
C2 x=x+1 PRINT("x=",x,#13) GOSUB3 'Third GOSUB without return.
C3 x=x+1 PRINT("x=",x,#13) GOSUB4 'Fourth GOSUB without return.
C4 x=x+1 PRINT("x=",x,#13) GOSUB5 'Fifth GOSUB without return.
C5 x=x+1 PRINT("x=",x,#13) GOSUB6 'Sixth GOSUB without return.
C6 x=x+1 PRINT("x=",x,#13) GOSUB7 'Seventh GOSUB without return.
C7 x=x+1 PRINT("x=",x,#13) GOSUB8 'Eighth GOSUB without return.
C8 x=x+1 PRINT("x=",x,#13) GOSUB9 'Ninth GOSUB without return.
C9 x=x+1 PRINT("x=",x,#13) 'GOSUB10 'if this GOSUB is called,

'the program WILL crash!
STACK 'Reset internal stack, which
GOSUB10 'allows this GOSUB to execute without crashing the program.
PRINT(#13,"RETURN FROM GOSUB10 OK",#13)
END

Program output is:

x=1
x=2
x=3
x=4
x=5
x=6
x=7
x=8
x=9
x=10

NO PROGRAM CRASH
RETURN FROM GOSUB10 OK

The previous example does not show the preferred way to write code. It is provided to show where the
STACK command would be used to prevent program crashes.

Often, the STACK command is used after an error or motor-protection fault is detected. Then,
immediately after the STACK command, a RUN, END or GOTO command (located near the top of the
program) is issued to recover.

Part 2: Commands: STACK

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 763 of 969

RELATED COMMANDS:

END End Program Code Execution (see page 439)
GOSUB(label) Subroutine Call (see page 480)
GOTO(label) Branch Program Flow to a Label (see page 482)
PAUSE Pause Program Execution (see page 648)
RUN Run Program (see page 714)
RUN? Halt Program Execution Until RUN Received (see page 716)

Part 2: Commands: STACK

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 764 of 969

STDOUT=formula
Set Device Output

APPLICATION: Communications control

DESCRIPTION: Specify where report commands are printed

EXECUTION: Immediate

CONDITIONAL TO: Available serial ports and/or fieldbus options; see the next table

LIMITATIONS: For Class 5 motors, does not redirect PRINT, only reports;
for Class 6 motors, the PRINT command is redirected; see the next
table

READ/REPORT: N/A

WRITE: Write only

LANGUAGE ACCESS: Assignment

UNITS: Port number

RANGE OF VALUES: See the next table

TYPICAL VALUES: 0, 1 (Class 5 & 6 D-style)
0 (Class 5 M-style)
0, 8 (Class 6 M-style)

DEFAULT VALUE: 0 (Class 5 & 6 D-style, Class 5 M-style)
8 (Class 6 M-style)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The STDOUT command is used to select the motor output channel for report commands.

Motor
type

Com 0
type

Com 1
type

Com 8
type

STDOUT=
default

STDOUT=
range of values

Report
to

PRINT()
to

PRINT0()
to

PRINT1()
to

PRINT8()
to

Class 5
D-style

RS-232 RS-485 N/A 0 0 (Com 0: RS-232 or RS-485
with external adapter,
except CDS7),
1 (Com 1: RS-485),
4 (CANopen encapsulation),
5 (Modbus encapsulation on
Com 0),
6 (Modbus encapsulation on
Com 1)

STDOUT
setting

Com 0 N/A Com 1 N/A

Class 6
D-style

RS-232 RS-485 USB 0 0 (Com 0: RS-232),
1 (Com 1: RS-485),
4 (CANopen encapsulation),
5 (Modbus encapsulation on
Com 0),
6 (Modbus encapsulation on
Com 1),
8 (USB)

STDOUT
setting

STDOUT
setting

Com 0 Com 1 USB

Class 5
M-style

RS-485 N/A N/A 0 0 (Com 0: RS-485),
4 (CANopen encapsulation),
5 (Modbus encapsulation on
Com 0)

STDOUT
setting

Com 0 N/A N/A N/A

Part 2: Commands: STDOUT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 765 of 969

Motor
type

Com 0
type

Com 1
type

Com 8
type

STDOUT=
default

STDOUT=
range of values

Report
to

PRINT()
to

PRINT0()
to

PRINT1()
to

PRINT8()
to

Class 6
M-style

RS-485 N/A USB 8 0 (Com 0: RS-485),
5 (Modbus encapsulation on
Com 0),
8 (USB)

STDOUT
setting

STDOUT
setting

Com 0 N/A USB

EXAMPLE:
OCHN(RS4,1,N,9600,1,8,C) 'Open ports 4 and 5 as RS-485 channel 1.
STDOUT=0 'Channel 0 is selected for output of report commands.
RPA 'The Absolute Position will be sent out channel 0 (RS-232).
STDOUT=1 'Channel 1 is selected for output of report commands.
RPA 'The Absolute Position will be sent out channel 1 (RS-485).
END

RELATED COMMANDS:

(none)

Part 2: Commands: STDOUT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 766 of 969

SWITCH formula
Switch, Program Flow Control

APPLICATION: Program execution and flow control

DESCRIPTION: Multiple choice branch for program execution

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: Can only be executed from within user program

REPORT VALUE: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The SWITCH command allows program flow control based on specific integer values of a formula, a
specific parameter or a variable.

The execution time is similar to the equivalent IF formula control block. Therefore, placing the most
likely CASE values at the top of the CASE list will yield faster program execution times.

At execution time, the program interpreter evaluates the SWITCH formula value and then tests the
CASE numbers for an equal value in the programmed order.

l If the SWITCH formula value does equal the CASE number, then program execution continues
with the command immediately after.

l If the SWITCH formula value does not equal the CASE number, then the next CASE statement is
evaluated.

l If the SWITCH formula value does not equal any CASE number, then the DEFAULT entry point is
used.

l If the SWITCH formula value does not equal any CASE number and there is no DEFAULT case,
then program execution passes through the SWITCH to the ENDS without performing any
commands.

If a BREAK is encountered, then program execution branches to the instruction or label after the ENDS
of the SWITCH control block. BREAK can be used to isolate CASEs. Without BREAK, the CASE number
syntax is transparent and program execution continues at the next instruction. That is, you will run into
the next CASE number code sequence.

Each SWITCH control block must have at least one CASE number defined plus one, and only one, ENDS
statement. SWITCH is not a valid terminal command — it is only valid within a user program.

Part 2: Commands: SWITCH formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 767 of 969

EXAMPLE:

Consider this code fragment:

SWITCH v
CASE 1

 PRINT(" v = 1 ",#13)
BREAK
CASE 2

 PRINT(" v = 2 ",#13)
BREAK
CASE 3

 PRINT(" v = -23 ",#13)
BREAK

DEFAULT
 PRINT("v IS NOT 1, 2 OR -23",#13)

BREAK
ENDS

The first line, SWITCH v, lets the SmartMotor™ know that it is checking the value of the variable v. Each
subsequent CASE begins the section of code that tells the SmartMotor what to do if v is equal to that
case.

EXAMPLE:
a=-3 'Assign a value
WHILE a<4

PRINT(#13,"a=",a," ")
SWITCH a 'Test the value

CASE 3
PRINT("MAX VALUE",#13)

BREAK
CASE -1 'Negative test values are valid
CASE -2 'Note no BREAK here
CASE -3

PRINT("NEGATIVE")
BREAK 'Note use of BREAK
CASE 0 'Zero test value is valid

PRINT("ZERO") 'Note order is random
DEFAULT 'The default case
PRINT("NO MATCH VALUE")

BREAK
ENDS 'Need not be numerical
a=a+1

LOOP
END

Part 2: Commands: SWITCH formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 768 of 969

Program output is:

a=-3 NEGATIVE
a=-2 NEGATIVE
a=-1 NEGATIVE
a=0 ZERO
a=1 NO MATCH VALUE
a=2 NO MATCH VALUE
a=3 MAX VALUE

RELATED COMMANDS:

BREAK Break from CASE or WHILE Loop (see page 331)
CASE formula Case Label for SWITCH Block (see page 360)
DEFAULT Default Case for SWITCH Structure (see page 388)
ENDS End SWITCH Structure (see page 443)

Part 2: Commands: SWITCH formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 769 of 969

T=formula
Torque, Open-Loop Commanded

APPLICATION: Motion control

DESCRIPTION: Torque value for Torque mode

EXECUTION: Buffered until a G command is issued

CONDITIONAL TO: Torque mode (MT)

LIMITATIONS: N/A

REPORT VALUE: RT

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Fraction of available torque

RANGE OF VALUES: -32767 to 32767

TYPICAL VALUES: -10000 and 10000

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: T:3=1234, a=T:3, RT:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The MT command enables Torque mode. In this mode, the motor is commanded to develop a specific
output effort, which is set by T=formula. Where the values are from -32767 to 32767, T=-32767
results in full torque in the negative direction. The encoder still tracks position and can still be read
with the PA variable, but the PID loop is off and the motor does not servo or run a trajectory.

In voltage commutation modes (MDT, MDE and MDS), MT sets the PWM signal to the drive at a fixed
percentage. For any given setting of T and no applied load, there will be a velocity at which the Back
EMF (BEMF) of the motor causes the acceleration to stop and the velocity to hold nearly constant.
Under the no load or static load conditions, the T command will control velocity. As the load increases,
the velocity decreases.

In current-control commutation, MDC, T= sets a request for current, which is proportional to torque.

CAUTION: There is no inherent speed-limiting behavior when using MDC mode.

Any previous faults must be cleared before issuing the G command.

When setting larger values of T, the effect can be an abrupt current spike. This is a result of the motor
requiring more current as it moves from a standstill and accelerates to speed. To reduce the impact,
the TS= command can be used to gently apply the current.

Part 2: Commands: T=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 770 of 969

EXAMPLE: (Increases torque, one unit every PID sample period, up to 8000 units)

MT 'Select torque mode
T=8000 'Final torque after the TS ramp that we want
TS=65536 'Increase the torque by 1 unit of T per PID sample
G 'Begin move

RELATED COMMANDS:

MT Mode Torque (see page 620)
R TS=formula Torque Slope (see page 786)

Part 2: Commands: T=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 771 of 969

TALK
Talk on Communications Port 0

APPLICATION: Communications control

DESCRIPTION: Motor restored to print on channel 0

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: TALK state

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

NOTE: This command is typically sent from a host rather than existing within a SmartMotor
program.

The TALK command restores the motor’s ability to print messages to the serial communication channel
0 if that ability was previously suppressed with the SILENT command. This command is typically used
after downloading a user program to a SmartMotor™ within a daisy chain. It could also be used to "un-
silence" a debug routine.

TALK may be issued from the terminal or within a user program. However, the command is typically
sent from a host.

EXAMPLE: (Shows the use of SILENT and TALK)

RUN? 'Wait here for the RUN command.
'Set a=1 in the Terminal window to
'allow print statements.

WHILE 1 'Endless loop
IF a==1 TALK ENDIF 'If variable a is set to 1, allow

'PRINT statements on channel 0.
IF a==0 SILENT ENDIF 'If variable a is set to 0, suppress

'PRINT statements on channel 0.
PRINT("Position=",PA,#13) 'Print the Actual Position.
WAIT=3000 'Wait 3 seconds.
LOOP 'Loop back to WHILE 1 command.
END

Part 2: Commands: TALK

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 772 of 969

RELATED COMMANDS:

ECHO Echo Incoming Data on Communications Port 0 (see page 403)
ECHO_OFF Turn Off Echo on Communications Port 0 (see page 407)
PRINT(...) Print Data to Communications Port (see page 669)
SILENT Silence Outgoing Communications on Communications Port 0 (see page 734)
SILENT1 Silence Outgoing Communications on Communications Port 1 (see page 736)
STDOUT=formula Set Device Output (see page 764)
TALK1 Talk on Communications Port 1 (see page 773)

Part 2: Commands: TALK

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 773 of 969

TALK1
Talk on Communications Port 1

APPLICATION: Communications control

DESCRIPTION: Motor restored to print on channel 0

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: TALK1 state

FIRMWARE VERSION: 5.0.x, 5.16.x or 5.32.x series (D); 6.4.2.x (D)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

NOTE: This command is typically sent from a host rather than existing within a SmartMotor
program.

The TALK1 command restores the motor’s ability to print messages to the serial communication
channel 1 if that ability was previously suppressed with the SILENT1 command. This command is
typically used after downloading a user program to a SmartMotor™ within a daisy chain. It could also be
used to "un-silence" a debug routine.

TALK1 may be issued from the terminal or within a user program. However, the command is typically
sent from a host.

EXAMPLE: (Shows use of SILENT1 and TALK1)

RUN? 'Wait here for the RUN command.
'Set a=1 in the Terminal window to allow print statements.

OCHN(RS4,1,N,9600,1,8,C) 'Open ports 4 and 5 as RS-485 channel 1.
WHILE 1 'Endless loop.
IF a==1 TALK1 ENDIF 'If variable a is set to 1, allow

'PRINT statements on channel 1.
IF a==0 SILENT1 ENDIF 'If variable a is set to 0, suppress

'PRINT statements on channel 1.
PRINT1("Position=",PA,#13) 'Print the actual position.
WAIT=3000 'Wait 3 seconds.
LOOP 'Loop back to WHILE 1 command.
END

Part 2: Commands: TALK1

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 774 of 969

RELATED COMMANDS:

ECHO1 Echo Incoming Data on Communications Port 1 (see page 406)
ECHO_OFF1 Turn Off Echo on Communications Port 1 (see page 409)
PRINT(...) Print Data to Communications Port (see page 669)
SILENT Silence Outgoing Communications on Communications Port 0 (see page 734)
SILENT1 Silence Outgoing Communications on Communications Port 1 (see page 736)
STDOUT=formula Set Device Output (see page 764)
TALK Talk on Communications Port 0 (see page 771)

Part 2: Commands: TALK1

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 775 of 969

TAN(value)
Tangent

APPLICATION: Math function

DESCRIPTION: Gets the tangent of the input value

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RTAN(value)

WRITE: N/A

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: Degrees input

RANGE OF VALUES: Input in degrees (floating-point): -90.0 to 90.0 (a larger value can be
used, but it is not recommended)
Output (floating-point): TAN theoretically approaches ±infinity at ±90
degrees

TYPICAL VALUES: Input in degrees (floating-point): -90.0 to 90.0 (a larger value can be
used, but it is not recommended)
Output (floating-point): TAN theoretically approaches ±infinity at ±90
degrees

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The TAN command takes an input angle in degrees and returns a floating-point tangent:

af[1]=TAN(arg)

where arg is in degrees, and may be an integer (i.e., a, aw[0]) or floating-point variable (i.e., af[0]).
Integer or floating-point constants may also be used (i.e., 23 or 23.7, respectively).

This command cannot have within the parenthesis: math operators, other parenthetical functions, or a
Combitronic request from another motor. For example, x=FABS(PA) is allowed, but x=FABS(PA:3) is not
allowed.

The result of this function is a floating-point type. If used in an equation, the operations in the equation
that are processed after this function are automatically promoted to a float. This is dependent on the
mathematical order of operations in the equation. As with other equations (e.g., x=a+b), the variable to
the left of "=" may be an integer variable to accept the result. However, the value will be truncated to
fit to that integer type. For example, the assignment "aw[0]=" will drop any fractional amount and
truncate the result to the range -32768 to 32767 (aw[0]=100.5 will report as 100, and aw[0]=40000.0
will report as -25536).

Part 2: Commands: TAN(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 776 of 969

Although the floating-point variables and their standard binary operations conform to IEEE-754 double
precision, the floating-point square root and trigonometric functions only produce IEEE-754 single-
precision results. For more details, see Variables and Math on page 198.

EXAMPLE:
af[0]=TAN(45.7) 'Set array variable = TAN(45.7)
Raf[0] 'Report value of af[0] variable
RTAN(45.7) 'Report TAN(45.7)
af[1]=78.3 '78.3 degrees
af[0]=TAN(af[1]) 'Variables may be put in the parenthesis
Raf[0]
END

Program output is:

1.024738192
1.024738192
4.828816413

RELATED COMMANDS:
R ACOS(value) Arccosine (see page 259)
R ASIN(value) Arcsine (see page 284)
R ATAN(value) Arctangent (see page 289)
R COS(value) Cosine (see page 372)
R SIN(value) Sine (see page 738)

Part 2: Commands: TAN(value)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 777 of 969

TEMP, TEMP(arg)
Temperature, Motor

APPLICATION: System

DESCRIPTION: Read motor temperature

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RTEMP, RTEMP(arg)
; supports the DS2020 Combitronic system

WRITE: Read only

LANGUAGE ACCESS: N/A

UNITS: Degrees Celsius

RANGE OF VALUES: -40 to 100 (approximately)
Report for DS2020 Combitronic system: 0 to 170

TYPICAL VALUES: 20 to 60

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: RTEMP(0):3, t=TEMP(0):3, af[0]=TEMP(0):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The TEMP command reads the motor temperature measured on the main drive board close to the
motor. The current temperature of the motor can be determined by assigning TEMP to a user variable.
The units are in degrees Celsius.

Some motors are equipped with thermistors inside the motor windings. These additional sensors can be
read using RTEMP(1), RTEMP(2) and RTEMP(3)

Report
Command

Assignment
to Integer

Assignment
to Floata Meaning

RTEMP, or RTEMP(0) t=TEMP or t=TEMP(0) af[0]=TEMP or af[0]=TEMP(0) Sensor on drive board
RTEMP(1) t=TEMP(1) af[0]=TEMP(1) Sensor in winding
RTEMP(2) t=TEMP(2) af[0]=TEMP(2) Sensor in winding
RTEMP(3) t=TEMP(3) af[0]=TEMP(3) Sensor in winding
a) When the value is assigned to a floating-point variable, resolution improves to 0.1 degrees C.

EXAMPLE:
t=TEMP
Rt 'response 30
PRINT(TEMP) 'response 31 - the motor is warming up

Part 2: Commands: TEMP, TEMP(arg)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 778 of 969

You can set the overheat temperature trip point with the command:

TH=formula

NOTE: A motor in the overheat condition will not turn on the servo even if commanded to do so.

If the motor were operating in Torque mode at TEMP>TH, the motor would shut off. It would not restart
until both the condition TH-TEMP>5 was true and the ZS command (or Zh) was reissued.

a=-5
WHILE a<=10

TH=TEMP+a
WAIT=4000
G
WAIT=4000
IF Bt

BREAK
ENDIF
a=a+1

LOOP
PRINT("MOTOR RESTARTED WHEN TH-TEMP=",a)
END

Program output is:

Restart announced at TH - TEMP = 6.

RELATED COMMANDS:
R Bh Bit, Overheat (see page 307)
R TH=formula Temperature, High Limit (see page 779)
Zh Reset Temperature Fault (see page 852)

Part 2: Commands: TEMP, TEMP(arg)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 779 of 969

TH=formula
Temperature, High Limit

APPLICATION: System; supports the DS2020 Combitronic system

DESCRIPTION: Set maximum allowable temperature (high limit)

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RTH

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: Degrees Celsius

RANGE OF VALUES: 0 to 85
DS2020 Combitronic system: 0 to 150

TYPICAL VALUES: 40 to 85

DEFAULT VALUE: 85

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: TH:3=60, a=TH:3, RTH:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

TH=formula sets the maximum allowable temperature (high limit) at which the SmartMotor is permitted
to continually servo. If the temperature goes above the TH value, the amplifier will turn off, Bh will be
set to 1, the motor off bit (Bo) will be set to 1, and the trajectory bit will be cleared to 0.

NOTE: The SmartMotor will reject any command to clear the Bh fault or start motion until the
temperature has fallen by 5 degrees Celsius.

Part 2: Commands: TH=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 780 of 969

EXAMPLE: (Demonstrates relationship between TEMP, TH, and Bh)

GOSUB10 'Report TEMP, TH, and Bh
a=5
b=TEMP
WHILE a>-5 'Vary TH about the current TEMP

TH=b-a
WAIT=2000
GOSUB10 'Observe Bh flag change from 0 to 1
a=a-1 'as TH is reduced to TEMP value and less

LOOP
END
C10

PRINT(#13,"Read the temperature ",b)
PRINT(#13,"Read TH overheat value ",TH)
PRINT(#13,"Read Bh overheat flag ",Bh)

RETURN

Program output is:

Read the temperature 0
Read TH overheat value 85
Read Bh overheat flag 0
Read the temperature 29
Read TH overheat value 24
Read Bh overheat flag 1
Read the temperature 29
Read TH overheat value 25
Read Bh overheat flag 1
Read the temperature 29
Read TH overheat value 26
Read Bh overheat flag 1
Read the temperature 29
Read TH overheat value 27
Read Bh overheat flag 1
Read the temperature 29
Read TH overheat value 28
Read Bh overheat flag 1
Read the temperature 29
Read TH overheat value 29
Read Bh overheat flag 1
Read the temperature 29
Read TH overheat value 30
Read Bh overheat flag 1
Read the temperature 29
Read TH overheat value 31
Read Bh overheat flag 1
Read the temperature 29
Read TH overheat value 32
Read Bh overheat flag 1
Read the temperature 29
Read TH overheat value 33
Read Bh overheat flag 1

Part 2: Commands: TH=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 781 of 969

RELATED COMMANDS:
R Bh Bit, Overheat (see page 307)
R TEMP, TEMP(arg) Temperature, Motor (see page 777)

Part 2: Commands: TH=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 782 of 969

TMR(timer,time)
Timer

APPLICATION: Program execution and flow control

DESCRIPTION: Gets (reads) or sets one of the timers

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: four unique timers available

READ/REPORT: RTMR(timer)

WRITE: Read/write

LANGUAGE ACCESS: N/A

UNITS: Milliseconds

RANGE OF VALUES: 0 to 2147483647 milliseconds (negative values not recommended)

TYPICAL VALUES: 0 to 2147483647 milliseconds (negative values not recommended)

DEFAULT VALUE: 0 milliseconds

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: TMR(0,1000):3, a=TMR(0):3, RTMR(0):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The TMR command gets (reads) or sets the timer:
l =TMR(timer)

Get a specific timer value, e.g., a=TMR(0) gets the time value from timer #0.
l TMR(timer,time) as a command

Set a timer ID# to a specific time value, e.g., TMR(0,1000) sets timer #0 to 1000 milliseconds.

The range of timer is from 0 to 3, and 8. (Timer 8 is a more recent feature and may not be available in
all firmware at this time.)

l Timers 0-3 are single-shot timers which run down to 0 each time the TMR command is called and
TMR must be called again for the next event to occur.

l Timer 8 allows for a timer that auto-reloads for interrupt generation on a consistent time-base.
TMR needs only to be called one time for endless timer event generation.

The range of time is from 0 to 2147483647. A negative number can be set; however, it is not
recommended.

The TMR command allows a count-down timer to be enabled. This is useful for triggering interrupt
routines. When a timer is running, the corresponding status bit in Status Word 4 will be set to the value
1. When it reaches zero, the status bit will revert to 0. This bit change can be used to trigger a
subroutine through the ITR() function. For more details on ITR(), see ITR
(Int#,StatusWord,Bit#,BitState,Label#) on page 517.

Part 2: Commands: TMR(timer,time)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 783 of 969

EXAMPLE:
EIGN(2) 'Disable Left Limit
EIGN(3) 'Disable Right Limit
ZS 'Clear faults
MP 'Set Position Mode
VT=500000 'Set Target Velocity.
AT=300 'Set Target Acceleration.
DT=100 'Set Target Deceleration.
TMR(0,1000) 'Set Timer 0 to 1s
ITR(0,4,0,0,20) 'Set Interrupt
EITR(0) 'Enable Interrupt
ITRE 'Enable all Interrupts
p=0 'Initialize variable p
O=0 'Set commanded and actual pos. to zero
C10 'Place a label
IF PA>47000 'Just before 12 moves

DITR(0) 'Disable Interrupt
TWAIT 'Wait till reaches 48000
p=0 'Reset variable p
PT=p 'Set Target Position
G 'Start motion
TWAIT 'Wait for move to complete
EITR(0) 'Re-enable Interrupt
TMR(0,1000) 'Re-start timer

ENDIF GOTO10 'Go back to label
END 'End (never reached)
C20 'Interrupt Subroutine Label

TMR(0,1000) 'Re-start timer
p=p+4000 'Increment variable p
PT=p 'Set Target Position
G 'Start Motion

RETURNI 'Return to main loop

EXAMPLE: (for pulse width)

. . .
WHILE 1>0

O=0 'Reset origin for move
PT=40000 'Set final position
G 'Start motion
WHILE PA<20000 'Loop while motion continues
LOOP 'Wait for desired position to pass
OUT(1)=0 'Set output lo
TMR(0,400) 'Use timer 0 for pulse width
TWAIT WAIT=1000 'wait 1 second

LOOP
. . .

RELATED COMMANDS:

ITR(Int#,StatusWord,Bit#,BitState,Label#) Interrupt Setup (see page 517)

Part 2: Commands: TMR(timer,time)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 784 of 969

TRQ
Torque, Real-Time

APPLICATION: Motion control

DESCRIPTION: Gets (reads) the real-time torque of the motor

EXECUTION: Next PID sample

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RTRQ

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: -32767 to 32767

TYPICAL VALUES: -32767 to 32767

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: RTRQ:3, x=TRQ:3
where ":3" is the motor address — use the actual address or a vari-
able

NOTE: Combitronic is supported in version 5.x.4.31 and later.

DETAILED DESCRIPTION:

The TRQ command is used to get (read) the real-time torque demand of the PID or MT mode of the
motor. In MT mode, the value reported will reflect any applied TS ramp.

NOTE: The value returned by TRQ (and RTRQ) will typically be one less than the T (torque) value due
to internal calculations. It may also be reduced in cases where the motor’s output is in limitation.
TRQ represents the output effort of the motor in both MT (torque mode) and servo modes (MV, MP,
etc.). Therefore, it provides a seamless transfer across those modes without causing a ripple or
bump in force to the load.

In other modes where the servo is enabled, the value of TRQ reports the demand of the PID loop.

EXAMPLE:

At the SMI terminal prompt, type these commands:

MT
T=3000
G

NOTE: In Torque mode, the new torque value does not take effect until a G command is issued.

Part 2: Commands: TRQ

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 785 of 969

Now use the TRQ command to read the real-time torque:

PRINT(TRQ)

Program output is:

2999

RELATED COMMANDS:

MT Mode Torque (see page 620)
R T=formula Torque, Open-Loop Commanded (see page 769)
R TS=formula Torque Slope (see page 786)

Part 2: Commands: TRQ

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 786 of 969

TS=formula
Torque Slope

APPLICATION: Motion control

DESCRIPTION: Gets (reads) or sets the torque slope

EXECUTION: Buffered until a G command is issued

CONDITIONAL TO: MT mode

LIMITATIONS: N/A

READ/REPORT: RTS

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: ((Units of T=) per sample)*65536

RANGE OF VALUES: -1 to 2147483647

TYPICAL VALUES: -1 (disable), or from 65536 to 1000000

DEFAULT VALUE: -1 (disabled)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: TS:3=1234, a=TS:3, RTS:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The TS command is used to get (read) or set the torque slope:
l =TS

Get torque slope setting
l TS=formula

Set torque slope

In Torque mode (MT), the TS= command allows new torque settings to be reached gradually rather than
instantly. Values may be from -1 to +2147483647. A value of -1 disables the slope feature and causes
new torque values to be reached immediately. A TS setting of 65536 will increase the output torque by
one unit per PID sample period.

EXAMPLE:
MT 'Select torque mode.
T=8000 'Final torque after the TS ramp that we want.
TS=65536 'Increase the torque by 1 unit of T per PID sample.
G 'Begin move

NOTE: In Torque mode, the new torque value does not take effect until a G command is issued.

Part 2: Commands: TS=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 787 of 969

After executing the above code, in the SMI software Terminal window, use the PRINT(TS) command to
get the current torque slope value:

PRINT(TS)
65536

RELATED COMMANDS:

MT Mode Torque (see page 620)
R T=formula Torque, Open-Loop Commanded (see page 769)

Part 2: Commands: TS=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 788 of 969

TSWAIT
Trajectory Synchronized Wait

APPLICATION: Program execution and flow control

DESCRIPTION: Suspends program execution during a synchronized move

EXECUTION: Immediate

CONDITIONAL TO: PTS or PRTS commands

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M), not ver. 5.32.x.x; 6.x (D/M), M requires EIP option

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The TSWAIT command pauses synchronized program execution. After a GS command has been issued
to start a synchronized move, the TSWAIT command can be used to pause program execution until the
move has been completed.

Note that a standard TWAIT command would not work in cases where the motor issuing the PTS() and
GS commands had a zero-length contribution to the total move. The TSWAIT command was designed to
handle this situation. For more details, see Synchronized Motion on page 179.

EXAMPLE:

The next example is a synchronized move in its simplest form. The code could be downloaded to either
motor 1 or 2, and it would work the same.

ADTS=100 'Set target synchronized accel/decel
VTS=10000 'Set target synchronized velocity
PTS(3000;1,4000;2) 'Set synchronized target positions
GS 'Start synchronized motion
TSWAIT 'Wait for synchronized motion to complete

RELATED COMMANDS:

PRTS(...) Position, Relative Target, Synchronized (see page 685)
PTS(...) Position Target, Synchronized (see page 692)
TWAIT(gen#) Trajectory Wait (see page 789)
WAIT=formula Wait for Specified Time (see page 835)

Part 2: Commands: TSWAIT

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 789 of 969

TWAIT(gen#)
Trajectory Wait

APPLICATION: Program execution and flow control

DESCRIPTION: Suspend command execution while in trajectory

EXECUTION: Immediate

CONDITIONAL TO: Position mode (MP) or torque ramp (MT, TS)

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The TWAIT command pauses program execution until the Busy Trajectory (Bt) status bit clears.
Normally, program execution and trajectory generation are completely independent. Regardless of what
the motion is doing, the processor executes code from the top down.

For example, if there were three consecutive motion commands, they would all execute sequentially.
Therefore, before the motor could even start to move, the last motion command would dominate.
However, using the TWAIT command allows each move command to occur and complete.

An alternative to TWAIT is:

WHILE Bt . . . LOOP

The TWAIT command and WHILE Bt construction terminate when the trajectory ends. Depending on the
application, you may wish to perform error checking to ensure that the move was properly completed
within a position-error range.

When in MT mode, the TWAIT command (and Bt bit) will also wait while a TS ramp is in progress.

The TWAIT command will wait for all trajectories to complete. Be aware that dual-trajectory operation
may not give the expected result. To access the specific trajectory (1 or 2), use the command form
TWAIT(1) or TWAIT(2). Also, note there are associated status bits in status word 7 (bits 0 and 8).

Part 2: Commands: TWAIT(gen#)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 790 of 969

EXAMPLE: (Subroutine shows use of DITR, EITR, TMR and TWAIT)

C10 'Place a label
IF PA>47000 'Just before 12 moves

DITR(0) 'Disable interrupt
TWAIT 'Wait till reaches 48000
p=0 'Reset variable p
PT=p 'Set target position
G 'Start motion
TWAIT 'Wait for move to complete
EITR(0) 'Re-enable interrupt
TMR(0,1000) 'Restart timer

ENDIF
GOTO10 'Go back to label

RELATED COMMANDS:
R Bt Bit, Trajectory In Progress (see page 345)
TSWAIT Trajectory Synchronized Wait (see page 788)
WAIT=formula Wait for Specified Time (see page 835)

Part 2: Commands: TWAIT(gen#)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 791 of 969

UIA
Motor Current

APPLICATION: System

DESCRIPTION: Gets (reads) the motor current applied to the windings

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RUIA
; supports the DS2020 Combitronic system

WRITE: Read only

LANGUAGE ACCESS: N/A

UNITS: milliamperes (mA)

RANGE OF VALUES: 0 to 2147483647
Report for DS2020 Combitronic system: -2147483648 to
2147483647

TYPICAL VALUES: 0 to 20000

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: RUIA:3; x=UIA:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The UIA command gets (reads) the motor current applied to the windings. The value is returned in
milliamperes. Therefore, divide by 1000 to convert it to amperes.

The value returned is a measure of current in the motor for thermal limiting. It should not be assumed it
is directly related to torque. This current is not a measurement of current from the supply lines; it is
measured in the drive bridge. Because the drive is a power-conversion device, the current from the
supply is not the same amount of current supplied to the motor windings.

Part 2: Commands: UIA

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 792 of 969

EXAMPLE:
i=400 'Motor current to check for
WHILE 1 'While forever

IF UIA>i 'If motor current in mAmps is > "i"
GOSUB(100)
WHILE UIA>i LOOP 'Prevent double trigger

ENDIF
LOOP
C100

IF UIA>(i*2) 'If current is twice as much
GOTO200 'bypass PRINT line below

ENDIF
PRINT("Current is above ",i,"mAmps",#13)

C200
PRINT("Current twice as high as it should be!",#13)

RETURN

RELATED COMMANDS:
R Bh Bit, Overheat (see page 307)
R TEMP, TEMP(arg) Temperature, Motor (see page 777)
R TH=formula Temperature, High Limit (see page 779)
R UJA Bus Voltage (see page 793)

Part 2: Commands: UIA

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 793 of 969

UJA
Bus Voltage

APPLICATION: System

DESCRIPTION: Gets (reads) the bus voltage applied to the motor's drive bridge

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: Class 5 hardware can measure up to 100 volts; the voltage supply
should not exceed 48 volts

READ/REPORT: RUJA
; supports the DS2020 Combitronic system

WRITE: Read only

LANGUAGE ACCESS: N/A

UNITS: millivolts (mV)

RANGE OF VALUES: 0 to 2147483647
Report for DS2020 Combitronic system: 0 to 4294967295

TYPICAL VALUES: 0 to 48000

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: RUJA:3; x=UJA:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The UJA command gets (reads) the bus voltage. The value returned is in millivolts. Therefore, divide the
value by 1000 to convert it to volts. For example, 24000 equals 24 volts.

The voltage is measured at the motor's drive bridge; it is not the "control" power supplied for the CPU
and electronics. If a DE motor is used, then this is an important difference. If a non-DE motor is used,
then both voltage supplies are effectively the same.

EXAMPLE:
VT=100000 'Set maximum velocity
PT=1000000 'Set final position
MP 'Set Position Mode
G 'Start motion
WHILE Bt 'Loop while motion continues

IF UJA<18500 'If voltage is below 18.5 Volts
OFF 'Turn motor off

ENDIF
LOOP 'Loop back to WHILE
END 'Required END

Part 2: Commands: UJA

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 794 of 969

RELATED COMMANDS:
R Bh Bit, Overheat (see page 307)
R TEMP, TEMP(arg) Temperature, Motor (see page 777)
R TH=formula Temperature, High Limit (see page 779)
R UIA Motor Current (see page 791)

Part 2: Commands: UJA

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 795 of 969

UO(...)=formula
User Status Bits

APPLICATION: System

DESCRIPTION: Sets one or more user status bits to specified values

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: None

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Depends on command format and motor model (see details)

TYPICAL VALUES: Depends on command format and motor model (see details)

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: UO(0):3=1, UO(W,0):3=22 or UO(W,0,15):3=22,
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The UO command sets one or more user status bits to the specified values. These bits are visible in
motor status words 12 and 13, which means they can also be used to trigger user program interrupts.

The UO command sets or clears the bit specified by bit#. If the formula's least-significant bit = 1, then
it's true (1); otherwise, it's false (0).

l UO(bit#)=formula
If bit 0 in the formula to the right of "=" is 1, then set bit# to a 1; otherwise, when it is even or
zero, clear the bit to 0.

l UO(W,word)=formula
Set the group of bits in the specified user word to the bitwise value from the formula.

l UO(W,word[,mask])=formula
Set the group of bits in the specified user word to the bitwise value from the formula. However,
leave the bits as is if they are bitwise set to 0 in the bitmask value.

User Word Associated
Status Word

User Bits
(individually addressed)

0, e.g., UO(W,0)=x 12, e.g., RW(12) or RB(12,x) 0-15, e.g., UO(15)=0
1, e.g., UO(W,1)=x 13, e.g., RW(13) or RB(13,x) 16-31, e.g., UO(31)=0

Part 2: Commands: UO(...)=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 796 of 969

User bits allow the programmer to keep track of events or status within an application program. Their
functions are defined by the application program in the SmartMotor. User bits are individually
addressed starting at 0 (zero based). Likewise, the user-bit words are addressed starting at 0 (zero
based).

A powerful feature of user bits is their ability to be addressed over networks such as Combitronic or
CANopen. This allows a hosting application to run an interrupt routine in the SmartMotor.

User bits can also be addressed as words, with or without a mask, to define the affected bits.

For more details, see User Status Bits on page 219.

EXAMPLE:
UO(0)=a&b 'Sets user bit to 1 if the bit-wise operation

'result is odd, else sets it to 0.

UO(W,1,7)=a 'Sets user bits 16, 17 and 18 to the value of
'the lower three bits in a.

RELATED COMMANDS:
R B(word,bit) Status Byte (see page 297)
ITR(Int#,StatusWord,Bit#,BitState,Label#) Interrupt Setup (see page 517)
UR(...) User Bits, Reset (see page 801)
US(...) User Bits, Set (see page 803)
R W(word) Report Specified Status Word (see page 833)

Part 2: Commands: UO(...)=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 797 of 969

UP
Upload Compiled Program and Header

APPLICATION: Program access

DESCRIPTION: Upload user EEPROM program with header and raw address inform-
ation through serial communications.

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The UP command causes a compiled program (runtime code) to be sent out through the serial port
where it was requested. The output from the UP command includes a header containing binary
information. It also contains special codes created by the compiler to handle program flow statements
like GOTO or WHILE LOOP, which are interspersed with the program text. In contrast, the UPLOAD
command returns the user program in readable text. For details, see UPLOAD on page 799.

CAUTION: The UP command is not permitted within a user program. Unexpected
behavior may result.

Procedure for using this command:

1. Issue the UP command.
2. IF ECHO is enabled, UP and a hex 20 will be returned.
3. 8 bytes of program data will be returned.
4. issue the hex 06 character to request more data.
5. The hex 06 character will be ECHOed if ECHO is enabled.
6. 8 bytes of program data will be returned.
7. Repeat step 5. If less than 8 bytes (including 0 bytes) of program data is remaining, then the end

of program was found. The program is ended with a hex character FF. If this character is seen, no
further program data is uploaded.

The UP or UPLOAD command does not terminate the current motion mode or trajectory, change motion
parameters such as EL, ADT, VT or KP, or alter the current value of the user variables.

Part 2: Commands: UP

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 798 of 969

The user program may continue running. However, it is recommended to END the program before
uploading to avoid communications conflicts with any report or PRINT statements.

The comments in the original source code do not appear when you UP or UPLOAD a program.
Comments are removed by the SMI software compiler, which is normal for any compiled computer
program.

When uploading a program from a SmartMotor in a daisy chain, use the SILENT and SLEEP commands
to prevent the other SmartMotors in the chain from issuing unexpected characters. After the upload is
complete, re-enable normal communications to those motors with the WAKE and TALK commands.

RELATED COMMANDS:

SILENT Silence Outgoing Communications on Communications Port 0 (see page 734)
SLEEP Ignore Incoming Commands on Communications Port 0 (see page 744)
TALK Talk on Communications Port 0 (see page 771)
UPLOAD Upload Standard User Program (see page 799)
WAKE Wake Communications Port 0 (see page 837)

Part 2: Commands: UP

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 799 of 969

UPLOAD
Upload Standard User Program

APPLICATION: Program access

DESCRIPTION: Upload user EEPROM through serial communications

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The UPLOAD command uploads only the text portion of the SmartMotor’s™ program as it is shown in
the original source file. The program is uploaded to the serial port where it was requested. All
comments and blank spaces are removed. In contrast, the UP command uploads the text along with all
of the binary information created by the compiler. For details, see UP on page 797.

CAUTION: The UPLOAD command is not permitted within a user program.
Unexpected behavior may result.

Procedure for using this command:

1. Issue the UPLOAD command.
2. IF ECHO is enabled, UPLOAD and a hex 20 will be returned.
3. 8 bytes of program data will be returned.
4. issue the hex 06 character to request more data.
5. The hex 06 character will be ECHOed if ECHO is enabled.
6. 8 bytes of program data will be returned.
7. Repeat step 5. If less than 8 bytes (including 0 bytes) of program data is remaining, then the end

of program was found. The program is ended with a hex character FF. If this character is seen, no
further program data is uploaded.

The UP or UPLOAD command does not terminate the current motion mode or trajectory, change motion
parameters such as EL, ADT, VT or KP, or alter the current value of the user variables.

The user program may continue running. However, it is recommended to END the program before
uploading to avoid communications conflicts with any report or PRINT statements.

Part 2: Commands: UPLOAD

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 800 of 969

The comments in the original source code do not appear when you UP or UPLOAD a program.
Comments are removed by the SMI software compiler, which is normal for any compiled computer
program.

When uploading a program from a SmartMotor in a daisy chain, use the SILENT and SLEEP commands
to prevent the other SmartMotors in the chain from issuing unexpected characters. After the upload is
complete, re-enable normal communications to those motors with the WAKE and TALK commands.

RELATED COMMANDS:

SLEEP Ignore Incoming Commands on Communications Port 0 (see page 744)
SILENT Silence Outgoing Communications on Communications Port 0 (see page 734)
TALK Talk on Communications Port 0 (see page 771)
UP Upload Compiled Program and Header (see page 797)
WAKE Wake Communications Port 0 (see page 837)

Part 2: Commands: UPLOAD

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 801 of 969

UR(...)
User Bits, Reset

APPLICATION: System

DESCRIPTION: Sets one or more user status bits to 0

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: None

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Depends on command format and motor model (see details)

TYPICAL VALUES: Depends on command format and motor model (see details)

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: UR(0):3 or UR(W,0):3 or UR(W,0,15):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The UR command sets one or more user status bits to 0. These bits are visible in motor status words
12 and 13, which means they can also be used to trigger user program interrupts.

The UR command sets or clears the bit specified by bit#. If the expression least-significant bit = 1, then
it's true (1); otherwise, it's false (0).

l UR(bit#)
Clear bit to a 0.

l UR(W,word)
Clear all bits in the specified word.

l UR(W,word[,mask])
Clear all bits in the specified word. However, leave bits as is if they are bitwise set to 0 in the
bitmask value.

User Word Associated
Status Word

User Bits
(individually
addressed)

0, e.g., UR(W,0) 12, e.g., RW(12) or RB(12,x) 0-15, e.g., UR(15)
1, e.g., UR(W,1) 13, e.g., RW(13) or RB(13,x) 16-31, e.g., UR(31)

Part 2: Commands: UR(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 802 of 969

User bits allow the programmer to keep track of events or status within an application program. Their
functions are defined by the application program in the SmartMotor. User bits are individually
addressed starting at 0 (zero based). Likewise, the user-bit words are addressed starting at 0 (zero
based).

A powerful feature of user bits is their ability to be addressed over networks such as Combitronic or
CANopen. This allows a hosting application to run an interrupt routine in the SmartMotor.

User bits can also be addressed as words, with or without a mask, to define the affected bits.

For more details, see User Status Bits on page 219.

EXAMPLE:
UR(19) 'RESET User Bit 3 in second User Bit Status Word

UR(W,0) 'RESET all User Bits in first User Status Word

UR(W,1,7) 'RESET User bits 16, 17 and 18

RELATED COMMANDS:
R B(word,bit) Status Byte (see page 297)
ITR(Int#,StatusWord,Bit#,BitState,Label#) Interrupt Setup (see page 517)
UO(...)=formula User Status Bits (see page 795)
US(...) User Bits, Set (see page 803)
R W(word) Report Specified Status Word (see page 833)

Part 2: Commands: UR(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 803 of 969

US(...)
User Bits, Set

APPLICATION: System

DESCRIPTION: Sets one or more user status bits to 1

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: None

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Depends on command format and motor model (see details)

TYPICAL VALUES: Depends on command format and motor model (see details)

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: US(0):3 or US(W,0):3 or US(W,0,15):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The US command sets one or more user status bits to 1. These bits are visible in motor status words
12 and 13, which means they can also be used to trigger user program interrupts.

The US command sets or clears the bit specified by bit#. If the expression least-significant bit = 1, then
it's true (1); otherwise, it's false (0).

l US(bit#)
Set bit to a 1.

l US(W,word)
Set all bits in the specified word.

l US(W,word[,mask])
Set all bits in the specified word. However, leave bits as is if they are bitwise set to 0 in the
bitmask value.

User Word Associated
Status Word

User Bits
(individually
addressed)

0, e.g., US(W,0) 12, e.g., RW(12) or RB(12,x) 0-15, e.g., US(15)
1, e.g., US(W,1) 13, e.g., RW(13) or RB(13,x) 16-31, e.g., US(31)

Part 2: Commands: US(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 804 of 969

User bits allow the programmer to keep track of events or status within an application program. Their
functions are defined by the application program in the SmartMotor. User bits are individually
addressed starting at 0 (zero based). Likewise, the user-bit words are addressed starting at 0 (zero
based).

A powerful feature of user bits is their ability to be addressed over networks such as Combitronic or
CANopen. This allows a hosting application to run an interrupt routine in the SmartMotor.

User bits can also be addressed as words, with or without a mask, to define the affected bits.

For more details, see User Status Bits on page 219.

EXAMPLE:
US(0) 'SET User Bit 0

US(W,0,a) 'SET first three User Bits when a=7

EXAMPLE: (Fault-handler subroutine, shows use of MTB and US)

C0 'Fault handler
MTB:0 'Motor will turn off with Dynamic

'braking, tell other motors to stop.
US(0):0 'Set User Status Bit 0 to 1 (Status

'Word 12 bit zero)
US(ADDR):0 'Set User Status Bit "address" to 1

'(Status Word 12 Bit "address")
RETURNI

RELATED COMMANDS:
R B(word,bit) Status Byte (see page 297)
ITR(Int#,StatusWord,Bit#,BitState,Label#) Interrupt Setup (see page 517)
UO(...)=formula User Status Bits (see page 795)
UR(...) User Bits, Reset (see page 801)
R W(word) Report Specified Status Word (see page 833)

Part 2: Commands: US(...)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 805 of 969

USB(arg)
USB Status Word

APPLICATION: Communications control

DESCRIPTION: Report the value of USB status word or assign it to a variable (see
details)

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: No USB= form of this command

READ/REPORT: RUSB

WRITE: Read only

LANGUAGE ACCESS: N/A

UNITS: See description

RANGE OF VALUES: See description

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 6.x (D/M); no Class 5

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The USB command is used to report the value of the specified USB status word or assign it to a
variable:

l x=USB(arg)
Assigns the value of the specified USB status word (specified by arg) to the variable x

l RUSB(arg)
Reports the value of the specified USB status word (specified by arg)

RUSB and x=USB are also permitted. In these cases, the value of arg is 0. Therefore, status word 0 is
reported or assigned to a variable.

Arg Requested
Information

Result Value
Range Meaning

0 Report connection state 0-32 0: Detached state

1: Attached state

2: Powered state

4: Default state

8: Address-pending state

16: Address state

32: Configured state

Part 2: Commands: USB(arg)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 806 of 969

EXAMPLE:
x=USB(0) 'Read the status of USB connection.

RELATED COMMANDS:

N/A

Part 2: Commands: USB(arg)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 807 of 969

VA
Velocity Actual

APPLICATION: Motion control

DESCRIPTION: Gets (reads) the actual (filtered) velocity

EXECUTION: Next PID sample

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT VALUE: RVA
; supports the DS2020 Combitronic system

WRITE: Read only

LANGUAGE ACCESS: N/A

UNITS: Scaled encoder counts/sample
Report for DS2020 Combitronic system: user increments / sec, see
FD=expression on page 461

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -3200000 to 3200000

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: RVA:3, x=VA:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEV command. For details, see SCALEV(m,d) on page
728. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The VA command gets (reads) the commanded velocity:

l =VA
Reads the actual velocity measured by the selected encoder. When ENC1 mode is chosen, the
external encoder is used.

The SmartMotor can be given a variety of motion commands. Under all types of motion, the actual
velocity (rotational) can be reported. This also applies to a back-driven motor when the drive is off.

The value reported is measured from the encoder, so it is based on real-world data rather than an
internal calculation. In order to filter the noise from this data, an infinite impulse response (IIR) digital
filter is applied. An IIR filter is similar to a moving average but includes all previous data points. The
significance of the previous points is diminished while new data points are added. The coefficient of
this filter can be adjusted with the VAC command for a longer or shorter time constant. There is a
trade-off between quick responsiveness and resolution. The default value for the filter constant should
work well for most applications.

Equations for Real-World Units:

Part 2: Commands: VA

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 808 of 969

Because the encoder resolution and sample rate can vary, the general equations shown in the next table
can be applied to converting the value of VA to various units of velocity. These equations force
floating-point calculations to avoid overflow and maintain resolution. They can be placed in a user
program, or they can be precalculated if the values of SAMP and RES are known (SAMP and RES can be
reported from the terminal using the RSAMP and RRES commands, respectively). SAMP can change if
the PID command is used. The value of RES can differ between motor models.

Output Equation
Radians/Sec =VA*PI*2*((SAMP/65536.0)/RES)
Encoder Counts/Sec =VA*(SAMP/65536.0)
Rev/Sec =VA*((SAMP/65536.0)/RES)
RPM =VA*60.0*((SAMP/65536.0)/RES)

A useful Scale Factor Multiplier code example, which also illustrates the use of af[], SAMP and RES, is
shown in RES on page 702 and SAMP on page 722.

EXAMPLE: (monitor acceleration ramp)

O=0 'Set up a velocity move
EL=4000
ADT=10
v=1000000
VT=v
MV
G
WHILE VA<v 'Monitor velocity while

IF Be 'Accelerating
BREAK 'Exit if position error

ENDIF
GOSUB5 'Report trajectory velocity

LOOP
GOSUB5 'Final report
END

C5
PRINT("PRINT VC = ")
PRINT(VC,#13) 'Get/print commanded velocity
PRINT("RVC = ")
RVC 'Report commanded velocity
WAIT=4000

RETURN

Program output is:

RUN
PRINT VC = 565
RVC = 1395
PRINT VC = 322065
RVC = 323155
PRINT VC = 643845
RVC = 644915
PRINT VC = 965605

Part 2: Commands: VA

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 809 of 969

RVC = 966675
PRINT VC = 1000000
RVC = 1000000

RELATED COMMANDS:

ENC0 Encoder Zero (Close Loop on Internal Encoder) (see page 432)
ENC1 Encoder Zero (Close Loop on External Encoder) (see page 433)
R FD=expression Resolution to Set Units of Position/Velocity/Acceleration (see page 461)
R RES Resolution (see page 702)
R SAMP Sampling Rate (see page 722)
VAC(arg) Velocity Actual (filter) Control (see page 810)
R VC Velocity Commanded (see page 815)
R VL=formula Velocity Limit (see page 818)
R VT=formula Velocity Target (see page 828)

Part 2: Commands: VA

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 810 of 969

VAC(arg)
Velocity Actual (filter) Control

APPLICATION: Motion control

DESCRIPTION: Sets the velocity filter

EXECUTION: Next PID sample

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT VALUE: None

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: Scaled encoder counts/sample

RANGE OF VALUES: 0 to 65535

TYPICAL VALUES: 0 to 65535

DEFAULT VALUE: 65000

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The VAC(arg) command sets the velocity filter used by the VA command, where arg is the value used to
set the time constant of the filter. This command controls the filter used to measure the speed
reported from the VA command (RVA, x=VA). A value of VAC(0) turns off this filtering so that VA
reports raw data that may be highly quantized (e.g., 0, 65536, 131072). Many applications require finer
resolution. Therefore, many samples are averaged in a digital filter.

The maximum value of VAC is 65535. However, the default value of 65000 should work for most
applications. Note that higher values provide a smoother filter at the cost of a longer settling time.
Therefore, use the default value unless a specific problem with the VA reading requires tuning it.

Refer to the next table for PID sample rate of 8000 Hz (set with the PID2 command).

Value
of VAC

Time
Constant

(PID samples)

Time
Constant
(msec)*

Cutoff
Frequency
-3 dB (Hz)*

0 Filter disabled (raw values immediately update VA)
50000 3.70 0.462 345
60000 11.3 1.42 112
65000 122 15.2 10.5
65400 481 60.2 2.65
65450 762 95.2 1.67
65500 1820 227 0.700

Part 2: Commands: VAC(arg)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 811 of 969

Value
of VAC

Time
Constant

(PID samples)

Time
Constant
(msec)*

Cutoff
Frequency
-3 dB (Hz)*

65510 2520 315 0.505
65520 4095 512 0.311
65525 5957 745 0.214
65530 10922 1365 0.117
65535 65536 8192 0.019

*Affected by PID rate

Notes for previous table:

1. Time Constant is the time required for a step response to reach 63.2% of the final settled value.
2. Cutoff Frequency is the frequency that is attenuated to -3 dB (70.7% the original value). Higher

frequencies will be further reduced; lower frequencies will remain stronger than 70.7%.
3. Time Constant (msec) and the Cutoff Frequency (Hz) are affected by the PID rate setting. The

table assumes 8000 Hz for the Class 5 motor.
4. Time Constant (PID samples) is not affected by the PID rate setting.

The "Time Constant (PID samples)" should not be construed as the number of averaged samples — it is
the number of samples required for an abrupt change (step function) to reach 70.7% of the final value.
For instance, refer to the second figure where a step function is approximated by setting a large value
for acceleration. The fourth bump has a time constant of 10922 samples. However, it is the same
physical move as the others. This means that it takes over one second for the reading to catch up to
70.7% of the actual speed of the motor.

Further, consider this example: the motor used for the next figures has actual cogging; the default
setting of VAC(65000) depicts the actual speed fluctuations.

l VAC(0) is dominated by quantization effects, which make the readings jump around by exactly
65536.

l VAC(65400) gives a highly averaged reading in this case. This can be useful in cases where you
need a stable reading and are willing to wait long enough for the speed to settle. Referring to the
previous table, this rolls off frequencies above 2.65 Hz. A good rule of thumb is to wait five
time-constants for a value to settle. In this case, the time constant is 60 msec. Therefore, you
would wait for 300 msec (60 x 5 = 300) to allow the value to settle to a valid reading.

To do this in a program:

1. Issue a G command.

2. Wait for the slew status bit to indicate the slew portion of a move.

3. Wait 300 msec for the speed to settle (to obtain a valid reading)

4. Read VA (with RVA or x=VA).

Part 2: Commands: VAC(arg)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 812 of 969

Examples of RVA readings with different settings of VAC()

Part 2: Commands: VAC(arg)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 813 of 969

Dramatic Example of Filter Causing Lag in Readings

EXAMPLE:
VAC(65000) 'Set VAC to default value.
VAC(65400) 'Set VAC to higher value to smooth out VA readings,

'resulting in slower update time.

Part 2: Commands: VAC(arg)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 814 of 969

EXAMPLE:

For this example, try changing the VAC() value while polling VA.

EIGN(W,0) 'Make all onboard I/O inputs
ZS 'Clear errors.
MV 'Set the SmartMotor to Velocity Mode
VAC(65400) 'Set time constant to 60 milliseconds
ADT=10 'Set a value for accel/decel
VT=200000 'Set a value for velocity target
G 'Start motion.
WHILE B(3,15)==0 LOOP 'Wait for velocity target reached bit to be 1
WAIT=300 'Wait 300 milliseconds
PRINT("Velocity=",VA,#13) 'Print the actual velocity
END

RELATED COMMANDS:
R VA Velocity Actual (see page 807)
R VC Velocity Commanded (see page 815)
R VL=formula Velocity Limit (see page 818)
R VT=formula Velocity Target (see page 828)

Part 2: Commands: VAC(arg)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 815 of 969

VC
Velocity Commanded

APPLICATION: Motion control

DESCRIPTION: Gets (reads) the commanded velocity

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT VALUE: RVC

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: (encoder counts / sample) * 65536

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -3200000 to 3200000

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: RVC:3, x=VC:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEV command. For details, see SCALEV(m,d) on page
728. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

When a velocity or position profile move is commanded, the velocity is ramped up and down according
to the settings of ADT=, AT=, or DT=, with the value of VT as the maximum value. At any one instant,
the calculated velocity of the motion profile can be reported. The sign of this reported velocity is
dependent on the direction. A velocity in the negative direction will be reported negative by this
command, while a positive velocity is reported as a positive value.

The VC command gets (reads) the commanded velocity:

l =VC
Reads the real-time commanded velocity combined from all trajectory generators.

NOTE: It is not the actual velocity (VA); it is the velocity calculated by the velocity profile at the
time the VC command is executed.

Equations for Real-World Units:

Because the encoder resolution and sample rate can vary, the general equations shown in the next table
can be applied to converting the value of VC to various units of velocity. These equations force
floating-point calculations to avoid overflow and maintain resolution. They can be placed in a user
program, or they can be precalculated if the values of SAMP and RES are known (SAMP and RES can be
reported from the terminal using the RSAMP and RRES commands, respectively). SAMP can change if
the PID command is used. The value of RES can differ between motor models.

Part 2: Commands: VC

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 816 of 969

Output Equation
Radians/Sec =VC*PI*2*((SAMP/65536.0)/RES)
Encoder Counts/Sec =VC*(SAMP/65536.0)
Rev/Sec =VC*((SAMP/65536.0)/RES)
RPM =VC*60.0*((SAMP/65536.0)/RES)

EXAMPLE: (monitor acceleration ramp)

O=0 'Set up a velocity move
EL=4000
ADT=10
v=1000000
VT=v
MV
G
WHILE VA<v 'Monitor velocity while

IF Be 'Accelerating
BREAK 'Exit if position error

ENDIF
GOSUB5 'Report trajectory velocity

LOOP
GOSUB5 'Final report
END

C5
PRINT("PRINT VC = ")
PRINT(VC,#13) 'Get/print commanded velocity
PRINT("RVC = ")
RVC 'Report commanded velocity
WAIT=4000

RETURN

Program output is:

RUN
PRINT VC = 565
RVC = 1395
PRINT VC = 322065
RVC = 323155
PRINT VC = 643845
RVC = 644915
PRINT VC = 965605
RVC = 966675
PRINT VC = 1000000
RVC = 1000000

Part 2: Commands: VC

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 817 of 969

RELATED COMMANDS:
R RES Resolution (see page 702)
R SAMP Sampling Rate (see page 722)
R VA Velocity Actual (see page 807)
R VT=formula Velocity Target (see page 828)

Part 2: Commands: VC

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 818 of 969

VL=formula
Velocity Limit

APPLICATION: Motion control

DESCRIPTION: Gets (reads) or sets the velocity limit

EXECUTION: Next PID sample

CONDITIONAL TO: N/A

LIMITATIONS: N/A

REPORT VALUE: RVL

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: Revolutions per minute (RPM)

RANGE OF VALUES: Class 5: 0 to 32767a

Class 6: 0 to 11000
If this range is exceeded, then VL is forced to the value 0

TYPICAL VALUES: 2000-10000

DEFAULT VALUE: Factory EEPROM setting (based on model)

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: VL:3=1234
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The VL command gets (reads) or sets the velocity limit in revolutions per minute (RPM):
l =VL

Read the current setting of the limit in RPM.
l VL=formula

Set the velocity fault limit in RPM.

NOTE: If the specified VL value exceeds 32767, this command will force the value to 0.

When the motor exceeds this speed (traveling clockwise or counterclockwise), the motor will fault and
motion stops. The speed detection is sensitive on every PID cycle. Therefore, be certain to set enough
margin between typical speeds and the shutdown speed to avoid easily tripping the fault.

This command helps provide a safety mechanism for high speeds and other situations that could
damage equipment. Of greatest concern are those from gravitational loads that could back drive the
motor.

aFirmware versions, such as older Class 5 or other models, may have a lower maximum value (11000).
Therefore, note that the range may be restricted based on your motor's firmware version.

Part 2: Commands: VL=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 819 of 969

EXAMPLE:
VL=3500 'Set Velocity Limit to 3500 RPM

RELATED COMMANDS:
R VA Velocity Actual (see page 807)
VAC(arg) Velocity Actual (filter) Control (see page 810)
R VC Velocity Commanded (see page 815)
R VT=formula Velocity Target (see page 828)

Part 2: Commands: VL=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 820 of 969

VLD(variable,number)
Variable Load

APPLICATION: EEPROM (Nonvolatile Memory)

DESCRIPTION: Sequentially load (transfer) user variables from data EEPROM

EXECUTION: Immediate

CONDITIONAL TO: EPTR= variable

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: See details

TYPICAL VALUES: See details

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The VST() and VLD() commands are used to store data (write) to and load data (read) from the internal
nonvolatile RAM (EEPROM), respectively. To read or write into this memory space, a memory address
location must first be specified with the EPTR=formula command, where formula requires a value
between 0 and 32767. Then use the VST() command to store the data or the VLD() command to
retrieve the data.

NOTE: Regardless of the size of the variable being accessed, the EPTR pointer always refers to
bytes.

To read in a series of values and assign these values to a sequence of user variables, use the VLD
(variable, number) command. The first parameter (variable) specifies the name of the user variable as
the start of a sequence of variables to load. The second parameter (number) specifies the number of
variables in the sequence of variables to store.

The command interpreter automatically notes the size of the defined variable as 1, 2 or 4 bytes long.

The value parameter is a count of the number of units to transfer. The number of bytes in this units
depends on the variable designated (refer to the next table). For example, VSD(aw[0],3) transfers three
words in sequence, where each word is two bytes. In this example, the total number of bytes stored is
six.

Variable Bytes*
ab[...] 1
aw[...] 2
al[...] 4

a-z, aa-zz, 4

Part 2: Commands: VLD(variable,number)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 821 of 969

Variable Bytes*
aaa-zzz

af[...] 8
*Required per each variable unit

When using the data EEPROM, it is important to note that the only the data values are stored. The
association of these values to any variable is not retained. Therefore, the only way to retrieve this data
is by keeping track of the EPTR value. Also, note that:

l If the data memory access is out of range, the syntax error flag (Bs) will be set.

l The user program will not continue until all bytes have been saved to EEPROM.

l When the EEPROM is busy with a read or write, status word 2, bit 13 will be indicated (1).

EXAMPLE: (Storing and retrieving a single 32-bit standard variable)

a=123456789 'Assign a value to the variable "a"
EPTR=100 'Set EEPROM pointer to 100
VST(a,1) 'Store into EEPROM (EPTR incremental

'to 104 automatically)
EPTR=100 'Set EEPROM to 100 again
VLD(b,1) 'Load from location 100 into the variable "b"
Rb 'Report result will be: 123456789

EXAMPLE: (Storing and retrieving a single 16-bit standard variable)

aw[0]=32000 'Assign a value to the 16-bit "array word"(0)
EPTR=100 'Set EEPROM pointer to 100
VST(aw[0],1) 'Store into EEPROM (EPTR incremental

'to 102 automatically)
EPTR=100 'Set EEPROM to 100 again
VLD(aw[1],1) 'Load from location 100 into the variable aw[1]
Raw[1] 'Report result will be: 32000

EXAMPLE: (Storing and retrieving a single 8-bit standard variable)

ab[0]=126 'Assign a value to the 8-bit "array byte"(0)
EPTR=100 'Set EEPROM pointer to 100
VST(ab[0],1) 'Store into EEPROM (EPTR incremental

'to 101 automatically)
EPTR=100 'Set EEPROM to 100 again
VLD(ab[1],1) 'Load from location 100 into the variable ab[1]
Rab[1] 'Report result will be: 126

Part 2: Commands: VLD(variable,number)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 822 of 969

EXAMPLE: (Storing and retrieving five consecutive 32-bit standard variables)

a=10 'Assign values to the variables "a" thru "e"
b=11
c=12
d=13
e=14
EPTR=100 'Set EEPROM pointer to 100
VST(a,5) 'EPTR will increment to 100+(4*5)=120

 '(4 bytes x 5 stored)
EPTR=100 'Set EEPROM to 100 again
VLD(v,5) 'Load from location 100 into the variable "b"
Rv 'Will report 10
Rw 'Will report 11
Rx 'Will report 12
Ry 'Will report 13
Rz 'Will report 14

EXAMPLE: (Storing seven 16-bit numbers into EEPROM)

i=10 'Using the variable "i" as index to an array variable
j=7 'Using the variable "j" as the number of sequential

'variables you wish to store
aw[i]=1111
aw[i+1]=2222
aw[i+2]=3333
aw[i+3]=4444
aw[i+4]=-1111
aw[i+5]=-2222
aw[i+6]=-3333
EPTR=3200 'Set EEPROM memory pointer location to 3200
VST(aw[i],j) 'Starting at address 3200, store "j" or seven

'sequential variables beginning with aw[i]
'into EEPROM

NOTE: The EEPROM value automatically increments for each value stored or read. The EPTR value
after the above execution will be set to 3200+(7 variable * 2 bytes each) or 3214.

EXAMPLE: (Retrieving same data into other variables for later use)

EPTR=3200
i=10 'Using the variable "i" as index to an array variable
j=7 'Using the variable "j" as the number of sequential

'Variables you wish to store
VLD(aw[r],s)
WHILE t<5

PRINT(#13,aw[t+r]," ")
t=t+1

LOOP
END 'Output is 111 222 333 444 -1111

Part 2: Commands: VLD(variable,number)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 823 of 969

RELATED COMMANDS:
R EPTR=formula EEPROM Pointer (see page 450)
VST(variable,number) Variable Save (see page 824)

Part 2: Commands: VLD(variable,number)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 824 of 969

VST(variable,number)
Variable Save

APPLICATION: EEPROM (Nonvolatile Memory)

DESCRIPTION: Sequentially store (transfer) user variables to data EEPROM

EXECUTION: Immediate

CONDITIONAL TO: EPTR= variable

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: See details

TYPICAL VALUES: See details

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The VST() and VLD() commands are used to store data (write) to and load data (read) from the internal
nonvolatile RAM (EEPROM), respectively. To read or write into this memory space, a memory address
location must first be specified with the EPTR=formula command, where formula requires a value
between 0 and 32767. Then use the VST() command to store the data or the VLD() command to
retrieve the data.

NOTE: Regardless of the size of the variable being accessed, the EPTR pointer always refers to
bytes.

To store a series of values into EEPROM, use the VST(variable, number) command. The first parameter
(variable) specifies the name of the first user variable of a sequence of variables containing the data to
write. The second parameter (number) specifies the number of variables in the sequence of variables to
store.

The command interpreter automatically notes the size of the defined variable as 1, 2 or 4 bytes long.

The value parameter is a count of the number of units to transfer. The number of bytes in this units
depends on the variable designated (refer to the next table). For example, VSD(aw[0],3) transfers three
words in sequence, where each word is two bytes. In this example, the total number of bytes stored is
six.

Variable Bytes*
ab[...] 1
aw[...] 2
al[...] 4

a-z, aa-zz, 4

Part 2: Commands: VST(variable,number)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 825 of 969

Variable Bytes*
aaa-zzz

af[...] 8
*Required per each variable unit

When using the data EEPROM, it is important to note that the only the data values are stored. The
association of these values to any variable is not retained. Therefore, the only way to retrieve this data
is by keeping track of the EPTR value. Also, note that:

l If the data memory access is out of range, the syntax error flag (Bs) will be set.

l The user program will not continue until all bytes have been saved to EEPROM.

l When the EEPROM is busy with a read or write, status word 2, bit 13 will be indicated (1).

EXAMPLE: (Storing and retrieving a single 32-bit standard variable)

a=123456789 'Assign a value to the variable "a"
EPTR=100 'Set EEPROM pointer to 100
VST(a,1) 'Store into EEPROM (EPTR incremental

'to 104 automatically)
EPTR=100 'Set EEPROM to 100 again
VLD(b,1) 'Load from location 100 into the variable "b"
Rb 'Report result will be: 123456789

EXAMPLE: (Storing and retrieving a single 16-bit standard variable)

aw[0]=32000 'Assign a value to the 16-bit "array word"(0)
EPTR=100 'Set EEPROM pointer to 100
VST(aw[0],1) 'Store into EEPROM (EPTR incremental

'to 102 automatically)
EPTR=100 'Set EEPROM to 100 again
VLD(aw[1],1) 'Load from location 100 into the variable aw[1]
Raw[1] 'Report result will be: 32000

EXAMPLE: (Storing and retrieving a single 8-bit standard variable)

ab[0]=126 'Assign a value to the 8-bit "array byte"(0)
EPTR=100 'Set EEPROM pointer to 100
VST(ab[0],1) 'Store into EEPROM (EPTR incremental

'to 101 automatically)
EPTR=100 'Set EEPROM to 100 again
VLD(ab[1],1) 'Load from location 100 into the variable ab[1]
Rab[1] 'Report result will be: 126

Part 2: Commands: VST(variable,number)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 826 of 969

EXAMPLE: (Storing and retrieving five consecutive 32-bit standard variables)

a=10 'Assign values to the variables "a" thru "e"
b=11
c=12
d=13
e=14
EPTR=100 'Set EEPROM pointer to 100
VST(a,5) 'EPTR will increment to 100+(4*5)=120

 '(4 bytes x 5 stored)
EPTR=100 'Set EEPROM to 100 again
VLD(v,5) 'Load from location 100 into the variable "b"
Rv 'Will report 10
Rw 'Will report 11
Rx 'Will report 12
Ry 'Will report 13
Rz 'Will report 14

EXAMPLE: (Storing seven 16-bit numbers into EEPROM)

i=10 'Using the variable "i" as index to an array variable
j=7 'Using the variable "j" as the number of sequential

'variables you wish to store
aw[i]=1111
aw[i+1]=2222
aw[i+2]=3333
aw[i+3]=4444
aw[i+4]=-1111
aw[i+5]=-2222
aw[i+6]=-3333
EPTR=3200 'Set EEPROM memory pointer location to 3200
VST(aw[i],j) 'Starting at address 3200, store "j" or seven

'sequential variables beginning with aw[i]
'into EEPROM

NOTE: The EEPROM value automatically increments for each value stored or read. The EPTR value
after the above execution will be set to 3200+(7 variable * 2 bytes each) or 3214.

EXAMPLE: (Retrieving same data into other variables for later use)

EPTR=3200
i=10 'Using the variable "i" as index to an array variable
j=7 'Using the variable "j" as the number of sequential

'Variables you wish to store
VLD(aw[r],s)
WHILE t<5

PRINT(#13,aw[t+r]," ")
t=t+1

LOOP
END 'Output is 111 222 333 444 -1111

Part 2: Commands: VST(variable,number)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 827 of 969

RELATED COMMANDS:
R EPTR=formula EEPROM Pointer (see page 450)
VLD(variable,number) Variable Load (see page 820)

Part 2: Commands: VST(variable,number)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 828 of 969

VT=formula
Velocity Target

APPLICATION: Motion control; supports the DS2020 Combitronic system

DESCRIPTION: Gets/sets the velocity target

EXECUTION: Buffered until a G command is issued

CONDITIONAL TO: MP, MV, G, PIDn (sample rate), encoder resolution.

LIMITATIONS: N/A

READ/REPORT: RVT

WRITE: Read/write

LANGUAGE ACCESS: Assignment, formulas and conditional testing

UNITS: (encoder counts / sample) * 65536
DS2020 Combitronic system: user increments / sec, see FD=e-
expression on page 461

RANGE OF VALUES: -2147483648 to 2147483647

TYPICAL VALUES: -3200000 to 3200000

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: VT:3=1234, a=VT:3, RVT:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

NOTE: This command is affected by the SCALEV command. For details, see SCALEV(m,d) on page
728. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The VT command is used to get (read) or set the velocity target:
l =VT

Read the current target velocity
l VT=frm

Set the target velocity

The VT command specifies a target velocity (specifies speed and direction) for velocity moves or a
slew speed for position moves. The value must be in the range -2147483648 to 2147483647. Note
that in position moves, this value is the unsigned speed of the move and does not imply direction. The
value set by the VT command only governs the calculated trajectory of MP and MV modes (position and
velocity). In either of these modes, the PID compensator may need to "catch up" if the actual position
has fallen behind the trajectory position. In this case, the actual speed will exceed the target speed. The
value defaults to zero, so it must be set before any motion can occur. The new value does not take
effect until the next G command is issued.

Part 2: Commands: VT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 829 of 969

Equations for Real-World Units:

Encoder resolution and sample rate can vary. Therefore, the general equations shown in the next table
can be used to convert the real-world units of velocity to a value for VT, where af[0] is already set with
the real-world unit value. These equations force floating-point calculations to avoid overflow and
maintain resolution. They can be placed in a user program, or they can be precalculated if the values of
SAMP and RES are known (SAMP and RES can be reported from the terminal using the RSAMP and
RRES commands, respectively). SAMP can change if the PID command is used. The value of RES can
differ between motor models.

Input as Value
in af[0] Equation

Radians/Sec VT=((af[0]*RES)/(PI*2.0*SAMP))*65536
Encoder Counts/Sec VT=(af[0]/(SAMP*1.0))*65536
Rev/Sec VT=((af[0]*RES)/(SAMP*1.0))*65536
RPM VT=((af[0]*RES)/(60.0*SAMP))*65536

A useful Scale Factor Multiplier code example, which also illustrates the use of af[], SAMP and RES, is
shown in RES on page 702 and SAMP on page 722.

EXAMPLE: (Shows use of ADT, PT and VT)

MP 'Set mode position
ADT=5000 'Set target accel/decel
PT=20000 'Set absolute position
VT=10000 'Set velocity
G 'Start motion
END 'End program

EXAMPLE: (Routine homes motor against a hard stop)

MDS 'Using Sine mode commutation
KP=3200 'Increase stiffness from default
KD=10200 'Increase damping from default
F 'Activate new tuning parameters
AMPS=100 'Lower current limit to 10%
VT=-10000 'Set maximum velocity
ADT=100 'Set maximum accel/decel
MV 'Set Velocity mode
G 'Start motion
WHILE EA>-100 'Loop while position error is small
LOOP 'Loop back to WHILE
O=-100 'While pressed, declare home offset
S 'Abruptly stop trajectory
MP 'Switch to Position mode
VT=20000 'Set higher maximum velocity
PT=0 'Set target position to be home
G 'Start motion
TWAIT 'Wait for motion to complete
AMPS=1023 'Restore current limit to maximum
END 'End program

Part 2: Commands: VT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 830 of 969

RELATED COMMANDS:
R FD=expression Resolution to Set Units of Position/Velocity/Acceleration (see page 461)
R RES Resolution (see page 702)
R SAMP Sampling Rate (see page 722)
R VA Velocity Actual (see page 807)
VAC(arg) Velocity Actual (filter) Control (see page 810)
R VC Velocity Commanded (see page 815)
R VL=formula Velocity Limit (see page 818)
VTS=formula Velocity Target, Synchronized Move (see page 831)

Part 2: Commands: VT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 831 of 969

VTS=formula
Velocity Target, Synchronized Move

APPLICATION: Motion control

DESCRIPTION: Sets the synchronized (path) velocity target

EXECUTION: Must be set before issuing PTS or PRTS; will not be effective after
that point

CONDITIONAL TO: PIDn

LIMITATIONS: Must not be negative; 0 is not valid

READ/REPORT: None

WRITE: Write only

LANGUAGE ACCESS: Assignment

UNITS: (encoder counts / sample) * 65536 in 2D or 3D space

RANGE OF VALUES: 0 to 2147483647

TYPICAL VALUES: 100000 to 3200000

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M), not ver. 5.32.x.x; 6.x (D/M), M requires EIP option

COMBITRONIC: N/A

DETAILED DESCRIPTION:

NOTE: This command requires a Combitronic-supported motor. Although this command does not
support Combitronic syntax, it does use Combitronic communication to pass information between
other motors.

NOTE: This command is affected by the SCALEV command. For details, see SCALEV(m,d) on page
728. For the list of SCALE-affected commands, see Commands Affected by SCALE on page 903.

The VTS command sets the maximum velocity target for synchronized moves. The motion along a
synchronized move is defined along the path in 2D or 3D space depending on the number of axes
defined by PTS or PRTS.

The VTS command is specific to defining the combined velocity of all contributing axes. For example, if
the move were to occur in an X-Y plane, the velocity set by VTS would not pertain to the just the X- or
Y-axis. Rather, it applies to their combined motion in the direction of motion.

The value of VTS defaults to zero. Therefore, it must be given a value before any motion can take place.

A useful Scale Factor Multiplier code example, which also illustrates the use of af[], SAMP and RES, is
shown in RES on page 702 and SAMP on page 722.

Part 2: Commands: VTS=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 832 of 969

EXAMPLE: (Shows use of ATS, DTS and VTS)

EIGN(W,0) 'Set all I/O as general inputs.
ZS 'Clear errors.
ATS=100 'Set synchronized acceleration target.
DTS=500 'Set synchronized deceleration target.
VTS=100000000 'Set synchronized target velocity.
PTS(500;1,1000;2,10000;3) 'Set synchronized target position

'on motor 1, 2 and 3.
GS 'Initiate synchronized move.
TSWAIT 'Wait until synchronized move ends.
END 'Required END.

RELATED COMMANDS:

ADTS=formula Acceleration/Deceleration Target, Synchronized (see page 265)
R HM_VTS=formula Homing Velocity Target to Switch (see page 498)
PID# Proportional-Integral-Differential Filter Rate (see page 654)
PRTS(...) Position, Relative Target, Synchronized (see page 685)
PRTSS(...) Position, Relative Target, Synchronized, Supplemental (see page 688)
PTS(...) Position Target, Synchronized (see page 692)
PTSS(...) Position Target, Synchronized Supplemental (see page 696)

Part 2: Commands: VTS=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 833 of 969

W(word)
Report Specified Status Word

APPLICATION: System

DESCRIPTION: Reports a specified status word

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RW(word)
; supports the DS2020 Combitronic system

WRITE: Read only

LANGUAGE ACCESS: Formulas and conditional testing

UNITS: N/A

RANGE OF VALUES: Input: 0-17
Output: 0-65535

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: RW(16):3, x=W(16):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The W(word) command reports the specified 16-bit status word. Refer to the next table. Also, see
Status Words - SmartMotor on page 921, and see Logical I/O User Read Commands Example for Class
5 M-style Motor on page 510.

Status
Word Purpose

0 Drive state and hardware limits; supports the DS2020 Combitronic system
reporting

1 Index capture and software limits; supports the DS2020 Combitronic system
reporting

2 Programs and communications; supports the DS2020 Combitronic system
reporting

3 PID and motion; supports the DS2020 Combitronic system reporting
4 Timers; supports the DS2020 Combitronic system reporting
5 Interrupts; supports the DS2020 Combitronic system reporting
6 Commutation and bus; supports the DS2020 Combitronic system reporting
7 Trajectory details

Part 2: Commands: W(word)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 834 of 969

Status
Word Purpose

8 Cam and interpolation user bits
9 SD card information (Class 6 M-style only)

10 RxPDO arrival notification
11 Reserved
12 User-controlled bits, word 0

(also used when DMX is active)
13 User-controlled bits, word 1

14-15 Reserved
16 I/O state, word 0
17 I/O state, word 1 (D-style with AD1 option only)

EXAMPLE:
ab[10]=W(16) 'Read the status of on-board I/O via

'controller's status word.

EXAMPLE:
IF (W(0)& 49152)==49152 'Look at both limits, bits 14 & 15,

'with bit mask 49152 = 32768 + 16384.
GOSUB100 'Execute subroutine.

ENDIF

C100 'Subroutine code here.
RETURN

RELATED COMMANDS:
R B(word,bit) Status Byte (see page 297)
R FAUSTS(x) Returns Fault Status Word (see page 459)
Z Total CPU Reset (see page 846)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: W(word)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 835 of 969

WAIT=formula
Wait for Specified Time

APPLICATION: Program execution and flow control

DESCRIPTION: Suspends user program execution for specified amount of time

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: milliseconds

RANGE OF VALUES: 0 to 2147483647

TYPICAL VALUES: 0 to 4000

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

WAIT=formula pauses program execution for a specified amount of time. Time is measured in
milliseconds (e.g., WAIT=1000 is one second).

EXAMPLE: (Dynamically change from Velocity mode to Torque mode)

MV 'Set motor to Velocity mode
VT=100000 'Set velocity to 100000
ADT=1000 'Set accel/decel to 1000
G 'Go (Start moving)
WAIT=2000 'Wait about 2 seconds
T=TRQ 'Set torque to the value the PID filter

'was commanding in MV
MT G 'Set motor to Torque mode
WAIT=2000 'Wait about 2 seconds
OFF 'Turn the motor off

Part 2: Commands: WAIT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 836 of 969

EXAMPLE: (Change commanded speed and acceleration)

O=0 'Set current position to zero
MP 'Set to position mode (required if currently

'in another mode)
VT=100000 'Set velocity to 100000
ADT=1000 'Set accel/decel to 1000
PT=1000000 'Set commanded absolute position to 1000000
G 'Go (Start moving)
WAIT=8000 'Wait about 8 seconds
VT=800000 'Set new velocity of 800000
ADT=500 'Set new accel/decel of 500
G 'Initiate change in speed and acceleration

RELATED COMMANDS:
R CLK=formula Millisecond Clock (see page 369)
R TMR(timer,time) Timer (see page 782)
TWAIT(gen#) Trajectory Wait (see page 789)

Part 2: Commands: WAIT=formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 837 of 969

WAKE
Wake Communications Port 0

APPLICATION: Communications control; supports the DS2020 Combitronic system

DESCRIPTION: Motor to execute all channel 0 communications commands

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: WAKE state

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

WAKE clears the SLEEP condition of a SmartMotor™. Except for the WAKE command, a SmartMotor
that has been put to SLEEP rejects all other commands received through the primary port
(communications channel 0).

WAKE is typically used by a host communicating over the serial channel to isolate individual motors.
This may be required when a program is being downloaded or motors are being assigned addresses. The
WAKE command can also be used in a program; however, this must be done with caution.

Part 2: Commands: WAKE

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 838 of 969

EXAMPLE: (Shows use of SLEEP, SLEEP1, WAKE and WAKE1)

'These commands can be sent from the SMI software Terminal
'window to address three SmartMotors:
'0SADDR1
'1ECHO
'1SLEEP
'0SADDR2
'2ECHO
'2SLEEP
'0SADDR3
'3ECHO
'0WAKE
'A host program other than SMI can send the same commands, but the
'prefixed addressing is different. The 0, 1, 2 and 3 are actually
'0x80, 0x81, 0x82 and 0x83, respectively.
'The decimal equivalent of the hex values are 128, 129, 130 and 131.
'The next commands can be sent from a program in motor 1 to
'Motor 2:
PRINT(#130,"SLEEP",#13) 'Cause channel 0 (RS-232) of motor 2 to SLEEP.
PRINT(#130,"WAKE",#13) 'Cause channel 0 (RS-232) of motor 2 to WAKE.
PRINT(#130,"SLEEP1",#13) 'Cause channel 1 (RS-485) of motor 2 to SLEEP.

'through channel 0 (RS-232).
PRINT(#130,"WAKE1",#13) 'Cause channel 1 (RS-485) of motor 2 to WAKE

'through channel 0 (RS-232).

'Assuming channel 1 (RS-485) is open on all motors with the
'OCHN command, the same commands can be sent with the PRINT1
'command:
OCHN(RS4,1,N,9600,1,8,C) 'Open ports 4 and 5 as RS-485 channel 1.
PRINT1(#130,"SLEEP",#13) 'Cause channel 0 (RS-232) of motor 2 to SLEEP.
PRINT1(#130,"WAKE",#13) 'Cause channel 0 (RS-232) of motor 2 to WAKE.
PRINT1(#130,"SLEEP1",#13) 'Cause channel 1 (RS-485) of motor 2 to SLEEP.
PRINT1(#130,"WAKE1",#13) 'Cause channel 1 (RS-485) of motor 2 to WAKE.
END

RELATED COMMANDS:

SLEEP Ignore Incoming Commands on Communications Port 0 (see page 744)
SLEEP1 Ignore Incoming Commands on Communications Port 1 (see page 746)
WAKE1 Wake Communications Port 1 (see page 839)

Part 2: Commands: WAKE

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 839 of 969

WAKE1
Wake Communications Port 1

APPLICATION: Communications control

DESCRIPTION: Motor to execute all channel 1 communications commands

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: WAKE1 state

FIRMWARE VERSION: 5.0.x, 5.16.x or 5.32.x series (D); 6.4.2.x (D)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

WAKE1 clears the SLEEP1 condition of a SmartMotor™. Except for the WAKE1 command, a
SmartMotor that has been put to SLEEP1 rejects all other commands received through the channel 1
serial port.

WAKE1 is typically used by a host communicating over the serial channel to isolate individual motors.
This may be required when a program is being downloaded or motors are being assigned addresses. The
WAKE1 command can also be used in a program; however, this must be done with caution.

Part 2: Commands: WAKE1

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 840 of 969

EXAMPLE: (Shows use of SLEEP, SLEEP1, WAKE and WAKE1)

'These commands can be sent from the SMI software Terminal
'window to address three SmartMotors:
'0SADDR1
'1ECHO
'1SLEEP
'0SADDR2
'2ECHO
'2SLEEP
'0SADDR3
'3ECHO
'0WAKE
'A host program other than SMI can send the same commands, but the
'prefixed addressing is different. The 0, 1, 2 and 3 are actually
'0x80, 0x81, 0x82 and 0x83, respectively.
'The decimal equivalent of the hex values are 128, 129, 130 and 131.
'The next commands can be sent from a program in motor 1 to
'Motor 2:
PRINT(#130,"SLEEP",#13) 'Cause channel 0 (RS-232) of motor 2 to SLEEP.
PRINT(#130,"WAKE",#13) 'Cause channel 0 (RS-232) of motor 2 to WAKE.
PRINT(#130,"SLEEP1",#13) 'Cause channel 1 (RS-485) of motor 2 to SLEEP.

'through channel 0 (RS-232).
PRINT(#130,"WAKE1",#13) 'Cause channel 1 (RS-485) of motor 2 to WAKE

'through channel 0 (RS-232).

'Assuming channel 1 (RS-485) is open on all motors with the
'OCHN command, the same commands can be sent with the PRINT1
'command:
OCHN(RS4,1,N,9600,1,8,C) 'Open ports 4 and 5 as RS-485 channel 1.
PRINT1(#130,"SLEEP",#13) 'Cause channel 0 (RS-232) of motor 2 to SLEEP.
PRINT1(#130,"WAKE",#13) 'Cause channel 0 (RS-232) of motor 2 to WAKE.
PRINT1(#130,"SLEEP1",#13) 'Cause channel 1 (RS-485) of motor 2 to SLEEP.
PRINT1(#130,"WAKE1",#13) 'Cause channel 1 (RS-485) of motor 2 to WAKE.
END

RELATED COMMANDS:

SLEEP Ignore Incoming Commands on Communications Port 0 (see page 744)
SLEEP1 Ignore Incoming Commands on Communications Port 1 (see page 746)
WAKE Wake Communications Port 0 (see page 837)

Part 2: Commands: WAKE1

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 841 of 969

WHILE formula
While Condition Program Flow Control

APPLICATION: Program execution and flow control

DESCRIPTION: Defines block of code that repeats while formula is true

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Formula that evaluates true or false

TYPICAL VALUES: Formula that evaluates true or false

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The WHILE command defines the start of a program loop that repeatedly executes as long as the
evaluated condition is true (not equal to zero). Each WHILE formula control block must be terminated
with a corresponding LOOP exit statement (see LOOP on page 553). WHILE control blocks may be
nested (see the second example).

NOTE: WHILE is not a valid terminal command; it is only valid within a user program.

The WHILE...LOOP control block looks like this:

WHILE {formula is true}
execute program command here

LOOP

The "formula" is evaluated the first time WHILE is encountered:
l If true (not zero), program execution is sent back to the WHILE by the corresponding LOOP

command, and the formula is evaluated again.
l If false (zero), program execution redirects to the code just below the LOOP command.

Any valid standard formula can be used. In particular, WHILE 1...LOOP is a standard "loop forever"
control block.

The formula may be similar to that used when assigning a value to a variable. However, it is strongly
recommended to always use a comparison operator such as:

== != < > <= >=

(for more information, see Math Operators on page 915).

For example, the formula a=(b+2)*3 would be applied to a WHILE as:

Part 2: Commands: WHILE formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 842 of 969

WHILE ((b+2)*3)!=0
LOOP

This is preferred to merely writing "WHILE (b+2)*3". The logical condition being tested is more obvious
when the comparison operators are used. It is also possible to combine multiple logical tests when the
comparison operators are used:

WHILE (a>(b+1))&(c!=d)
LOOP

This statement loops as long as "c" does not equal "d" and "a" is greater than "b+1".

If a BREAK command is encountered while executing a WHILE control block, program execution
unconditionally redirects to the program code after the LOOP statement. For details, see BREAK on
page 331.

EXAMPLE: (Routine stops motion if voltage drops)

EIGN(W,0) 'Disable hardware limits
ZS 'Clear faults
MDS 'Sine mode commutation
ADT=100 'Set maximum accel/decel
VT=100000 'Set maximum velocity
PT=1000000 'Set final position
MP 'Set Position mode
G 'Start motion
WHILE Bt 'Loop while motion continues
 IF UJA<18500 'If voltage is below 18.5 volts
 OFF 'Turn motor off
 ENDIF
LOOP 'Loop back to WHILE
END 'Required END

Part 2: Commands: WHILE formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 843 of 969

EXAMPLE: (Routine pulses output on a given position)

EIGN(W,0) 'Disable limits
ZS 'Clear faults
ITR(0,4,0,0,1) 'ITR(int#,sw,bit,state,lbl)
ITRE 'Enable all interrupts
EITR(0) 'Enable interrupt 0
OUT(1)=1 'Set I(0)/O B to output, high
ADT=100 'Set maximum accel/decel
VT=100000 'Set maximum velocity
MP 'Set Position mode
'****Main Program Body****
WHILE 1>0
 O=0 'Reset origin for move
 PT=40000 'Set final position
 G 'Start motion
 WHILE PA<20000 'Loop while motion continues
 LOOP 'Wait for desired position to pass
 OUT(1)=0 'Set output low
 TMR(0,400) 'Use timer 0 for pulse width
 TWAIT
 WAIT=1000 'Wait 1 second
LOOP
END
'****Interrupt Subroutine****
C1
 OUT(1)=1 'Set output high again
RETURNI

RELATED COMMANDS:

BREAK Break from CASE or WHILE Loop (see page 331)
IF formula Conditional Program Code Execution (see page 506)
LOOP Loop Back to WHILE Formula (see page 553)
SWITCH formula Switch, Program Flow Control (see page 766)
WHILE formula While Condition Program Flow Control (see page 841)

Part 2: Commands: WHILE formula

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 844 of 969

X
Decelerate to Stop

APPLICATION: Motion control; supports the DS2020 Combitronic system

DESCRIPTION: Slow motor motion to stop

EXECUTION: Immediate

CONDITIONAL TO: Mode dependent—the appropriate deceleration or ramp-down para-
meter must be set (see details)

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: X:3 or X(0):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The X command immediately abandons the current trajectory mode and causes the motor to slow to a
stop using the current deceleration value DT (in a servo mode) or TS (in torque mode).

NOTE: This is different from the S command, which does not consider the DT or TS value.

The X command leaves the motor in its current motion mode. Refer to the next table for the motion
modes and appropriate parameters to set.

Motion
Mode

Appropriate
Parameter

to Set
MV DT or ADT
MP DT or ADT

MFR MFD()
MSR MFD()
MC MFD()
MT TS
MH HM_ADT

Part 2: Commands: X

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 845 of 969

The X command halts the homing operation.For more details on SmartMotor homing operations, see the
SmartMotor Homing Procedures and Methods Application Note.

EXAMPLE:
EIGN(W,0)
ZS
ADT=100
VT=1000000
PT=5000000
G 'Start motion
WHILE Bt 'While trajectory is active

IF PA>80000 'Set a position to look for
X 'Decelerate to a stop
PRINT("Motion Stopped")

ENDIF
LOOP
END 'Required END

Program output is:

Motion Stopped

RELATED COMMANDS:

G Start Motion (GO) (see page 473)
S (as command) Stop Motion (see page 718)

Part 2: Commands: X

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 846 of 969

Z
Total CPU Reset

APPLICATION: Reset; supports the DS2020 Combitronic system

DESCRIPTION: Reset the motor to power-up condition

EXECUTION: Immediate

CONDITIONAL TO: Serial character transmit completion

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: Z:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The Z command will totally reset the SmartMotor™ as if power were removed and then restored.
Consequently, if there is a stored program, it will be run from the beginning. All modes of operation,
variables and status bits will be restored back to their defaults. Subsequent to a power up or reset, the
SmartMotor will:

1. Initialize the motion mode, status bits and variables.

2. Hold the serial port closed for approximately ¼ second.

3. Open and initialize the serial port.

4. Delay for ½ second. At the end of this time, the SmartMotor will examine the communications
buffer. The stored program will be aborted only if the specific characters "EE" are found.

5. Run the stored program (unless aborted as previously described).

After a program downloads, using the Z command is a good way to evaluate how your SmartMotor will
operate when powered on. The RUN command will execute the stored program, but it will not clear the
motor to its default condition. Therefore, the operation after the RUN command will not necessarily
mimic what would happen at power up. Using the Z command resets the motor to its power-on state.

CAUTION: The Z command should not be used at or near the top of a user
program. Doing so may cause a continuous and repetitive resetting of the CPU and
lock out the motor.

Part 2: Commands: Z

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 847 of 969

NOTE: If you get locked out and are unable to communicate with the SmartMotor, you may be able
to recover communications using the SMI software's Communication Lockup Wizard. For more
details, see Communication Lockup Wizard on page 31.

EXAMPLE:
Z 'Warning issuing this command will cause CPU reset immediately

RELATED COMMANDS:

RUN Run Program (see page 714)
RUN? Halt Program Execution Until RUN Received (see page 716)

Part 2: Commands: Z

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 848 of 969

Z(word,bit)
Reset Specified Status Bit

APPLICATION: Reset

DESCRIPTION: Resets the specified status bit

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: Not all status bits are resettable — will return error if not resettable
with Z()

READ/REPORT: None

WRITE: Write only

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: Input:
 word: 0-10
 bit: 0-15

TYPICAL VALUES: Input:
 word: 0-6
 bit: 0-15

DEFAULT VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: Z(2,4):3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

The Z(word,bit) command resets the specified status bit:

l Z(word,bit)
Clears specific status bit in the specific status word.

Refer to the next table, which shows the bits that can be reset with Z(word,bit).

Reset bit with Z(word,bit)?

Status
word

Bit
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

0 y y y y y y y y
1 y y y y y y
2 y y * y * y y
3 y y y y

Part 2: Commands: Z(word,bit)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 849 of 969

Reset bit with Z(word,bit)?

Status
word

Bit
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

4
5
6 y y y y
7
8
9 * * *

10 y y y y y
11 N/A

12-13 Use commands: UR, US, UO
14-15 N/A
16-17 Use I/O commands: OR, OS, OUT

* Class 6 only

EXAMPLE: (Subroutine prints and resets channel 0 errors)

C9
 IF CHN(0) 'If CHN0 != 0

IF CHN(0)&1
PRINT("BUFFER OVERFLOW")

ENDIF
IF CHN(0)&2

PRINT("FRAMING ERROR")
ENDIF
IF CHN(0)&4

PRINT("COMMAND SCAN ERROR")
ENDIF
IF CHN(0)&8

PRINT("PARITY ERROR")
ENDIF
Z(2,0) 'Reset CHN0 errors

ENDIF
RETURN

RELATED COMMANDS:
R B(word,bit) Status Byte (see page 297)
Z Total CPU Reset (see page 846)
ZS Global Reset System State Flag (see page 858)
R W(word) Report Specified Status Word (see page 833)

Part 2: Commands: Z(word,bit)

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 850 of 969

Za
Reset Overcurrent Flag

APPLICATION: Reset

DESCRIPTION: Resets the overcurrent flag (Ba)

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RBa

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

RESET VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

Za resets the overcurrent error flag, Ba, to zero. If the current violation still exists, Ba will again be set
to 1.

If the Ba flag is repeatedly set, there may be a problem such as incorrect motor size. Therefore, verify
the correct motor has been selected for the current task. For details on motor sizing, see the Moog
Animatics Product Catalog.

EXAMPLE:
IF Ba 'Test flag

PRINT("OVER CURRENT")
Za 'Reset flag

ENDIF
WAIT=4000
IF Ba 'Retest flag

PRINT("OVER CURRENT STILL IN EFFECT")
ENDIF

RELATED COMMANDS:
R Ba Bit, Peak Overcurrent (see page 301)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Za

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 851 of 969

Ze
Reset Position Error Flag

APPLICATION: Reset

DESCRIPTION: Resets the position error status bit (Be)

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RBe

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

RESET VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

Ze resets the position error flag, Be, to zero.

EXAMPLE:
IF Be 'Test flag

PRINT("Position Error")
Ze 'Reset flag

ENDIF

RELATED COMMANDS:
R Be Bit, Position Error Limit (see page 305)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Ze

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 852 of 969

Zh
Reset Temperature Fault

APPLICATION: Reset

DESCRIPTION: Resets an excessive temperature fault

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RBh

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The Zh command is used to reset an excessive temperature fault. The motor's present temperature
must be at least 5 degrees below the fault threshold (set by TH=, reported by RTH) for this command
to take effect.

EXAMPLE:
Zh 'Resetting Thermal Fault status bit

RELATED COMMANDS:
R Be Bit, Position Error Limit (see page 305)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Zh

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 853 of 969

Zl
Reset Historical Left Limit Flag

APPLICATION: Reset

DESCRIPTION: Resets the historical left-limit latch (Bl)

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RBl

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

RESET VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

Zl resets the historical left-limit flag, Bl, to zero. If you use Bl to detect the activation of the left limit,
be sure to reset it with Zl before rescanning for the bit.

EXAMPLE:
IF Bl 'Test flag

PRINT("Left Limit Latched")
Zl 'Reset flag

ENDIF

RELATED COMMANDS:
R Bl Bit, Left Hardware Limit, Historical (see page 316)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Zl

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 854 of 969

Zls
Reset Left Software Limit Flag, Historical

APPLICATION: Reset

DESCRIPTION: Reset historical left/negative software limit latch

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RBls

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

RESET VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The Zls command resets the left (negative) software limit latch, Bls, to zero. If you use Bls to detect
the activation of the left software limit, be sure to reset it with Zls before rescanning for the bit.

EXAMPLE:
IF Bls 'Test flag

PRINT("Left Software Limit Latched")
Zls 'Reset flag

ENDIF

RELATED COMMANDS:
R Bls Bit, Left Software Limit, Historical (see page 318)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Zls

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 855 of 969

Zr
Reset Right Limit Flag, Historical

APPLICATION: Reset

DESCRIPTION: Resets the historical right-limit latch (Br)

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RBr

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

RESET VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

Zr resets the historical right-limit flag, Br, to zero. If you use Br to detect the activation of the right
limit, be sure to reset it with Zr before rescanning for the bit.

EXAMPLE:
IF Br 'Test flag

PRINT("Right Limit Latched")
Zr 'Reset flag

ENDIF

RELATED COMMANDS:
R Br Bit, Right Hardware Limit, Historical (see page 329)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Zr

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 856 of 969

Zrs
Reset Right Software Limit Flag, Historical

APPLICATION: Reset

DESCRIPTION: Resets the historical right (positive) software limit latch (Brs)

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RBrs

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

RESET VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The Zrs command resets the right (positive) software limit latch, Brs, to zero. If you use Brs to detect
the activation of the right software limit, be sure to reset it with Zrs before rescanning for the bit.

EXAMPLE:
IF Brs 'Test flag

PRINT("Right Software Limit Latched")
Zrs 'Reset flag

ENDIF

RELATED COMMANDS:
R Brs Bit, Right Software Limit, Historical (see page 341)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Zrs

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 857 of 969

Zs
Reset Command Syntax Error Flag

APPLICATION: Reset

DESCRIPTION: Reset command scan error latch

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RBs

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

RESET VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

Zs resets the command error latch flag, Bs, to zero. The Zs command can be used with the RBs report
command to verify that the current firmware version recognizes what appears to be a valid command
and data packet.

EXAMPLE:
IF Bs 'Test flag

PRINT("Syntax Error")
Zs 'Reset flag

ENDIF

RELATED COMMANDS:
R Bs Bit, Syntax Error (see page 343)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Zs

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 858 of 969

ZS
Global Reset System State Flag

APPLICATION: Reset; supports the DS2020 Combitronic system

DESCRIPTION: Reset software system latches to power up state

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: N/A

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

RESET VALUE: N/A

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M); ds2020_sa_1.0.0_combican (DS2020)

COMBITRONIC: ZS:3
where ":3" is the motor address — use the actual address or a vari-
able

DETAILED DESCRIPTION:

Almost any event that occurs within a SmartMotor™ gets recorded in system flags. These flags can be
read as part of a program or a host inquiry. After a flag is read, it must be reset so it can record the
next event. ZS resets all of the latched bits in the S status byte, the W status word, and the status bits
such as Ba, Be, Bh, Bi, etc.

ZS performs the flag resets shown in the next table.

Status word and
bits

Z letter
command Description

Word 0, bit 3 - Reset bus voltage fault
Word 0, bit 4 Za Reset hardware current limit error/fault
Word 0, bit 5 Zh Reset temperature fault
Word 0, bit 6 Ze Reset position fault
Word 0, bit 7 Zv Reset velocity fault
Word 0, bit 9 - Reset dE/dt limit fault
Word 0, bit 12 Zr Reset historical right limit fault
Word 0, bit 13 Zl Reset historical left limit fault
Word 1, bit 2 - Reset rising edge capture on internal encoder

Part 2: Commands: ZS

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 859 of 969

Status word and
bits

Z letter
command Description

Word 1, bit 3 - Reset falling edge capture on internal encoder
Word 1, bit 6 - Reset rising edge capture on external encoder
Word 1, bit 7 - Reset falling edge capture on external encoder
Word 1, bit 12 Zrs Reset historical right software limit fault
Word 1, bit 13 Zls Reset historical left software limit fault
Word 2, bit 0 - Reset COM 0 errors and bits in RCHN(0)
Word 2, bit 1 - Reset COM 1 errors and bits in RCHN(1)
Word 2, bit 2 - Reset USB error (Class 6 only)
Word 2, bit 4 - Reset CAN errors and associated error bits in RCAN
Word 2, bit 6 - Reset Ethernet errors (Class 6 only)
Word 2, bit 14 Zs Reset user command syntax error
Word 3, bit 3 Zw Reset wraparound
Word 3, bit 11 - Reset modulo rollover flag
Word 6, bit 5 - Reset feedback fault
Word 6, bit 7 - Reset drive enable fault
Word 6, bit 13 - Reset low bus flag
Word 6, bit 14 - Reset high bus flag

NOTE: In cases where the motor has gone beyond the EL (error limit) but the trajectory generator is
still active with the previously calculated trajectory, the ZS command may not clear the Be bit. If
you are unable to reset Be with the ZS command, issue an OFF command before issuing the
ZS command, which clears the current commanded trajectory and allows the reset to complete.

EXAMPLE:
ZS
'Reset error and limit flag latches

RELATED COMMANDS:

Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
Za Reset Overcurrent Flag (see page 850)
Ze Reset Position Error Flag (see page 851)
Zh Reset Temperature Fault (see page 852)
Zl Reset Historical Left Limit Flag (see page 853)
Zls Reset Left Software Limit Flag, Historical (see page 854)
Zr Reset Right Limit Flag, Historical (see page 855)
Zrs Reset Right Software Limit Flag, Historical (see page 856)
Zs Reset Command Syntax Error Flag (see page 857)
Zv Reset Velocity Limit Fault (see page 860)
Zw Reset Encoder Wrap Status Flag (see page 861)

Part 2: Commands: ZS

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 860 of 969

Zv
Reset Velocity Limit Fault

APPLICATION: Reset

DESCRIPTION: Resets a velocity error fault

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RBv

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

DEFAULT VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

The Zv command is used to reset a velocity error fault.

EXAMPLE:
Zv 'Reset Velocity Fault status bit

RELATED COMMANDS:
R Bv Bit, Velocity Limit (see page 347)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Zv

P
a

r
t

 2
:

C
o

m
m

a
n

d
s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 861 of 969

Zw
Reset Encoder Wrap Status Flag

APPLICATION: Reset

DESCRIPTION: Resets the encoder wraparound event latch (Bw)

EXECUTION: Immediate

CONDITIONAL TO: N/A

LIMITATIONS: N/A

READ/REPORT: RBw

WRITE: N/A

LANGUAGE ACCESS: N/A

UNITS: N/A

RANGE OF VALUES: N/A

TYPICAL VALUES: N/A

RESET VALUE: 0

FIRMWARE VERSION: 5.x (D/M); 6.x (D/M)

COMBITRONIC: N/A

DETAILED DESCRIPTION:

Zw resets the encoder wraparound status flag, Bw, to zero. The SmartMotor™ tracks its position as 32-
bit data, so a valid position is from -2147483648 to +2147483647. If the motor moves out of this
range, the position will overflow or "wraparound".

This is provided for information purposes. Applications with continuous rotation (Velocity mode, Torque
mode, Relative Position mode, Cam mode, Follow mode) may experience wraparound. The motor will
continue to operate, but the user application may need to know this event occurred.

EXAMPLE: (Test for wraparound and then reset flag)

IF Bw 'Test flag
PRINT("Wraparound Occurred")
Zw 'Reset flag

ENDIF

RELATED COMMANDS:
R Bw Bit, Wrapped Encoder Position (see page 349)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
ZS Global Reset System State Flag (see page 858)

Part 2: Commands: Zw

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 862 of 969

Part 3: Example SmartMotor Programs

Part 3 of this guide provides examples of SmartMotor programs that can be used as reference material
for application development. The code examples can be copied and pasted into the SMI program editor.

Move Back and Forth 863

Move Back and Forth with Watch 863

Home Against a Hard Stop (Basic) 864

Home Against a Hard Stop (Advanced) 864

Home Against a Hard Stop (Two Motors) 865

Home to Index Using Different Modes 867

Maintain Velocity During Analog Drift 868

Long-Term Storage of Variables 869

Find Errors and Print Them 869

Change Speed on Digital Input 870

Pulse Output on a Given Position 870

Stop Motion if Voltage Drops 871

Camming - Variable Cam Example 872

Camming - Fixed Cam with Input Variables 873

Camming - Demo XY Circle 875

Chevron Traverse & Takeup 877

CAN Bus - Timed SDO Poll 879

CAN Bus - I/O Block with PDO Poll 880

CAN Bus - Time Sync Follow Encoder 883

Text Replacement in an SMI Program 891

Part 3: Example SmartMotor Programs

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 863 of 969

Move Back and Forth
This is a simple program used to set tuning parameters and create an infinite loop, which causes the
motor to move back and forth. Note the TWAIT commands that are used to pause program execution
during the moves.

EIGN(W,0) 'Disable hardware limits
ZS 'Clear faults
ADT=100 'Set maximum accel/decel
VT=1000000 'Set maximum velocity
MP 'Set Position mode
C10 'Place a label
 PT=100000 'Set position
 G 'Start motion
 TWAIT 'Wait for move to complete
 PT=0 'Set position
 G 'Start motion
 TWAIT 'Wait for move to complete
GOTO(10) 'Loop back to label 10
END 'Obligatory END (never reached)

Move Back and Forth with Watch
The next example is identical to the previous, except that instead of pausing program execution during
the move with the TWAIT, a subroutine is used to monitor for excessive load during the moves. This is
an important distinction — most SmartMotor programs should have the ability to react to events
during motion.

EIGN(W,0) 'Disable hardware limits
ZS 'Clear faults
ADT=100 'Set maximum accel/decel
VT=100000 'Set maximum velocity
MP 'Set Position mode
C1 'Place a label
 PT=100000 'Set position
 G 'Start motion
 GOSUB(10) 'Call wait subroutine
 PT=0 'Set position
 G 'Start motion
 GOSUB(10) 'Call wait subroutine
 GOTO(1) 'Loop back to label 1
END 'Obligatory END (never reached)
' ****Subroutine****
C10
 WHILE Bt 'Loop while trajectory in progress

IF ABS(EA)>100 'Test for excessive load
PRINT("Excessive Load",#13) 'Print warning

 ENDIF 'End test
 LOOP 'Loop back to While during motion
RETURN 'Return from subroutine

Part 3: Examples: Move Back and Forth

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 864 of 969

Home Against a Hard Stop (Basic)
Because the SmartMotor has the capability of lowering its own power level and reading its position
error, it can be programmed to gently feel for the end of travel. This provides a means to develop a
consistent home position subsequent to each power-up.

Machine reliability requires the elimination of potential failure sources. Eliminating a home switch and
its associated cable leverages SmartMotor benefits and improves machine reliability.

This program lowers the current limit, moves against a limit, looks for resistance and then declares and
moves to a home position located 100 counts from the hard stop.

MDS 'Using Sine mode commutation
KP=3200 'Increase stiffness from default
KD=10200 'Increase damping from default
F 'Activate new tuning parameters
AMPS=100 'Lower current limit to 10%
VT=-10000 'Set maximum velocity
ADT=100 'Set maximum accel/decel
MV 'Set Velocity mode
G 'Start motion
WHILE EA>-100 'Loop while position error is small
LOOP 'Loop back to WHILE
O=-100 'While pressed, declare home offset
S 'Abruptly stop trajectory
MP 'Switch to Position mode
VT=20000 'Set higher maximum velocity
PT=0 'Set target position to be home
G 'Start motion
TWAIT 'Wait for motion to complete
AMPS=1000 'Restore current limit to maximum
END 'End Program

Home Against a Hard Stop (Advanced)
Because the SmartMotor has the capability of lowering its own power level and reading its position
error, it can be programmed to gently feel for the end of travel. This provides a means to develop a
consistent home position subsequent to each power-up.

Machine reliability requires the elimination of potential failure sources. Eliminating a home switch and
its associated cable leverages SmartMotor benefits and improves machine reliability.

Similar to the previous example, the next program lowers the current limit, moves against a limit, looks
for resistance and then declares and moves to a home position just one encoder revolution from the
hard stop. However, this example provides a more sophisticated version of the previous method.

Part 3: Examples: Home Against a Hard Stop (Basic)

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 865 of 969

'===
'Class 5 Home To Hard Stop Example
EIGN(2) EIGN(3) ZS 'Bypass Overtravel Limits
'===
'Set up parameters

rr=-1 'Home Direction
vv=100000 'Home Speed
aa=1000 'Home Accel
ee=100 'Home Error Limit
tt=1500 'Home Torque Limit
hh=4000 'Home Offset

SILENT 'Remove or issue TALK to enable PRINT commands
GOSUB5 'RUN HOME ROUTINE
END
'===
'Home routine (Home to Hard Stop)
C5
PRINT("HOME MOTOR",#13)
VT=vv*rr 'Set Home Velocity
ADT=aa 'Set Home Accel/Decel
MV 'Set to Velocity mode
ZS 'Clear any prior Errors
T=tt*rr 'Preset Torque Values
G 'Begin move towards Hard Stop
MT
WHILE ABS(EA)<ee LOOP 'Loop, While Position Error within limit
PRINT("HIT HARD STOP",#13)
G 'Begin move
WAIT=50 'Wait 50 milliseconds
O=hh*rr 'Set Origin to home offset
PRINT("MOVING TO ZERO",#13)
MP PT=0 G TWAIT 'Set Motor to Zero
RETURN
'===

Home Against a Hard Stop (Two Motors)
Because the SmartMotor has the capability of lowering its own power level and reading its position
error, it can be programmed to gently feel for the end of travel. This provides a means to develop a
consistent home position subsequent to each power-up.

Machine reliability requires the elimination of potential failure sources. Eliminating a home switch and
its associated cable leverages SmartMotor benefits and improves machine reliability.

Similar to the previous examples, the next program lowers the current limit, moves against a limit,
looks for resistance, and then declares and moves to a home position just two encoder revolutions from
the hard stop. However, this example sets the home position for two parallel-axis motors with just one
program — motor 1 is the controller; motor 2 is the follower.

NOTE: The optional CAN bus and cables are required for SmartMotors linked in parallel.

Part 3: Examples: Home Against a Hard Stop (Two Motors)

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 866 of 969

'Class 5 Home To Hard Stop Example
'Note: CAN BUS REQUIRED FOR MOTORS LINKED IN PARALLEL
ECHO 'ECHO on to allow auto addressing downstream
a=1 'set default variable for address 1
WAIT=2000 'wait for boot up time differences
PRINT(#128,"a=a+1",#13) 'each motor prints downstream a=a+1
WAIT=2000 'wait for response time variations
ADDR=a 'Set motor address
WAIT=2000
IF CADDR!=ADDR 'Verify Can Address

CADDR=ADDR 'Set if not same as motor address
Z:0 'reset all motors to make can address take effect

ENDIF
WAIT=2000
'Motor 1 will be running ALL code.
EIGN(2) EIGN(3) ZS 'Bypass Over Travel Limits
 'Set up parameters

rr=-1 'Home Direction
ii=300 'Home current limit
vv=100000 'Home Speed
aa=1000 'Home Accel
ee=300 'Home Error Limit
tt=3000 'Home Torque Limit
hh=8000 'Home Offset
ll=8000 'Maximum Differential motion between motors

'(racking limit)
END
C7 'HOME TWO PARALLEL X AXIS MOTORS FROM MOTOR 1 ALONE
zzz=0 'Indicator for racking limit fault
O:0=0 'SET ORIGIN TO ZERO TO CHECK FOR RACKING
AMPS:0=ii 'limit AMPS
VT:0=vv*rr 'Set Home velocity
ADT:0=aa 'Set Home accel/decel
MV:0 'Velocity mode
G:0 'tell both to go
e=0 'Check for motor stopping
WHILE e!=3 'While both have not stopped, loop

qq=EA:2
IF ABS(qq)>ee MTB:2 e=e|1 ENDIF 'STOP follower
IF ABS(EA)>ee MTB e=e|2 ENDIF 'stop controller

ddd=PA-PA:2
IF ABS(ddd)>ll 'If racking limit exceeded

MTB:0 'Stop all motion
zzz=-1 'Set racking limit variable
RETURN 'Return out of there

ENDIF 'Stop the other to prevent racking
LOOP
T:0=tt*rr 'Preset Torque Values
MT:0 'Switch to Torque mode (hold against stop)
WAIT=50 'Wait 50 milliseconds
o=hh*rr 'Calculate home position
O:0=o 'Set Origin to home offset

Part 3: Examples: Home Against a Hard Stop (Two Motors)

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 867 of 969

AMPS:0=1023 'Set AMPS back to default
MP:0 'Set to Position mode
PT:0=0 'Set Target to Zero
G:0 'tell both to go to zero
WHILE B(0,2):2==1 LOOP 'Wait for X follower move to complete
TWAIT 'Wait for controller to get there
RETURN

Home to Index Using Different Modes
Each SmartMotor has an encoder with an index marker at one angle. This marker is useful for
establishing a repeatable start-up (home) position.

The next example uses two different modes to home the motor:
l The first method (C1) does this by slowly moving the motor shaft past the index marker and

decelerating to a stop, and then moving it back to align with the index marker.
l The second method (C2) does this by abruptly stopping and holding at the index marker.

EIGN(W,0,12) 'Assign Travel Limits as General Use Inputs
ZS 'Clear Any Status Bits
END
'==
C1 'Home to index, Relative Position Mode
'Note: This method will go past and move back to index
MP 'Set to Position mode
Ai(0) 'Arm Index Capture Register
ADT=3000 'Set Accel/Decel
VT=200000 'Set Velocity
PRT=RES+100 'Set Relative Distance to just past one rev
G TWAIT 'Go, wait until move is complete
PT=I(0) 'Set Target Position to index location
G TWAIT 'Go, wait until move is complete
O=0 'Set Position to Zero
RETURN
'==
C2 'Home to index, Velocity Mode to find it
'Note: This method does an abrupt stop and holds at index.
MV 'Set to Velocity mode
Ai(0) 'Arm Index Capture Register
ADT=3000 'Set Accel/Decel
VT=200000 'Set Velocity
G 'Go
WHILE Bi(0)==0 LOOP 'Wait to see index
X
PT=I(0) 'Set Target Position to index location
MP 'Switch to Position mode to hold at index mark
G TWAIT 'Go, wait until move is complete
O=0 'Set Position to Zero
RETURN
'==

Part 3: Examples: Home to Index Using Different Modes

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 868 of 969

Maintain Velocity During Analog Drift
This example causes the SmartMotor's velocity to track an analog input. Analog signals drift and dither,
so a dead-band feature has been added to maintain a stable velocity when the operator is not changing
the signal. There is also a wait feature to slow the speed of the loop.

EIGN(W,0) 'Disable hardware limits
KP=3020 'Increase stiffness from default
KD=10010 'Increase damping from default
F 'Activate new tuning parameters
ADT=100 'Set maximum accel/decel
MV 'Set to Velocity mode
d=10 'Analog dead band, 5000 = full scale
o=2500 'Offset to allow negative swings
m=40 'Multiplier for speed
w=10 'Time delay between reads
b=0 'Seed b
C10 'Label to create infinite loop
 a=INA(V1,3)-o 'Take analog 5 Volt FS reading
 x=a-b 'Set x to determine change in input
 IF x>d 'Check if change beyond dead band
 VT=b*m 'Multiplier for appropriate speed
 G 'Initiate new velocity
 ELSEIF x<-d 'Check if change beyond dead band
 VT=b*m 'Multiplier for appropriate speed
 G 'Initiate new velocity
 ENDIF 'End IF statement
 b=a 'Update b for prevention of hunting
 WAIT=w 'Pause before next read
GOTO10 'Loop back to label
END 'Obligatory END (never reached)

Part 3: Examples: Maintain Velocity During Analog Drift

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 869 of 969

Long-Term Storage of Variables
Each SmartMotor is equipped with a kind of solid-state disk drive, called EEPROM, reserved just for
long term data storage and retrieval. Data stored in the EEPROM will remain even after power cycling,
just like the SmartMotor's program itself. However, the EEPROM has limitations. It cannot be written
to more than about one million times without being damaged. That may seem like a lot, but if a write
command (VST) is used in a fast loop, this number can be exceeded in a short time. Therefore, it is the
responsibility of the programmer to see that the memory limitations are considered.

The next example is a subroutine to be called whenever a motion limit is reached. It assumes that the
memory locations were pre-seeded with zeros.

NOTE: This example is a subroutine. It would be called with the command GOSUB10.

C10 'Subroutine label
 EPTR=100 'Set EEPROM pointer in memory
 VLD (aa,2) 'Load 2 long variables from EEPROM
 IF Br 'If right limit, then...
 aa=aa+1 'Increment variable aa
 Zr 'Reset right limit state flag
 ENDIF
 IF Bl 'If left limit, then...
 bb=bb+1 'Increment variable bb
 Zl 'Reset left limit state flag
 ENDIF
 EPTR=100 'Reset EEPROM pointer in memory
 VST(aa,2) 'Store variables aa and bb
RETURN 'Return to subroutine call

Find Errors and Print Them
This code example looks at different error status bits and prints the appropriate error information to
the RS-232 channel.

NOTE: This example is a subroutine. It would be called with the command GOSUB10.

C10 'Subroutine label
 IF Be 'Check for position error
 PRINT("Position Error",#13)
 ENDIF
 IF Bh 'Check for over temp error
 PRINT("Over Temp Error",#13)
 ENDIF
 IF Ba 'Check for over current error
 PRINT("Over Current Error",#13)
 ENDIF
RETURN 'Return to subroutine call

Part 3: Examples: Long-Term Storage of Variables

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 870 of 969

Change Speed on Digital Input
SmartMotors have digital I/O that can be used for many purposes. In this example, a position move is
started, and the speed is increased by 50% if input 0 goes low.

EIGN(W,0) 'Disable hardware limit IO
KD=10010 'Changing KD value in tuning
F 'Accept new KD value
O=0 'Reset origin
ADT=100 'Set maximum accel/decel
VT=10000 'Set maximum velocity
PT=40000 'Set final position
MP 'Set Position mode
G 'Start motion
WHILE Bt 'Loop while motion continues
 IF IN(0)==0 'If input is low
 IF VT==10000 'Check VT so change happens once
 VT=12000 'Set new velocity
 G 'Initiate new velocity
 ENDIF
 ENDIF
LOOP 'Loop back to WHILE
END

Pulse Output on a Given Position
It is often necessary to fire an output when a certain position is reached. There are many ways to do
this with a SmartMotor.

This example sets I/O B as an output and makes sure that it comes up to 1 by presetting the output
value. After that, the program monitors the encoder position until it exceeds 20000. It pulses the
output and then continues monitoring the position.

Part 3: Examples: Change Speed on Digital Input

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 871 of 969

EIGN(W,0) 'Disable limits
ZS
ITR(0,4,0,0,1) 'ITR(int#,sw,bit,state,lbl)
ITRE
EITR(0)
OUT(1)=1 'Set I(0)/O B to output, high
ADT=100 'Set maximum accel/decel
VT=100000 'Set maximum velocity
MP 'Set Position mode
'****Main Program Body****
WHILE 1>0
 O=0 'Reset origin for move
 PT=40000 'Set final position
 G 'Start motion
 WHILE PA<20000 'Loop while motion continues
 LOOP 'Wait for desired position to pass
 OUT(1)=0 'Set output low
 TMR(0,400) 'Use timer 0 for pulse width
 TWAIT
 WAIT=1000 'Wait 1 second
LOOP
END
'****Interrupt Subroutine****
C1
 OUT(1)=1 'Set output high again
RETURNI

Stop Motion if Voltage Drops
The voltage, current and temperature of a SmartMotor are always known. These values can be used
within a program to react to changes.

In this example, the SmartMotor begins a move and then stops motion if the voltage falls below 18.5
volts.

EIGN(W,0) 'Disable hardware limits
ZS 'Clear faults
MDS 'Sine mode commutation
ADT=100 'Set maximum accel/decel
VT=100000 'Set maximum velocity
PT=1000000 'Set final position
MP 'Set Position mode
G 'Start motion
WHILE Bt 'Loop while motion continues
 IF UJA<18500 'If voltage is below 18.5 volts
 OFF 'Turn motor off
 ENDIF
LOOP 'Loop back to WHILE
END 'Obligatory END

Part 3: Examples: Stop Motion if Voltage Drops

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 872 of 969

Camming - Variable Cam Example
This example code shows the use of a variable cam (versus the "fixed" cam shown in the previous
program example).

When considering use of variable cams, consider these points:
l Whether using variable or fixed-length segments, the base 'cam controller' of the last point is

the significant part as far as executing a single cam cycle.
l For fixed, the programmer needs to multiply the number of segments by the segment length.

l For variable, it is in 'absolute' terms. However, the caveat is that the programmer should
typically start with the first point as CTW(0,0) — see the next code example. Otherwise, the
difference between that and the last point must be calculated in order to know the cam table
base length.

CTE(1) ' Erase all cams in flash
CTA(8,0) ' create 8-point cam (7 segments/intervals). No segment

' length defined (variable length segments defined on a
' point-by-point basis.

CTW(0,0) ' First cam point (best practice to set to 0,0 because all cam
' base and motor position relative to this).

CTW(100,8000) ' Motor position start +100, cam base start +8000
CTW(200,10000) ' Motor position start +200 (100 greater than previous

' point), cam base start + 10000 (relative 2000 greater
' than previous point).

CTW(300,14000) ' Peak motor position of 300.
CTW(300,24000)
CTW(200,28000) ' The second parameter (cam base) is always increasing.

' The difference from the previous value must be less
' than 65535.

CTW(100,30000)
CTW(0,32000) ' Motor returns to position 0, cam base 32000.

MFSLEW(32000,1) ' Run one cycle of the cam: base 0 through 32000.

MCW(1,0) ' Select cam table 1, point 0 as the start.
G ' Start the cam relative to the present motor position.

CAUTION: When writing a cam table to EEPROM, structure the program so that
the cam table is not frequently rewritten or written from a loop. Repeated erasing
and rewriting can burn bits and corrupt data. For details and sample code, refer to
Electronic Camming Notes and Best Practices on page 162.

Part 3: Examples: Camming - Variable Cam Example

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 873 of 969

Camming - Fixed Cam with Input Variables
This fixed-cam example uses variables for the values of various program inputs. This method allows
quick operational changes versus having the values "hard coded".

EIGN(W,0)
ZS
ADDR=1
ECHO
a=0 ' MFA
b=0 ' MFD
m=1 ' keep as 1 for ramp output to match cam input units.
p=8 ' points
ss=3000 ' Segment length
s=p-1 ' segments
sss=ss*s ' total cam input (base) length.
k=sss-(a+b) ' Choose slew length from what is left between the ramp up/down.
IF k<0 PRINT("Ramps too long",#13) END
ENDIF
GOSUB1 ' Write cam table
GOSUB2 ' Run cam operation
END

C1 ' Write cam table one time
IF q==123 RETURN ENDIF
CTE(1) ' Erase cam table in EEPROM
CTA(p,ss) ' Make sure the number of CTW commands = p.
CTW(0) 'CP=0 {cam pointer or cam index pointer}
CTW(100) 'CP=1
CTW(500) 'CP=2
CTW(2000) 'CP=3
CTW(2000) 'CP=4
CTW(5000) 'CP=5
CTW(1000) 'CP=6
CTW(0) 'CP=7
PRINT("Cam written",#13)
q=123

RETURN

C2
O=0
MFMUL=1
MFDIV=1
MCMUL=1
MCDIV=1
MCE(1) ' Enable Cam mode
SRC(2)
MFSLEW(k,1)' Get result in ramp output units to match the cam input units
MFSDC(-1,0)
MFA(a,m) ' m=1 for ramp output to match cam input units.
MFD(b,m) ' m=1 for ramp output to match cam input units.

Part 3: Examples: Camming - Fixed Cam with Input Variables

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 874 of 969

MC
MCW(1,0) ' Required to select table.
G
RETURN

CAUTION: When writing a cam table to EEPROM, structure the program so that
the cam table is not frequently rewritten or written from a loop. Repeated erasing
and rewriting can burn bits and corrupt data. For details and sample code, refer to
Electronic Camming Notes and Best Practices on page 162.

Part 3: Examples: Camming - Fixed Cam with Input Variables

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 875 of 969

Camming - Demo XY Circle
This program makes use of the single-shot (no repeat) MFSDC mode to construct a circle pattern.

EIGN(W,0)
ADDR=CADDR
ECHO

'Make a circle. Issue GOSUB1 to write cam for a circle with:
rrr=8000 'Radius in encoder counts (restricted to 0-32767).
ttt=4000 'Time to complete a complete circle in milliseconds

'(restricted to 0-32767).
ddd=360 'Degrees you want to run, signed value where positive is

'counter-clockwise (restricted to +/-3239).
aaa=0 'Angle to start at (restricted to 0-359).
END

C5
GOSUB(1) 'Write the cam.
GOSUB(0) 'Run the cam.

RETURN

C0 'Run the cam.
MC 'Cam mode.
xx=aaa
yy=(aaa-90)
IF yy<0

yy=yy+360 'Modulo sign correction.
ENDIF

IF CADDR==2 '***
'X axis
MCW(1,xx) 'Table 1, starting point.

ENDIF
IF CADDR==3 '***

'Y axis
MCW(1,yy) 'Table 1, starting point.

ENDIF
IF CADDR==1

END
ENDIF

MCE(2) 'Cam table enable.
SRC(2) 'Source set to virtual axis.

MFSDC(-1,0) 'Single shot no repeat.

ss=(ddd/360.0)*28800 '80 counts/controller*360 segments.
MFMUL=ss/8 '8000/8=1000 gives 1 second time base.
ss=ABS(ss) 'ABS because you may run reverse.

sss=ss/2 'Slew will be 1/2 total time base.

Part 3: Examples: Camming - Demo XY Circle

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 876 of 969

MFSLEW(sss,1)
sss=ss/4 'Accel and decel will be 1/2 that, or 1/4 time base.
MFA(sss,1)
MFD(sss,1)

MFDIV=ttt*2/3 'Divide by 2/3 factor because velocity is not constant
'throughout the move.

'Largest value in cam table is 32767.
'rrr is radius in counts.
'If it is 32767 or smaller, MCDIV=32767 and it is a straight ratio.
'If it is greater than that, then max MCDIV and ratio it the other way.
IF rrr>32767

MCMUL=32767
MCDIV=1073676289.0/rrr '1073676289=32767^2

ELSE
MCMUL=rrr
MCDIV=32767

ENDIF
G TWAIT
ENDIF
RETURN

C1 ' Write the cam.
WAIT=ADDR*500

'This writes the sine into EE memory.
'Normalized table that will be scaled in frequency and amplitude later.
'Table is +/-32767 in amplitude.

PRINT("Writing Tables. Please wait.",#13)
CTE(1) 'Erase all flash tables.
CTA(361,80) 'Table will have 361 points, each is 80 ticks

'(fixed-length data).

iii=0
WHILE iii<361

ppp=32767*SIN(iii)
CTW(ppp) 'Write a point into table

'Length of segment set by CTA command.
'PRINT("Point: ",iii,", position: ",ppp,#13)
iii=iii+1 'Update counter.

LOOP
PRINT("Done. Motor: ",ADDR,#13)

RETURN

CAUTION: When writing a cam table to EEPROM, structure the program so that
the cam table is not frequently rewritten or written from a loop. Repeated erasing
and rewriting can burn bits and corrupt data. For details and sample code, refer to
Electronic Camming Notes and Best Practices on page 162.

Part 3: Examples: Camming - Demo XY Circle

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 877 of 969

Chevron Traverse & Takeup
This program uses four parameters to create a "Chevron" type wrap. For more information on this type
of wrap, see Chevron Wrap Example on page 153.

It requires knowing:
l it requires knowing spool width and spool counts/rev, and

l that the cam must not get out of frame at each end.

Therefore, the traverse length must be an even multiple of the counts/rev. Otherwise, it will not work
correctly.

Note that you can add a dwell at either end to tweak the frame of reference for the return path to
prevent the material from falling into the grooves of the previous layer. That is the purpose of this
wrapping method.

'Traverse & Takeup Chevron Winding Pattern
' This sample program will perform a traverse & takeup operation to produce
' a "chevron" winding pattern. By winding in a chevron pattern, each layer
' crosses diagonally over the previous layer's position. The purpose of this
' pattern is to prevent the wound material from getting caught in the cracks
' of the previous layer.

EIGN(W,0)
ZS

'System parameters:
' NOTE: To maintain relationship of spool controller to cam, w/c should
' evenly divide with no remainder.
c=5000 'Controller (External) Encoder resolution (counts per 360 deg

' turn of spool).
w=10000 'Spool width distance in encoder counts of traversing follower motor.

'Chevron shape (pitch and amplitude)
n=1000 'Follower counts per full (360 deg) turn of controller spool (pitch).
nn=1000 'Follower counts per half (180 deg) turn of controller spool (amp-
litude).

'Prevent overshoot at high end of the spool.
IF nn>n

s=(w-(nn-n))/n*c 'calculating slew distance for MFSLEW
ELSE

s=(w/n)*c
ENDIF

cc=c/2 'Calculate 180 deg turn of controller spool.
ITR(1,7,10,0,1)
EITR(1)
ITRE
PAUSE
END

Part 3: Examples: Chevron Traverse & Takeup

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 878 of 969

C1
MCMUL=MCMUL*-1
RETURNI

C123 'Set up and run cam table.
O=0
MC
MFSDC(cc,1)

CTA(3,0,0) ' 3-point table, segment base defined with these points:
CTW(0,0) ' Controller == 0
CTW(nn,cc) ' Controller == 4000
CTW(n,c) ' Controller == 8000
MCW(0,0)

MCE(0) ' Linear cam interpolation (straight lines like true chevron).
'MCE(1) ' Spline cam interpolation (most likely never needed).
'MCE(2) ' Spline cam interpolation periodic (sine wave, arc motion).

'Angle of the winding pattern is determined by the cam table points,
' not MFMUL and MFDIV.
MFMUL=1
MFDIV=1

'MCMUL and MCDIV affect cam table. Changing this will change angle of
' winding and chevron shape.
MCMUL=1
MCDIV=1

SRC(2) 'This is for demo. Change to SRC(1) for external encoder
' from controller spool.

MFA(0,1) 'No ascend into motion.
MFD(0,1) 'No descend out of motion.
MFSLEW(s,1) 'Slew distance is width of spool in follower motor counts.

G 'Start moving.
MFMUL=-1
RETURN

Part 3: Examples: Chevron Traverse & Takeup

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 879 of 969

CAN Bus - Timed SDO Poll
This program makes use of one-shot SDO commands to get data while using SmartMotor timer
interrupts to poll continuously. This method is used where high-speed polling is not required.

NOTE: For high-speed polling, a PDO is used to do this automatically. For details, see CAN Bus -
I/O Block with PDO Poll on page 880.

'Using SmartMotor interrupts and timers to poll via SDO.
'Note PDO mapping is also available; this is just a simplified code example.

CANCTL(17,3) 'ENABLE CONTROLLER COMMANDS
ITR (3,4,3,0,300) 'WATCHDOG TIMER INTERRUPT (for polling CAN bus device)
EITR(3) 'ENABLE INTERRUPT 3
ITRE 'ENABLE ALL INTERRUPTS

TMR(3,30) 'Start timer 3 for 30 milliseconds

PAUSE
END
'==

C300 'CAN bus device has two data packets that will be loaded into x and y.
x=SDORD(1, 24592,0,2) 'Read 2 bytes from address 1,

'object 24592 (0x6179 hex)
'object 0x6010, sub-index 0.

e=CAN(4) 'Trap error codes if any.

y=SDORD(1, 24608,0,2) 'Read 2 bytes from address 1,
'object 24608 (0x6020 hex)
'object 0x6020, sub-index 0.

ee=CAN(4) 'Trap error codes if any.

IF (e|ee)==0 'Confirm the status of both SDO operations.
'Success if they are zero.

'The variables "x" and "y" now contain values from the CAN bus device.
ELSE

'Place error handling code here.
ENDIF
TMR(3,30) 'Start timer 3 again for 30 milliseconds.

'This means the data will be polled every 30 milliseconds.
RETURNI

Part 3: Examples: CAN Bus - Timed SDO Poll

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 880 of 969

CAN Bus - I/O Block with PDO Poll
This program communicates with a Softlink model RT133-3HF00-CAN I/O block. It uses high-speed
PDO polling based on the default mapping found in the .eds file. Also, the follower detects the baud
rate.

NOTE: This example uses high-speed PDO polling. For applications that do not require high-speed
polling, see CAN Bus - Timed SDO Poll on page 879.

' NOTES:
' - Using Softlink RT133-3HF00-CAN
' - Using the default PDO mapping found in .eds file
' - Controller address is 1, follower address is 15, follower detects baud
rate
ADDR=1
CADDR=1
CBAUD=125000
'RUN?
EIGN(W,0) ZS
SILENT

' Enable controller
CANCTL(17,3)

' Ensure pre-operational (not operational) state
NMT(0,128)

' Change analog output from +/-10V voltage(4) to 4-20mA(5)
SDOWR(15,8192,13,1,5)

' Disable transmit and receive PDO for controller to allow changing
' Set bit 31
a=-2147483648 ' 0x80000000
SDOWR(1,5120,1,4,a) ' 0x1400 rx
SDOWR(1,6144,1,4,a) ' 0x1800 tx
SDOWR(1,5121,1,4,a) ' 0x1401 rx
SDOWR(1,6145,1,4,a) ' OX1801 tx

' Set mapping number of entries to 0
ab[0]=0
SDOWR(1,5632,0,1,ab[0]) ' 0x1600 rx
SDOWR(1,6656,0,1,ab[0]) ' 0x1a00 tx
SDOWR(1,5633,0,1,ab[0]) ' 0x1601 rx
SDOWR(1,6657,0,1,ab[0]) ' 0x1a01 tx

' Set mapping objects
' ab[2] 0x2220 03 08
a=572523272
SDOWR(1,5632,1,4,a) ' 0x1600 rx
' ab[3] 0x2220 04 08
a=572523528
SDOWR(1,6656,1,4,a) ' 0x1a00 tx

Part 3: Examples: CAN Bus - I/O Block with PDO Poll

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 881 of 969

' aw[32] 0x2221 01 10 ' aw[32] is 1st analog voltage input
a=572588304
SDOWR(1,5633,1,4,a) ' 0x1601 rx
' aw[33] 0x2221 02 10 ' aw[33] is 1st 4-20mA analog output
a=572588560
SDOWR(1,6657,1,4,a) ' 0x1a01 tx

' Set mapping number of entries to 1
ab[0]=1
SDOWR(1,5632,0,1,ab[0]) ' 0x1600 rx
SDOWR(1,6656,0,1,ab[0]) ' 0x1a00 tx
SDOWR(1,5633,0,1,ab[0]) ' 0x1601 rx
SDOWR(1,6657,0,1,ab[0]) ' 0x1a01 tx

' Enable transmit and receive PDO for controller to allow changing
' Clear bit 31
a=399 ' 0x0000018f (f = address 15)
SDOWR(1,5120,1,4,a) ' 0x1400 rx mapped to follower tx

a=527 ' 0x0000020f (f = address 15)
SDOWR(1,6144,1,4,a) ' 0x1800 tx mapped to follower rx

a=655 ' 0x0000028f (f = address 15)
SDOWR(1,5121,1,4,a) ' 0x1401 rx mapped to follower tx

a=783 ' 0x0000030f (f = address 15)
SDOWR(1,6145,1,4,a) ' 0x1801 tx mapped to follower rx

' Tell everyone to go operational
NMT(0,1)

b=1
WHILE 1

IF B(10,1)==1
Z(10,1) ' Clear event flag
PRINT("Rx PDO 1",#13)

ENDIF
IF B(10,2)==1

Z(10,2) ' Clear event flag
PRINT("Rx PDO 2",#13)

ENDIF
IF B(10,3)==1

Z(10,3) ' Clear event flag
PRINT("Rx PDO 3",#13)

ENDIF
IF B(10,4)==1

Z(10,4) ' Clear event flag
PRINT("Rx PDO 4",#13)

ENDIF

Part 3: Examples: CAN Bus - I/O Block with PDO Poll

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 882 of 969

IF B(10,5)==1
Z(10,5) ' Clear event flag
PRINT("Rx PDO 5",#13)

ENDIF
' Set the User Bits in Status Word 12 to reflect the status of the 8 inputs

UO(W,0)=ab[2]&255
' Turn on outputs (continuous count up)

ab[3]=ab[3]+(1*b)
' Set the User Bits in Status Word 13 to reflect the status of the 8 outputs

UO(W,1)=ab[3]&254
WAIT=100

LOOP
END

Part 3: Examples: CAN Bus - I/O Block with PDO Poll

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 883 of 969

CAN Bus - Time Sync Follow Encoder
This program makes use of CANopen objects to provide following of a CANopen encoder on a CANopen
network. For the purposes of an example, one SmartMotor acts as a "controller", and a second
SmartMotor can act as the encoder if a CANopen encoder is not available.

' Demo with one motor following a CANopen encoder on CANopen network.
' Motor 1 is a controller as far as NMT and SDOs, but will follow data from
' encoder. Motor 2 will act as an encoder, (the PDO mapping to position actual
' instead of an encoder's position object.
' Load this program into both motors.

'++++ HEX Coded Objects for CAN +++++
#define x1000 4096 ' Object 1000h: Device Type
#define x1005 4101 ' Object 1005h: COB-ID Sync
#define x1006 4102 ' Object 1006h: Communication Cycle Period
#define x1400 5120 ' Object 1400h: Receive PDO Communication Parameter
#define x1600 5632 ' Object 1600h: Receive PDO Mapping Parameter 1
#define x1800 6144 ' Object 1800h: Transmit PDO communicating parameter 1
#define x1801 6145 ' Object 1801h: Transmit PDO communicating parameter 2
#define x1A00 6656 ' Object 1A00h: Transmit PDO Mapping Parameter 1
#define x1A01 6657 ' Object 1A01h: Transmit PDO Mapping Parameter 2
#define x2204 8708 ' Object 2204h: Mappable Variables aaa...ddd)
#define x2207 8711 ' Object 2207h: External encoder follow max value (where

' encoder rolls over) i.e., 10-bit encoder would be 1023
#define x2208 8712 ' Object 2208h: External encoder follow input value
#define x2209 8713 ' Object 2209h: External encoder follow control
#define x220A 8714 ' Object 220Ah: External encoder follow MFMUL
#define x220B 8715 ' Object 220Bh: External encoder follow MFDIV
#define x220C 8716 ' Object 220Ch: External encoder follow MFA
#define x220D 8717 ' Object 220Dh: External encoder follow MFD
#define x2304 8964 ' Object 2304h: Motor Status
#define x6002 24578 ' Object 6002h: (encoder profile) Total measuring range
#define x6040 24640 ' Object 6040h: Control word
#define x6060 24672 ' Object 6060h: Trajectory Mode
#define x6064 24676 ' Object 6064h: Position actual value (RPA)
#define x606C 24684 ' Object 606Ch: Velocity actual value (RVA)
#define x608F 24719 ' Object 608Fh: Position encoder resolution
#define x60F4 24820 ' Object 60F4h: Position Error actual value (REA)

' misc values:
#define xffffffff -1

OFF
ADDR=CADDR ' Set serial channel address so you don't have to re-

' address/detect motors.
ECHO ' Enable serial channel echo so you don't have to re-

' address/detect motors.

mmm=1 ' network controller's address
fff=mmm ' The following motor's address. In this demo, it is the network

Part 3: Examples: CAN Bus - Time Sync Follow Encoder

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 884 of 969

' controller, but you can use a 3rd-party encoder's address.
eee=2 ' The encoder's address.

EIGN(W,0) ' Turn off hardware limits!!!!!
ZS ' Clear faults.
O=0

WAIT=100
a=ADDR+128
PRINT(#a) ' Send our own address char to make sure downstream motors

' don't interpret program output as commands.

IF CADDR==mmm
' We are the controller, take over the show.

CANCTL(17,3) ' Enable SDO and NMT commands.

PRINT("Checking for encoder ready: ",#13)
t=0
WHILE 1

vvv=SDORD(eee,x1000,0,4) ' Read device type from encoder.
IF CAN(4)==0 ' Check error for a successful read. A timeout is very

' likely until remote device is ready.
IF (vvv&65535)==406 ' Check lower 16-bits for profile type of device.

PRINT("Found encoder",#13)
SWITCH vvv/65536 ' We want to look at the upper 16-bits.

CASE 1
PRINT("Single-turn absolute rotary encoder.",#13)
t=1
BREAK

CASE 2
PRINT("Multi-turn absolute rotary encoder.",#13)
t=1
BREAK

CASE 3
PRINT("Single-turn absolute rotary encoder ")
PRINT("with electronic turn-count.",#13)
t=1
BREAK

CASE 4
PRINT("Incremental rotary encoder.",#13)
t=1
BREAK

CASE 5
PRINT("Incremental rotary encoder with electronic counting.",#13)
t=1
BREAK

CASE 6
PRINT("Incremental linear encoder.",#13)
t=1
BREAK

CASE 7

Part 3: Examples: CAN Bus - Time Sync Follow Encoder

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 885 of 969

PRINT("Incremental linear encoder with electronic counting.",#13)
t=1
BREAK

CASE 8
PRINT("Absolute linear encoder.",#13)
t=1
BREAK

CASE 9
PRINT("Absolute linear encoder with cyclic coding.",#13)
t=1
BREAK

CASE 10
PRINT("Multi-sensor encoder interface.",#13)
t=0 ' not supported here at this time.
BREAK

DEFAULT
PRINT("Unknown type of encoder",#13)
BREAK

ENDS
BREAK ' Remote device has booted to the point of responding.

ENDIF
IF (vvv&65535)==402 ' Check lower 16-bits for profile type of device.

PRINT("Motor ",eee," acting as an encoder.",#13)
' A motor acting as an encoder.

t=2
BREAK

ENDIF
ENDIF
WAIT=500 ' Wait 1/2 second.
PRINT(".")

LOOP
PRINT(#13)

rrr=0 ' Resolution
IF t==1

rrr=SDORD(eee,x6002,0,4) GOSUB10
rrr=rrr-1 ' We want the max value, not the number of steps.
IF CAN(4)!=0

PRINT("Failed to read encoder range.",#13)
OFF END

ENDIF
ENDIF
IF t==2

rrr=-1 ' SmartMotor, which is the range 0x00000000 to 0xffffffff.
ENDIF
IF t==0

PRINT("This type not supported, ending now.",#13)
OFF
END

ENDIF

NMT(0,128) GOSUB10 ' Network broadcast to go pre-operational state.
' Setup the sync producer/consumers and set time base. Provides time sync so

Part 3: Examples: CAN Bus - Time Sync Follow Encoder

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 886 of 969

' motor clocks keep in step, and data is transmitted/accepted on sync also.
SDOWR(mmm,x1006,0,4,10000) GOSUB10 ' define Cycle period object 0x1006:0,

' size 4, 10ms
SDOWR(eee,x1006,0,4,10000) GOSUB10 ' define Cycle period object 0x1006:0,

' size 4, 10ms
IF mmm!=fff
' If follow motor is not the controller.

SDOWR(fff,x1006,0,4,10000) GOSUB10 ' define Cycle period object
' 0x1006:0, size 4, 10ms

ENDIF
SDOWR(mmm,x1005,0,4,128) GOSUB10 ' define Cycle ID x0000 0080 (required

' to avoid error in next line.)
SDOWR(mmm,x1005,0,4,1073741952) GOSUB10 ' define Cycle ID, producer

' x4000 0080
SDOWR(eee,x1005,0,4,128) GOSUB10 ' define Cycle ID, consumer x0000 0080
IF mmm!=fff

' If follow motor is not the controller.
SDOWR(fff,x1005,0,4,128) GOSUB10 ' define Cycle ID, consumer x0000 0080

ENDIF

' Time sync

' Setup PDO mapping so that controller transmits 32-bit actual position
' (0x6064), and follow motor receives as 32-bit encoder data (0x2208:3)
IF t==2

' We need to map a motor completely to get the position data.
SDOWR(eee,x1800,1,4,-1073741439) GOSUB10 ' set Transmit Com Parameter

' START xC000 0181
SDOWR(eee,x1800,2,1,1) GOSUB10 ' set Transmit Com Parameter

' on every Sync x000 0001
SDOWR(eee,x1A00,0,1,0) GOSUB10 ' set Transmit map number of

' entries x00
SDOWR(eee,x1A00,1,4,1617166368) GOSUB10 ' set Transmit map x6064 00 20
SDOWR(eee,x1A00,0,1,1) GOSUB10 ' set Transmit map number of

' entries x01
SDOWR(eee,x1800,1,4,1073742209) GOSUB10 ' set Transmit Com Parameter

' COB-ID x4000 0181

ELSEIF t==1
' Using an encoder. An encoder should have these mappings already.
' Comment these out if the encoder has read-only PDO parameters/mappings.
' Note PDO2 is used; it is default sync type in the encoder 406 profile.

SDOWR(eee,x1801,1,4,-1073741439) GOSUB10 ' set Transmit Com Parameter
' START xC000 0181

SDOWR(eee,x1801,2,1,1) GOSUB10 ' set Transmit Com Parameter
' on every Sync x000 0001

SDOWR(eee,x1A01,0,1,0) GOSUB10 ' set Transmit map number of
' entries x00

SDOWR(eee,x1A01,1,4,1617166368) GOSUB10 ' set Transmit map x6064 00 20

SDOWR(eee,x1A01,0,1,1) GOSUB10 ' set Transmit map number of
' entries x01

Part 3: Examples: CAN Bus - Time Sync Follow Encoder

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 887 of 969

SDOWR(eee,x1801,1,4,1073742209) GOSUB10 ' set Transmit Com Parameter
' COB-ID x4000 0181

ENDIF
SDOWR(fff,x1400,1,4,-2147483263) GOSUB10 ' set Receive Com Parameter start

' x8000 0181
SDOWR(fff,x1600,0,1,0) GOSUB10 ' set Receive Map number of

' entries x00
SDOWR(fff,x1600,1,4,570950432) GOSUB10 ' set Receive Map x2208 03 20
SDOWR(fff,x1600,0,1,1) GOSUB10 ' set Receive Map number of

' entries x01
SDOWR(fff,x1400,1,4,385) GOSUB10 ' set Receive Com Parameter

' COB-ID x0000 0181
' Mapping complete.

' Set other objects in follow motor relating to Follow mode.
SDOWR(fff,x2207,0,4,rrr) GOSUB10 ' set encoder modulo limit
SDOWR(fff,x2209,0,2,0) GOSUB10 ' set follow control to nominal state.
SDOWR(fff,x220A,0,2,100) GOSUB10 ' set MFMUL
SDOWR(fff,x220B,0,2,100) GOSUB10 ' set MFDIV
SDOWR(fff,x220C,0,4,20000) GOSUB10 ' set MFA control word x2209

' determines if controller or follower units.
SDOWR(fff,x220D,0,4,10000) GOSUB10 ' set MFD control word x2209

' determines if controller or follower units.

NMT(0,1) GOSUB10 ' Broadcast to whole network to go
' to operational state.

SDOWR(fff,x6060,0,1,-11) GOSUB10 ' set Trajectory Mode to Mixed FOLLOW
SDOWR(fff,x6040,0,2,6) GOSUB10 ' set Control word in Motor 2
SDOWR(fff,x6040,0,2,7) GOSUB10 ' set Control word in Motor 2
SDOWR(fff,x6040,0,2,15) GOSUB10 ' set Control word in Motor 2
PRINT("Setup complete",#13)

IF CADDR==fff
' If the network controller happens to be the follow motor (which is

 ' expected in this demo by default).
WAIT=3000
PRINT("Follow motor: stopping X.",#13)
X(2) ' Stop following
WAIT=1000
PRINT("Follow motor: re-starting X.",#13)
G(2) ' Restart following

ELSE
' Some other motor is the follow motor.
' ...

ENDIF

ELSEIF CADDR==eee
' We are a motor pretending to be the encoder.
WAIT=500
PRINT("SmartMotor acting as encoder: starting motion.",#13)
MV VT=100000 ADT=50 G ' A simple constant motion.

Part 3: Examples: CAN Bus - Time Sync Follow Encoder

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 888 of 969

' Follow motor is already started and will follow exactly.
PRINT("SmartMotor acting as encoder: ") PRINT("running for 10 seconds.",#13)
WAIT=10000
PRINT("SmartMotor acting as encoder: freewheel.",#13)
BRKRLS OFF

ENDIF
END

C10 ' Check for CAN error and display
e=CAN(4)
IF e!=0

PRINT(#13,"Communication Error: ")
ELSE

' PRINT("ok",#13) ' For debugging, to see what commands passed and failed.
RETURN

ENDIF
SWITCH e

' NOTE: Any error number < 0 is Animatics specific to the SDORD, SDOWR,
' and NMT commands.

CASE -1
PRINT(" Timeout, no response from remote device.")

BREAK
CASE -2

PRINT(" Multiple SDO commands simultaneously.")
BREAK
CASE -3

PRINT(" Controller mode not enabled, see CANCTL command.")
BREAK
CASE -4

PRINT(" Protocol not supported.")
BREAK
CASE -5

PRINT(" Transmission failure, check cable, Baud rate.")
BREAK
CASE -6

PRINT(" Data size returned not expected size.")
BREAK
CASE -20

PRINT(" Invalid destination address.")
BREAK
CASE -21

PRINT(" Data size not supported.")
BREAK
CASE -22

PRINT(" Invalid object index.")
BREAK
CASE -23

PRINT(" Invalid object sub-index.")
BREAK
CASE -24

PRINT(" Invalid NMT command value.")
BREAK

' NOTE: any error number > 0 is specific to CANopen's specific list of

Part 3: Examples: CAN Bus - Time Sync Follow Encoder

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 889 of 969

' errors per 301 specification.
CASE 84082688

PRINT(" Toggle bit not alternated.")
BREAK
CASE 84148224

PRINT(" SDO protocol timed out.")
BREAK
CASE 84148225

PRINT(" Client/server command specifier not valid or unknown.")
BREAK
CASE 84148226

PRINT(" Invalid block size (block mode only).")
BREAK
CASE 84148227

PRINT(" Invalid sequence number (block mode only).")
BREAK
CASE 84148228

PRINT(" CRC error (block mode only).")
BREAK
CASE 84148229

PRINT(" Out of memory.")
BREAK
CASE 100728832

PRINT(" Unsupported access to an object.")
BREAK
CASE 100728833

PRINT(" Attempt to read a write only object.")
BREAK
CASE 100728834

PRINT(" Attempt to write a read only object.")
BREAK
CASE 100794368

PRINT(" Object does not exist in the object dictionary.")
BREAK
CASE 100925505

PRINT(" Object cannot be mapped to the PDO.")
BREAK
CASE 100925506

PRINT(" Exceeds PDO length.")
BREAK
CASE 100925507

PRINT(" General parameter incompatibility reason.")
BREAK
CASE 100925511

PRINT(" General internal incompatibility in the device.")
BREAK
CASE 101056512

PRINT(" Access failed due to an hardware error.")
BREAK
CASE 101122064

PRINT(" Data type mismatch, length of service parameter.")
BREAK
CASE 101122066

Part 3: Examples: CAN Bus - Time Sync Follow Encoder

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 890 of 969

PRINT(" Data type mismatch, length of service parameter, high.")
BREAK
CASE 101122067

PRINT(" Data type mismatch, length of service parameter, low.")
BREAK
CASE 101253137

PRINT(" Sub-index does not exist.")
BREAK
CASE 101253168

PRINT(" Value range of parameter exceeded (write access).")
BREAK
CASE 101253169

PRINT(" Value of parameter written too high.")
BREAK
CASE 101253170

PRINT(" Value of parameter written too low.")
BREAK
CASE 101253174

PRINT(" Maximum value is less than minimum value.")
BREAK
CASE 134217728

PRINT(" General error. (CANopen)")
BREAK
CASE 134217760

PRINT(" Data can't be sent to the application.")
BREAK
CASE 134217761

PRINT(" Data can't be sent to the application, local control.")
BREAK
CASE 134217762

PRINT(" Data can't be sent to the application, device state.")
BREAK
CASE 134217763

PRINT(" Object dictionary dynamic generation fails."
BREAK

DEFAULT
PRINT(" Unknown error.")
IF e>0

' One of the CANopen errors
PRINT(" Consult CANopen error list.")

' ELSE
' One of our error, but not included in the list above.

ENDIF
BREAK

ENDS
PRINT(#13)

RETURN

Part 3: Examples: CAN Bus - Time Sync Follow Encoder

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 891 of 969

Text Replacement in an SMI Program
This example shows possible uses of the #define command. That command is used by SMI to simply
replace characters of code with an associated named value.

NOTE: #define is not an executable command; it is used for compile-time translation from SMI.

NOTE: Uploads of programs with define statements will show the alternate or replaced text only.

'Examples of using #define for text replacement in a program.
'NOTE: #define is used by SMI to replace characters of code with an
'associated named value.
#define DisableTravelLimits EIGN(W,12) 'Assign inputs 2 and 3

'as general inputs.
#define ClearFaultBits ZS 'Issue ZS command.
#define GoInput 1-IN(6) 'Invert input 6.
#define 4BitBinaryInputs 15-(IN(W,0)&15) 'Binary mask inputs 0

'through 3.
#define FindHome GOSUB(100)
#define GearOutputPosition RES*40.0 'Suppose 40:1 gear reducer.
#define NormalSpeed 500000
#define JogSpeed 10000
#define PositionError B(0,6) 'Position Error Status Bit.

'The code below shows examples of using the above "define"
'variables.

DisableTravelLimits 'Disable travel limits.
ClearFaultBits 'Issue ZS command.
IF GoInput 'If Input 6 goes low - note that it was

'defined as 1-IN(6).
PRINT("Go Received",#13)
x=4BitBinaryInputs 'Returns value from 0 to 15 for inputs

'0, 1, 2 and 3.
GOSUB(x)

ENDIF

FindHome 'Run the home routine.

VT=NormalSpeed 'Set the speed to 500000.

PRT=22.5*GearOutputPosition 'Results in 22.5 rotations of gear head
'output shaft.

VT=JogSpeed 'Set the speed to 10000.

END

C100 'Place the home routine code here
PRINT("Home Routine Called",#13)

RETURN

C0

Part 3: Examples: Text Replacement in an SMI Program

P
a

rt
 3

: E
x

a
m

p
le

s

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 892 of 969

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
PRINT("Subroutine",x," called",#13)
RETURN

Part 3: Examples: Text Replacement in an SMI Program

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 893 of 969

Appendix
This appendix provides related information for use with the SmartMotor. With the exception of the
Motion Command Quick Reference on page 895, all other topics are listed in alphabetical order.

Motion Command Quick Reference 895

Array Variable Memory Map 897

ASCII Character Set 899

Binary Data 900

Commands Affected by SCALE 903

Command Error Codes 906

Decoding the Error 906

Finding the Error Source 907

Glossary 908

Math Operators 915

Moment of Inertia 916

Matching Motor to Load 916

Improving the Moment of Inertia Ratio 916

RCAN, RCHN and RMODE Status 917

RCAN Status Decoder 917

RCHN Status Decoder 917

Clearing Serial Port Errors 918

RMODE Status Decoder 918

Mode Status Example 918

Scale Factor Calculation 919

Sample Rates 919

PID Sample Rate Command 919

Encoder Resolution and the RES Parameter 919

Native Velocity and Acceleration Units 920

Velocity Calculations 920

Acceleration Calculations 920

Status Words - SmartMotor 921

Status Word 0: Primary Fault/Status Indicator 921

Status Word 1: Index Registration and Software Travel Limits 922

Status Word 2: Communications, Program and Memory 922

Appendix: Appendix

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 894 of 969

Status Word 3: PID State, Brake, Move Generation Indicators 923

Status Word 4: Interrupt Timers 923

Status Word 5: Interrupt Status Indicators 924

Status Word 6: Drive Modes 924

Status Word 7: Multiple Trajectory Support 925

Status Word 8: Cam Support 926

Status Word 9: No Bits Defined (Class 5 Only) 926

Status Word 9: SD Card and DMX Information (Class 6 Only) 926

Status Word 10: RxPDO Arrival Notification 927

Status Word 12: DMX Information (Class 5 Only) 928

Status Word 12: User Bits Word 0 (Class 6 Only) 928

Status Word 13: User Bits Word 1 929

Status Word 16: On Board Local I/O Status: D-Style Motor 929

Status Word 16: On Board Local I/O Status: M-Style Class 5 Motor 930

Status Word 16: On Board Local I/O Status - Class 6 Motor 930

Status Word 17: Expanded I/O Status - D-Style AD1 Motor 931

Fault and Status Words - DS2020 Combitronic System 932

Fault Words 932

Fault Tables 932

Status Words 934

Torque Curves 938

Understanding Torque Curves 938

Peak Torque 938

Continuous Torque 938

Ambient Temperature Effects on Torque Curves and Motor Response: 939

Supply Voltage Effects on Torque Curves and Motor Response: 939

Example 1: Rotary Application 940

Example 2: Linear Application 940

Dyno Test Data vs. the Derated Torque Curve 940

Proper Sizing and Loading of the SmartMotor 941

SmartMotor Troubleshooting 943

Troubleshooting - First Steps 943

Appendix: Appendix

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 895 of 969

Motion Command Quick Reference
The next table provides a quick reference for the primary Class 5 motion commands. For the complete
list of motion control commands and links to their descriptions, see Motion Control on page 957.

Absolute
Position

Relative
Position Velocity

Accel and
Decel

Together
Accel Decel Following

Error
DE/Dt

Derivative
Error Limit

Over
Speed
Limit

Report Actual RPA RPRA RVA N/A N/A REA RDEA

Report End Target RPT RPRT RVT RAT RAT RDT REL RDEL RVL

Report Commanded RPC RPRC RVC RAC RAC

Assign End Target PT= PRT= VT= ADT= AT= DT=

Assign Command N/A N/A N/A N/A N/A N/A EL= DEL= VL=

In the chart above, you will notice Actual, End Target, and Commanded:
l Actual: The value of the parameter as the processor sees it in real time at the shaft, regardless

of anything commanded by the trajectory generator
l Target: The requested trajectory target to reach and/or maintain at any given time

l Commanded: The compensated value of the trajectory generator at any time in its attempt to
reach the target

For example, in terms of the position commands:
l Position Target (PT): The desired target position you are shooting for; what you have specified

as a target position value
l Position Actual (PA): The current position in real time (right now), regardless of target or where

it is being told to go
l Position Commanded (PC): The position the controller processor is actually commanding it to go

to at the time

NOTE: Any difference between Position Commanded (PC) and Position Actual (PA) is due to position
error.

There are two position types:
l Absolute: The finite position value in reference to position zero

l Relative: A relative distance from the present position at the time

All commands shown above are associated with both Mode Position (MP) and Mode Velocity (MV). They
may also be used in dual trajectory mode when running either of those modes on top of gearing or
camming.

All distance parameters are in encoder counts. Encoder resolution may be obtained and used in a
program through the RES command. The RRES command will report encoder resolution. You can also
use the RES command directly in math formulas.

EXAMPLE:

If you want it the axis to move to location 1234, then you would issue:

PT=1234

Appendix: Motion Command Quick Reference

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 896 of 969

While moving there:
l RPC would report the commanded position from the processor.

l RPA would report actual position of the encoder or motor shaft.

l x=PC-PA would calculate position error at that moment.

l REA would report actual position error at that moment.

l RBt would report a 1 (while moving) because the trajectory is active.

After the move has completed, RBt would report a 0 (to indicate the trajectory is no longer active).

Appendix: Motion Command Quick Reference

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 897 of 969

Array Variable Memory Map
Integer Array Memory:

NOTE: Overlapping memory aw[0] is the least significant word of al[0]; likewise, ab[0] is the least
significant byte of aw[0] and al[0].

Long (32-bit signed) Word (16-bit signed) Bytes (8-bit signed)

al[n] where n is:
aw[n] where n is: ab[n] where n is:
LSb MSb LSb middle bytes MSb

0 0 1 0 1 2 3
1 2 3 4 5 6 7
2 4 5 8 9 10 11
3 6 7 12 13 14 15
4 8 9 16 17 18 19
5 10 11 20 21 22 23
6 12 13 24 25 26 27
7 14 15 28 29 30 31
8 16 17 32 33 34 35
9 18 19 36 37 38 39

10 20 21 40 41 42 43
11 22 23 44 45 46 47
12 24 25 48 49 50 51
13 26 27 52 53 54 55
14 28 29 56 57 58 59
15 30 31 60 61 62 63
16 32 33 64 65 66 67
17 34 35 68 69 70 71
18 36 37 72 73 74 75
19 38 39 76 77 78 79
20 40 41 80 81 82 83
21 42 43 84 85 86 87
22 44 45 88 89 90 91
23 46 47 92 93 94 95
24 48 49 96 97 98 99
25 50 51 100 101 102 103
26 52 53 104 105 106 107
27 54 55 108 109 110 111
28 56 57 112 113 114 115
29 58 59 116 117 118 119
30 60 61 120 121 122 123
31 62 63 124 125 126 127
32 64 65 128 129 130 131
33 66 67 132 133 134 135
34 68 69 136 137 138 139

Appendix: Array Variable Memory Map

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 898 of 969

Long (32-bit signed) Word (16-bit signed) Bytes (8-bit signed)

al[n] where n is:
aw[n] where n is: ab[n] where n is:
LSb MSb LSb middle bytes MSb

35 70 71 140 141 142 143
36 72 73 144 145 146 147
37 74 75 148 149 150 151
38 76 77 152 153 154 155
39 78 79 156 157 158 159
40 80 81 160 161 162 163
41 82 83 164 165 166 167
42 84 85 168 169 170 171
43 86 87 172 173 174 175
44 88 89 176 177 178 179
45 90 91 180 181 182 183
46 92 93 184 185 186 187
47 94 95 188 189 190 191
48 96 97 192 193 194 195
49 98 99 196 197 198 199
50 100 101 200 201 202 203

Overlapping is "little endian" for byte and word order

Integer Variable Memory Non-Overlapping:

Name Quantity Type
a-z 26 32-bit signed

aa-zz 26 32-bit signed
aaa-zzz 26 32-bit signed

78 total letter variables

Float Variable Memory:

Name Quantity Type
af[0]-af[7] 8 64 bit IEEE-754

8 total floating-point variables

Appendix: Array Variable Memory Map

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 899 of 969

ASCII Character Set
ASCII is an acronym for American Standard Code for Information Interchange. It refers to the
convention established to relate characters, symbols and functions to binary data. If a SmartMotor is
asked its position over the RS-232 connection, and it is at position 1, it will not return a byte of value
one, but instead will return the ASCII code for 1 which is binary value 49. That is why it appears on a
Terminal window as the numeral 1. The ASCII character set is shown in the next table (Dec=decimal,
Hex=hexadecimal).

Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex ASCII
0 00 NUL 35 23 # 70 46 F 105 69 i
1 01 SOH 36 24 $ 71 47 G 106 6A j
2 02 STX 37 25 % 72 48 H 107 6B k
3 03 ETX 38 26 & 73 49 I 108 6C l
4 04 EOT 39 27 ' 74 4A J 109 6D m
5 05 ENQ 40 28 (75 4B K 110 6E n
6 06 ACK 41 29) 76 4C L 111 6F o
7 07 BEL 42 2A * 77 4D M 112 70 p
8 08 BS 43 2B + 78 4E N 113 71 q
9 09 HT 44 2C , 79 4F O 114 72 r

10 0A LF 45 2D - 80 50 P 115 73 s
11 0B VT 46 2E . 81 51 Q 116 74 t
12 0C FF 47 2F / 82 52 R 117 75 u
13 0D CR 48 30 0 83 53 S 118 76 v
14 0E SO 49 31 1 84 54 T 119 77 w
15 0F SI 50 32 2 85 55 U 120 78 x
16 10 DLE 51 33 3 86 56 V 121 79 y
17 11 DC1 52 34 4 87 57 W 122 7A z
18 12 DC2 53 35 5 88 58 X 123 7B {
19 13 DC3 54 36 6 89 59 Y 124 7C |
20 14 DC4 55 37 7 90 5A Z 125 7D }
21 15 NAK 56 38 8 91 5B [126 7E ~
22 16 SYN 57 39 9 92 5C \ 127 7F Del
23 17 ETB 58 3A : 93 5D]
24 18 CAN 59 3B ; 94 5E ^
25 19 EM 60 3C < 95 5F _
26 1A SUB 61 3D = 96 60 ’
27 1B ESC 62 3E > 97 61 a
28 1C FC 63 3F ? 98 62 b
29 1D GS 64 40 @ 99 63 c
30 1E RS 65 41 A 100 64 d
31 1F US 66 42 B 101 65 e
32 20 SP 67 43 C 102 66 f
33 21 ! 68 44 D 103 67 g
34 22 " 69 45 E 104 68 h

Appendix: ASCII Character Set

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 900 of 969

Binary Data
The SmartMotor language allows the programmer to access data at the binary level. Understanding
binary data is useful when programming the SmartMotor or any electronic device. The section provides
an explanation of how binary data works.

All digital computer data is stored as binary information. A binary element is one that has only two
states, commonly described as "on" and "off" or "one" and "zero." A light switch is a binary element. It
can either be "on" or "off." A computer’s memory is nothing but a vast array of binary switches called
"bits".

The power of a computer comes from the speed and sophistication with which it manipulates these bits
to accomplish higher tasks. The first step towards these higher goals is to organize these bits in such a
way that they can describe things more complicated than "off" or "on."

Different quantities of bits are used to make up the building blocks of data. They are most commonly
described as:

Four bits = Nibble
Eight bits = Byte
Sixteen bits = Word
Thirty two bits = Long

One bit has two possible states, on or off. Every time a bit is added, the possible number of states is
doubled. Two bits have four possible states:

00 off-off
01 off-on
10 on-off
11 on-on

A nibble has 16 possible states. A byte has 256, a word has 65536 and a long has billions of possible
combinations.

Because a byte of information has 256 possible states, it can reflect a number from zero to 255. This is
done by assigning each bit a value of twice the one before it, starting with one. Each bit value becomes:

Bit Value
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128

Appendix: Binary Data

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 901 of 969

If all their values are added together the result is 255. By leaving particular bits out, any sum between
zero and 255 can be created. Look at the next example bytes and their decimal values:

Byte Value
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 2
0 0 0 0 0 0 1 1 3
0 0 0 1 0 0 0 0 16
0 0 0 1 1 1 1 0 30
0 0 1 1 1 1 0 0 60
1 0 0 0 0 0 0 0 128
1 0 0 1 1 1 0 1 157
1 1 1 1 1 1 1 1 255

To make use of the limited memory available with micro controllers that can fit into a SmartMotor,
there are occasions where every bit is used. One example is Status Word 0. A single value can be
uploaded from a SmartMotor and be binary coded with eight, sixteen or thirty-two independent bits of
information. The next table shows Status Word 0 and its 16 bits of coded information:

Name Description Bit Value
Drive ready 0 1

Bo Motor OFF 1 2
Bt Trajectory in progress 2 4

Bus voltage fault 3 8
Ba Over current 4 16
Bh Excessive temperature fault 5 32
Be Excessive position error fault 6 64
Bv Velocity limit fault 7 128

Real-time temperature limit 8 256
Derivative of position error limit 9 512
Hardware right (+) limit enabled 10 1024
Hardware left (-) limit enabled 11 2048

Br Historical right (+) limit fault 12 4096
Bl Historical left (-) limit fault 13 8192
Bp Real time right (+) limit 14 16384
Bm Real time left (-) limit 15 32768

There are three useful mathematical operators that work on binary data:
l & (bit-wise and) compares the two operands (bytes, words or longs) and looks for what they

have in common. The resulting data has ones only where there were ones in both operands.
l | (bit-wise or) results in a one for each bit corresponding to a one in either operand.

l !| (bit-wise exclusive or) results in a one for each bit corresponding to a one in either operand. It
produces a one for each bit when the corresponding bits in the two operands are different and a
zero when they are the same.

Appendix: Binary Data

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 902 of 969

These operations are illustrated in the next examples:

A B A&B A|B A!|B
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Knowing how the binary data works will allow you to write shorter and faster code. The next two code
examples check if both limit inputs are high. The first example does this without taking advantage of a
binary operator, while the second example shows how using a binary operator makes the code shorter
and faster.

Example 1:

IF Bm 'Look for - limit high
IF Bp 'Look for + limit high

GOSUB100 'Execute subroutine
ENDIF

ENDIF

Example 2:

IF (W(0)&49152)==49152 'Look at both limits, bits 14 & 15,
'w/bit mask 49152 = 32768 + 16384

GOSUB100 'Execute subroutine
ENDIF

Both examples will execute subroutine 100 if both limit inputs are high. Example 2 uses less code than
Example 1 and will run faster as a part of a larger program loop.

The next two examples show how the use of an I/O word and mask can improve program size and
execution speed:

Example 3:

IF IN(0) 'Look for input 0
GOSUB200 'Execute subroutine

ENDIF
IF IN(1) 'look for input 1

GOSUB200 'Execute subroutine
ENDIF

Example 4:

IF IN(W,0,3) 'Look at both inputs 0 and 1
GOSUB200 'Execute subroutine

ENDIF

Both examples 3 and 4 accomplish the same task with different levels of efficiency.

Appendix: Binary Data

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 903 of 969

Commands Affected by SCALE
The next table provides a list of the commands that are affected by the SCALEA, SCALEP and
SCALEV commands.

Command Scaled? Direction Scale config Notes
Accel/Decel
AT= yes set SCALEA
RAT yes report SCALEA
DT= yes set SCALEA
RDT yes report SCALEA
ADT= yes set SCALEA
RAC yes report SCALEA
Velocity
VT= yes set SCALEV
RVT yes report SCALEV
RVC yes report SCALEV
RVA yes report SCALEV
Position
PT= yes set SCALEP
RPT yes report SCALEP
RPC / RPC(0) yes report SCALEP
RPA yes report SCALEP
PRT= yes set SCALEP
RPRT yes report SCALEP
RPRC yes report SCALEP
RPRA yes report SCALEP
O=, O(0)=, O(1)=, O
(2)=

yes set SCALEP

OSH=, OSH(0)=, OSH
(1)=, OSH(2)=

yes set SCALEP

Synchronized Motion
PTS(…) n/a set SCALEP Special case, see notes 1, 2
PTSS(…) n/a set SCALEP
PRTS(…) n/a set SCALEP
PRTSS(…) n/a set SCALEP
VTS= n/a set SCALEV
ATS= n/a set SCALEA Special case, see notes 1, 2

Commands Affected by SCALE

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 904 of 969

Command Scaled? Direction Scale config Notes
DTS= n/a set SCALEA Special case, see notes 1, 2
ADTS= n/a set SCALEA Special case, see notes 1, 2
Error Limit
EL= yes set SCALEP Enabled by default. SYSCTL(6,0) to

disable, SYSCTL(6,1) to enableREL yes report SCALEP
REA yes report SCALEP
Index, Rising/Falling Edge, Internal Encoder
RI(0) Only

when
ENC0

report SCALEP Scaling disabled on RI(0) / RJ(0) when
ENC1 mode active, then scale moves
to RI(1), RJ(1)

RJ(0) Only
when
ENC0

report SCALEP

Modulo Position
PMT= yes set SCALEP
RPMT yes report SCALEP
PML= yes set SCALEP
RPML yes report SCALEP
RPMA yes report SCALEP
Software Limit
SLP= yes set SCALEP Software position limits
RSLP yes report SCALEP
SLN= yes set SCALEP
RSLN yes report SCALEP
Follow Mode
MFA yes set SCALEP Follower units only; controller units

not related to scalingMFD yes set SCALEP
MFSLEW yes set SCALEP
MFLTP= yes set SCALEP
RMFLTP yes report SCALEP
MFHTP= yes set SCALEP
RMFHTP yes report SCALEP
MFL yes set SCALEP Follower units only; controller units

not related to scalingMFH yes set SCALEP
External Encoder

Commands Affected by SCALE

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 905 of 969

Command Scaled? Direction Scale config Notes
RI(1) yes report SCALEP Scaled only for ENC1 (external

encoder)RJ(1) yes report SCALEP
Notes:
1. PTS commands position, velocity, and acceleration units must agree. I.e., if position is in mm, then
velocity must be mm/sec, acceleration must be mm/(sec^2).
2. User may provide in scaled units, but the PTS command itself does not apply scaling. The values are
simply passed to the target.

Commands Affected by SCALE

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 906 of 969

Command Error Codes
When a command results in error, the Command error bit (Status Word 2, bit 14) will be tripped. It is up
to the user to catch this and read the error code.

NOTE: If multiple command managers are executing commands at the same time, it is possible for
one to overwrite the other.

Decoding the Error
The RERRC or =ERRC commands reply with a numeric value describing the most recent error. To
decode the error, refer to the next table.

Code Description Notes
0 NO_ERROR
1 BAD_LENGTH Only used for CAN when the command is too long
2 BAD_ARGUMENT
3 BAD_PACKET
4 BAD_OPERATION
5 MISSING_ARGUMENT
6 NOT USED
7 ERROR_PARENTHESIS
8 NOT USED
9 LENGTH_VIOLATION Embedded address was not found within the 64-character buffer for IF,

SWITCH, GOTO, etc. (should never happen)
10 BAD_ARRAY_ADDR Array index outside the defined range
11 DIVIDE_BY_ZERO Attempt to divide by 0
12 STACK_OVERFLOW No room on stack for another 10 GOSUB and INTERRUPTS use the same

stack
13 STACK_UNDERFLOW RETURN or RETURNI with no place to return
14 BAD_LABEL Label does not exist for GOSUB or GOTO
15 NESTED_SWITCH Too many nested SWITCH (> 4)
16 BAD_FORMULA
17 BAD_WRITE_LENGTH VST command amount written too long
18 NOT_USED
19 BAD_BIT Z{letter} command issued for a bit that cannot be reset
20 INVALID_INTERRUPT EITR command for interrupt not defined)
21 NO_PERMISSION Operation or memory range is not user-accessible
22 OPERATION_FAILED General error
23 MATH_OVERFLOW
24 CMD_TIMEOUT Combitronics timeout
25 IO_NOT_PRESENT
26 NO_CROSS_AXIS_SUPPORT
27 BAD_MOTOR_STATE
28 BAD_CROSS_AXIS_ID
29 BAD_COMBITRONIC_FCODE
30 BAD_COMBITRONIC_SFCODE
31 EE_WRITE_QUEUE_FULL
32 CAM_FULL

Appendix: Command Error Codes

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 907 of 969

Finding the Error Source
The RERRW or =ERRW commands reply with a numeric code describing the source of the error. To
decode the error source, refer to the next table.

Code Description Notes
0 CMD_COMM0 RS-232 for D-style, RS-485 for M-style
1 CMD_COMM1 RS-485 for D-style only
2 CMD_PROG From downloaded program
3 CMD_CAN CAN port (CANopen, DeviceNet , Combitronic) or PROFIBUS
4 CMD_MB0 N/A
5 CMD_MB1 N/A

Appendix: Finding the Error Source

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 908 of 969

Glossary
This section provides a glossary of industrial motion terms.

Acceleration

A change in velocity as a function of time. Acceleration usually refers to increasing velocity, and
deceleration to decreasing velocity.

Accuracy

A measure of the difference between expected position and actual position of a motor or mechanical
system. Motor accuracy is usually specified as an angle representing the maximum deviation from
expected position.

Address

A unique identifier assigned to a network device that differentiates it from other devices operating on
the same network.

Ambient Temperature

The temperature of the cooling medium, usually air, immediately surrounding the motor or another
device.

Angular Accuracy

The measure of shaft positioning accuracy on a servo or stepping motor.

Back EMF (BEMF)

The voltage generated when a permanent magnet motor is rotated. This voltage is proportional to
motor speed and is present regardless of whether the motor winding(s) are energized or not.

Breakaway Torque

The torque required to start a machine in motion. Almost always greater than the running torque.

Brushless Motor

Class of motors that operate using electronic commutation of phase currents rather than
electromechanical (brush-type) commutation. Brushless motors typically have a permanent magnet
rotor and a wound stator.

Closed Loop

A broadly-applied term relating to any system in which the output is measured and compared to the
input. The output is then adjusted to reach the desired condition. In motion control, the term typically
describes a system utilizing a velocity and/or position transducer to generate correction signals in
relation to desired parameters.

Cogging (Cogging Torque)

A term used to describe nonuniform angular velocity. Cogging appears as jerkiness, especially at low
speeds.

Appendix: Glossary

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 909 of 969

Commutation

A term which refers to the action of steering currents or voltages to the proper motor phases so as to
produce optimum motor torque. Proper commutation means the relationship of the Rotor to the Stator
must be known at all times.

l In brush-type motors, commutation is done electromechanically through the brushes and
commutator.

l In brushless motors, commutation is done by the switching electronics using rotor position
information obtained by Hall sensors, single turn absolute encoder or a resolver.

Controller

A term describing a functional block containing an amplifier, power supplies and possibly
position-control electronics for operating a servomotor or step motor.

Current at Peak Torque (IPK) (Amperes)

The amount of input current required to develop peak torque. This is often outside the linear
torque/current relationship.

Current, Rated

The maximum allowable continuous current a motor can handle without exceeding motor temperature
limits.

Detent Torque

The maximum torque that can be applied to a non-energized step motor without causing continuous
rotating motion.

Duty Cycle

For a repetitive cycle, the ratio of on time to total cycle time.

Duty cycle (%) = [On time / (On time + Off time)] x 100%

Dynamic Braking

A passive technique for stopping a permanent magnet brush or brushless motor. The motor windings
are shorted together through a resistor which results in motor braking with an exponential decrease in
speed.

Efficiency

The ratio of power output to power input.

Electrical Time Constant (te) (Seconds)

The time required for current to reach 63.2% of its final value for a fixed voltage level. It can be
calculated from the relationship

te=L/R

Where L is inductance (henries) and R is resistance (ohms).

Appendix: Glossary

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 910 of 969

Encoder

A feedback device that converts mechanical motion into electronic signals. The most commonly used
rotary encoders output digital pulses corresponding to incremental angular motion. For example, a
1000-line encoder produces 1000 pulses every mechanical revolution. The encoder consists of a glass
or metal wheel with alternating transparent and opaque stripes, detected by optical sensors to produce
the digital outputs.

Feedback

A signal which is transferred from the output back to the input for use in a closed loop system.

Form Factor

The ratio of RMS current to average current. This number is a measure of the current ripple in a SCR or
other switch-mode type of drive. Because motor heating is a function of RMS current while motor
torque is a function of average current, a form factor greater than 1.00 means some fraction of motor
current is producing heat but not torque.

Four Quadrant

Refers to a motion system which can operate in all four quadrants, i.e., velocity in either direction and
torque in either direction. This means that the motor can accelerate, run and decelerate in either
direction.

Friction

A resistance to motion caused by contact with a surface. Friction can be constant with varying speed
(Coulomb friction) or proportional to speed (viscous friction).

Hall Sensor

A feedback device which is used in a brushless servo system to provide information for the amplifier to
electronically commutate the motor. The device uses a magnetized wheel and Hall effect sensors to
generate the commutation signals.

Holding Torque

Holding torque (sometimes called static torque) specifies the maximum external torque that can be
applied to a stopped, energized motor without causing the rotor to move. Typically used as a feature
specification when comparing motors.

Horsepower

A unit of measure of power. One horsepower is equal to 746 watts. The measurement of rotary power
must take speed and torque into account. Horsepower is a measure of a motor’s torque and speed
capability. The formula is:

HP = Torque (lb-in.) x Speed (RPM)/63,025

HP = Torque (lb-ft.) x Speed (RPM)/5,252

HP = Volts x Amps x Efficiency/746

Appendix: Glossary

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 911 of 969

Inductance (L) (mH - millihenries line-to-line)

The property of a circuit that has a tendency to resist current flow when no current is flowing, and
when current is flowing has a tendency to maintain that current flow. It is the electrical equivalent to
mechanical inertia.

Inductance (mutual)

Mutual inductance is the property that exists between two current-carrying conductors (or coils) when
a change in current in one induces a voltage in the other.

Inertia

The property of an object to resist change in velocity unless acted on by an outside force. Higher-
inertia objects require larger torques to accelerate and decelerate. Inertia is dependent on the mass
and shape of the object.

Inertial Match

The reflected inertia of the load is equal to the rotor inertia of the motor. For most efficient operation,
a system coupling ratio should be selected that provides this condition.

Controller (/ Follower)

The device that is controlling the downstream device(s), or follower(s). For example, it could be a PLC
controlling one or more SmartMotors and other devices (e.g., through fieldbus communications), a
SmartMotor controlling other SmartMotors (e.g., Combitronic communications). Controller, in Follow
mode or Cam mode, refers to the encoder source input.

Open-loop

A system in which there is no feedback. Motor motion is expected to faithfully respond to the input
command. Stepping motor systems are an example of open-loop control.

Overload Capacity

The ability of a drive to withstand currents above its continuous rating. It is defined by NEMA (National
Electrical Manufacturers Association) as 150% of the rated full-load current for "standard industrial
DC motors" for one minute.

Peak torque (Tpk) (lb-in.)

The maximum torque a brushless motor can deliver for short periods of time. Operating
permanent-magnet motors above the maximum torque value can cause demagnetization of the
rare-earth magnets. This is an irreversible effect that will alter the motor characteristics and degrade
performance. It is also known as peak current. This should not be confused with system peak torque,
which is often determined by amplifier peak-current limitations, where peak current is typically two
times continuous current.

Poles

Refers to the number of magnetic poles arranged on the rotor of the brushless motor. Unlike an AC
motor, the number of poles has no direct relationship to the base speed of the motor.

Appendix: Glossary

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 912 of 969

Power

The rate at which work is done. In motion control, power is equal to torque multiplied by speed.

Power (watts) = force x distance/time
Power = voltage x current

Power Factor

Ratio of true power (kW) to apparent power (kVA).

Pulse Rate

The frequency of the step pulses applied to a step motor driver. The pulse rate, multiplied by the
resolution of the motor/driver combination (in steps per revolution), yields the rotational speed in
revolutions per second.

Pulse Width Modulation (PWM)

Describes a switch-mode (as opposed to linear) control technique used in amplifiers and drivers to
control motor voltage and current.

Ramp, Ramp Up, Ramp Down

The whole or ascend/descend parts, respectively, of the Trapezoidal Move Profile (TMP), which is
associated with follow or cam modes. The complete motion profile is defined by an ascend (ramp up)
part, the slew part, and the descend (ramp down) part. See the diagram Trapezoidal Move Profile
(TMP) and Output Position Diagrams on page 144.

Read / Read-Write

Read (or read-only): the system can read data from a file or device but not write data to the file or
device.

Read-Write: the system can read data from or write data to a file or device.

Regeneration

The action during motor braking, in which the motor acts as a generator and takes kinetic energy from
the load, converts it to electrical energy and returns it to the amplifier.

Repeatability

The degree to which a parameter such as position or velocity can be duplicated.

Resolution

The smallest increment into which a parameter can be broken down. For example, a 1000-line encoder
has a resolution of 1/1000 of a revolution.

Resonance

Oscillatory behavior caused by mechanical or electromechanical harmonics and limitations.

Ringing

Oscillation of a system after a sudden change in state.

Appendix: Glossary

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 913 of 969

RMS Current - Root Mean Square Current

In an intermittent duty-cycle application, the RMS current is equal to the value of steady state current
that would produce the equivalent motor heating over a period of time.

RMS Torque - Root Mean Square Torque

In an intermittent duty-cycle application, the RMS torque is equal to the value of steady state torque
that would produce the equivalent motor heating over a period of time.

Rotor

The moving part of the motor, consisting of the shaft and magnets. These magnets are analogous to the
field winding of a brush-type DC motor.

Settling Time

The time required for a parameter to stop oscillating or ringing and reach its final value.

Follower (/ Controller)

One or more devices that are being controlling by an upstream device, or controller. For example, it
could be one or more SmartMotors and other devices being controlled by a PLC (e.g., via fieldbus
communications), one or more SmartMotors being controlled by a SmartMotor (e.g., Combitronic
communications). Follower, in Follow mode or Cam mode, refers to the intermediate counts produced
by the trapezoidal move profile.

Speed

Describes the linear or rotational velocity of a motor or other object in motion.

Stall Torque

The amount of torque developed with voltage applied and the shaft locked or not rotating. Also known
as locked-rotor torque.

Stator

The nonmoving part of the motor. Specifically, it is the iron core with the wire winding in it that is
pressed into the frame shell. The winding pattern determines the voltage constant of the motor.

Stiffness

The ability to resist movement induced by an applied torque. Stiffness is often specified as a torque
displacement curve, indicating the amount a motor shaft will rotate upon application of a known
external force when stopped.

Torque

A measure of angular force which produces rotational motion. This force is defined by a linear force
multiplied by a radius, e.g., lb-in. The formula is:

Torque (lb-ft.) = 5,250 x HP/RPM

Appendix: Glossary

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 914 of 969

Torque Constant (KT = lb-ft./A)

An expression of the relationship between input current and output torque. For each ampere of current,
a fixed amount of torque is produced.

NOTE: Torque constants are not linear over the operating range of a motor. They apply best at
approximately 75% of no-load maximum speed or where the peak and continuous torque curves
meet.

Torque-to-Inertia Ratio

Defined as the motor’s holding torque divided by the inertia of its rotor. The higher the ratio, the higher
a motor’s maximum acceleration capability will be.

Trapezoidal Move Profile (TMP)

The motion profile defined by an ascend (ramp up) part, a slew part and descend (ramp down) part,
which are associated with follow or cam modes. Also, referred to in whole as "ramp", and as "ramp up"
and "ramp down" for the ascend and descend parts, respectively. See the diagram Trapezoidal Move
Profile (TMP) and Output Position Diagrams on page 144.

Velocity

The change in position as a function of time. Velocity has both a magnitude and sign.

Voltage Constant (KE) (V/kRPM peak, line-to-line)

May also be termed Back-EMF constant. When a motor is operated, it generates a voltage proportional
to speed but opposing the applied voltage. The shape of the voltage waveform depends on the specific
motor design. For example, in a brushless motor, the wave shape may be trapezoidal or sinusoidal.

Appendix: Glossary

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 915 of 969

Math Operators
The next table shows the math operators that are available for the SmartMotor.

Operator Description
Basic operations:

+ Add
- Subtract
* Multiply
/ Divide

Logical operations:
> Greater than
< Less than

== Equal to
<= Less than or equal to
>= Greater than or equal to

Integer operations:
^ Power limited to 4th power and below, integers only
& Bitwise AND
| Bitwise inclusive OR

!| Bitwise exclusive OR
!= Not equal to
% Modulo (remainder) division

SQRT(value) Integer square root
ABS(value) Integer absolute value

Floating-point functions:
FSQRT(value) Floating-point square root
FABS(value) Floating-point absolute value

SIN(value) Floating-point sine
COS(value) Floating-point cosine
TAN(value) Floating-point tangent
ASIN(value) Floating-point arcsine
ACOS(value) Floating-point arccosine
ATAN(value) Floating-point arctangent

PI Floating-point representation of pi

Appendix: Math Operators

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 916 of 969

Moment of Inertia
A basic understanding of Moment of Inertia serves well in ensuring proper SmartMotor™ sizing. It is one
thing to look at static points on torque curves, but it is altogether different when considering the
dynamic aspects of loads being accelerated at high rates.

l The inertial mass of an object is a measure of its resistance to a change in its velocity.

l The Moment of Inertia of an object is at a point of reference of rotation, which is at the pivot
point or axis of rotation.

l The Moment of Inertia can, therefore, be thought of as a measure of the resistance to any
change in rotational speed.

For linear systems, the rate of change of speed (acceleration) is proportional to the force applied.
Double the mass requires double the force to achieve the same acceleration. Similarly, for rotational
systems, the angular acceleration of the load is proportional to the torque applied. Double the Moment
of Inertia and the torque needs to be doubled for the same angular acceleration. Moment of Inertia is,
therefore, a measure of a load’s resistance to angular speed change, or how much effort (torque) is
required to cause acceleration or deceleration.

Matching Motor to Load
A common rule of thumb for SmartMotor sizing is that the load should have no more than ten times the
Moment of Inertia of the motor rotor that is driving it. This provides a good starting point and typically
allows for safe sizing over a wide range of applications.

A rotating load wants to maintain the same velocity. Therefore, when a motor attempts to accelerate
the load, it must overcome the Moment of Inertia of that load by applying additional torque to increase
the speed. As a result, it takes more torque to change speed than it does to maintain a given speed.

In the same manner, for the motor to decelerate the load, the load’s Moment of Inertia wants to keep
the motor going the same speed and will, in effect, back-drive the motor, which turns it into a
generator.

CAUTION: In extreme cases, back-drive can result in overvoltage damage to the
motor's drive stage.

Improving the Moment of Inertia Ratio
Adding gear reduction to a motor gives it more leverage to prevent back-driving and also provides an
advantage in accelerating a load up to speed.

Any given change in gear reduction results in a proportional change in speed and static torque, but
results in a squared change in acceleration and dynamic rate of change of torque. The result is that by
adding gear ratio you gain a squared decrease in the ratio of Moment of Inertia between motor and
load.

Therefore, through gear reduction, the motor has a greater advantage in both accelerating and
decelerating the load. Gear reduction adds protection against damage to the overall system.

Appendix: Moment of Inertia

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 917 of 969

RCAN, RCHN and RMODE Status
This section provides the information for decoding the RCAN status, RCHN status and RMODE status.

RCAN Status Decoder
The next table provides a "decoder" for the RCAN (CAN port) status. When a general CAN port error is
flagged, you can use the information in the table to decode the RCAN command result or the
{variable}=CAN result in a program.

Description Value Bit
CAN Power Okay 1 0
DeviceNet Com fault occurred 2 1*
DeviceNet Power ignore option enabled 4 2
Reserved 8 3
User attempted to do Combitronics read from broadcast address 16 4*
Combitronics debug, internal issue 32 5*
Timeout (Combitronics Client) 64 6*
Combitronics server ran out of buffer slots 128 7*
Errors reached warning level 256 8*
Receive Errors reached warning level 512 9*
Transmit Errors reached warning level 1024 10*
Receive Passive Error 2048 11*
Transmit Passive Error (cable issue) 4096 12*
Bus Off Error 8192 13*
RX buffer 1 overflowed 16384 14*
RX buffer 0 overflowed 32768 15*
*Indicates an error bit

For more details on SmartMotor homing operations, see the SmartMotor Homing Procedures and
Methods Application Note.

RCHN Status Decoder
The next table provides a "decoder" for the RCHN (serial port) status. Like the RCAN (CAN port) status,
you can use this information to decode general RS-232 or RS-485 serial port status information. Note
that:

l RCHN(n) or =CHN(n) where n is the id of the serial port.

l It returns an integer; only the lower four bits indicate the state of the error.

Description Value Bit
Buffer Overflow Error 1 0
Framing Error 2 1
N/A 4 2
Parity Error 8 3
Timeout 16 4

Appendix: RCAN, RCHN and RMODE Status

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 918 of 969

Clearing Serial Port Errors

It is up to the user to read which port caused the error using RCHN(n).
l Use Z(2,0) to clear communication errors on port 0

l Use Z(2,1) to clear communication errors on port 1

The Status Word 2 "Error channel 0" and "Error channel 1" bits will indicate if any error has occurred on
that port. Those status bits will be cleared when the communications error is cleared using one of the
commands listed above.

RMODE Status Decoder
The next table provides a "decoder" for the RMODE, RMODE(1) and RMODE(2) status. The MODE
command contains integer values for the current operating mode. Issuing RMODE or {variable}=MODE
will return a value according to the present drive mode status.

NOTE: When running dual trajectory generators, RMODE(1) applies to Trajectory Generator 1, and
RMODE(2) applies to trajectory Generator 2. RMODE, RMODE(1) and RMODE(2) all use the same
values for mode descriptions where they apply.

Description Value Mode
Mixed Mode -5 Mixed Mode
Electronic Camming -4 Cam Mode
Step and Direction Mode -3 STEPDIR
Electronic Gearing -2 FOLLOW
Future Use -1 N/A
N/A 0 NOMODE
(MP command, default on startup) 1 POSITION
Future Use 2 N/A
(MV command) 3 VELOCITY
(MT command) 4 TORQUE
Future Use 5 N/A
Future Use 6 HOMING
(Profiling via CANopen only, at this point) 7 INTPOSITION
Future Use 8 N/A
Future Use 9 N/A

Mode Status Example

These are some examples of capturing the current value of MODE:

x=MODE 'Sets the variable x equal to the value of the current mode.
IF MODE==1 'Executes the IF structure when mode equals the specified value.
WHILE MODE==4 'Executes the WHILE loop when the mode equals the specified
value.

Appendix: Clearing Serial Port Errors

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 919 of 969

Scale Factor Calculation
This section provides information on using Sample Rates and Encoder Resolution to calculate scale
factors.

Sample Rates
NOTE: For Class 6 SmartMotors, the sample rate is fixed at 16,000 Hz (16 kHz).

Native units for all SmartMotors are in Encoder Counts per sample. A "sample" is considered the time
period during which encoder position data is collected. These are related commands:

l SAMP is a read-only command that returns the value of the sample rate in cycles per second and
is affected by the PID command. For example:

x=SAMP 'Set x equal to the sample rate

NOTE: There is no SAMP= command.
l RSAMP reports the sample rate in values of samples per second to the SMI terminal window or

other user interface. For example:

RSAMP 'Report the sample rate to the user's screen.

For example, if you issues RSAMP and it returns 8000, then the motor collects position samples 8000
times per second. The default sample rate is 8000 samples per second, but it can be adjusted, as
described in the next section.

PID Sample Rate Command
NOTE: This feature is not available for Class 6 SmartMotors.

The SmartMotor controllers default to 8000 samples per second, but it is adjustable by use of the PID
command. The command PID2 is the default. However, the commands PID1, PID4, and PID8 are also
available.

This table provides a list of sample rates for each of the PID commands:

PID
Command

Samples
per Second

Value
SAMP

RSAMP
Returns:

PID8 2000 2000 2000
PID4 4000 4000 4000
PID2 8000 8000 8000
PID1 16000 16000 16000

Encoder Resolution and the RES Parameter
These commands are used to report encoder resolution:

l RES is a read-only command that reports the encoder resolution that will be experienced by the
user (i.e., the change in RPA as the motor makes one shaft revolution). The values stored in the
EEPROM fields for encoder resolution may not be a reliable source of information due to pre-
scaling in the encoder firmware. For example:

x=RES 'Set x equal to the encoder resolution.

NOTE: There is no RES= command.

Appendix: Scale Factor Calculation

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 920 of 969

l RRES reports encoder resolution to the SMI terminal window or other user interface. This value
is set at the factory and cannot be changed. For example:

RRES 'Report encoder resolution to the user's
screen.

NOTE: The typical resolution is 4000 for SmartMotors with a NEMA 23 or smaller frame size; it is
8000 for the larger SmartMotors. However, depending on purchase options, this may not always be
the case. Therefore, always issue the RRES command to verify the resolution.

Native Velocity and Acceleration Units
The next table shows the units for native Velocity Target (VT) and native Acceleration Target (AT).

Native Velocity Target units (VT) are: (Encoder Counts/sample) * 65536
Native Acceleration Target units (AT) are: (Encoder Counts/sample/sample) * 65536

Velocity Calculations
If you know the desired revolutions per second (RPS) and want to set Velocity Target (VT), use this
equation:

If you wish to calculate velocity in real world units from native units:

NOTE: The system value is Actual Velocity (VA). You can issue RVA to report actual velocity of the
system in real time, but it will return native units.

The previous equation may be used with either VT or VA.

Acceleration Calculations
If you know your desired Revolutions per second per second (RPSS) and want to set Accel Target (AT):

NOTE: The same calculation works for acceleration or deceleration, so it may be applied to AT, DT,
and combined ADT parameters.

If you wish to calculate Acceleration in real world units from native units:

NOTE: At this time, there is no method for reporting actual real-time acceleration in Class 5
SmartMotors.

The previous equation may be used with either AT or DT.

Appendix: Native Velocity and Acceleration Units

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 921 of 969

Status Words - SmartMotor
This section provides the descriptions of the status words for the SmartMotor. For DS2020
Combitronic system fault and status words, see Fault and Status Words - DS2020 Combitronic System
on page 932.

To use the status words:
l The RB(sw,b) command will report the status bit "b" from status word "sw".

l The RW(x) command will report the 16-bit value of Status Word x. For example, RW(0) will
report the 16-bit value of Status Word 0, RW(1) will report the 16-bit value of Status Word 1,
and so on.

l You can assign the 16-bit result to a variable: a=W(x).

For example, the next code snippet prints the status "Drive ready and OFF." if the "value" (from the
Value column) is equal to "3" (value 1, Drive Ready + value 2, Bo: Motor is off). See the next table
(Status Word: 0) for these values.

IF W(0)&3
PRINT ("Drive ready and OFF.")

ENDIF

Status Word 0: Primary Fault/Status Indicator
Description Bit To Clear Value Bit To read Assign Related Commands

Drive Ready 1 0 RB(0,0) =B(0,0)
Bo: Motor is off (indicator) Bo 2 1 RB(0,1) =B(0,1) OFF
Bt: Trajectory in progress (indicator) Bt 4 2 RB(0,2) =B(0,2) G, TWAIT, GS, TSWAIT
Servo Bus Voltage Fault Z(0,3), ZS 8 3 RB(0,3) =B(0,3)
Peak Over Current occurred Ba Z(0,4), Za, ZS 16 4 RB(0,4) =B(0,4)
Excessive Temperature fault latch Bh Z(0,5), Zh, ZS 32 5 RB(0,5) =B(0,5) TH={temp in degrees C} (85 Deg. Default)
Excessive Position Error Fault Be Z(0,6), Ze, ZS 64 6 RB(0,6) =B(0,6) EA, REA, EL, EL={value in encoder counts}
Velocity Limit Fault Bv Z(0,7), Zv, ZS 128 7 RB(0,7) =B(0,7) VL={value in RPM}, RVL
Real-time temperature limit 256 8 RB(0,8) =B(0,8)
Derivative Error Limit (dE/dt) Fault Z(0,9), ZS 512 9 RB(0,9) =B(0,9) RDEL, DEL={value in velocity units}
Hardware Limit Positive Enabled 1024 10 RB(0,10) =B(0,10) EILP(2), EIGN(2), EIGN(W,2), FSA()
Hardware Limit Negative Enabled 2048 11 RB(0,11) =B(0,11) EILN(3), EIGN(3), EIGN(W,3), FSA()
Historical Right Limit (+ or Positive) Br Z(0,12), Zr, ZS 4096 12 RB(0,12) =B(0,12) EILP(2), EIGN(2), EIGN(W,2), FSA()
Historical Left Limit (- or Negative) Bl Z(0,13), Zl, ZS 8192 13 RB(0,13) =B(0,13) EILN(3), EIGN(3), EIGN(W,3), FSA()
Right (+ or Positive) Limit Asserted Bp 16384 14 RB(0,14) =B(0,14) RIN(2)
Left Limit (- or Negative) Asserted Bm 32768 15 RB(0,15) =B(0,15) RIN(3)

Appendix: Status Words - SmartMotor

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 922 of 969

Status Word 1: Index Registration and Software Travel Limits
Description Bit To Clear Value Bit To read Assign Related

Commands
Rise Capture Encoder(0) Armed 1 0 RB(1,0) =B(1,0) Ai(0)
Fall Capture Encoder(0) Armed 2 1 RB(1,1) =B(1,1) Aj(0)
Rising edge captured ENC(0) (historical bit) Bi(0) Z(1,2), ZS 4 2 RB(1,2) =B(1,2)
Falling edge captured ENC(0) (historical bit) Bj(0) Z(1,3), ZS 8 3 RB(1,3) =B(1,3)
Rise Capture Encoder(1) Armed 16 4 RB(1,4) =B(1,4) Ai(1)
Fall Capture Encoder(1) Armed 32 5 RB(1,5) =B(1,5) Aj(1)
Rising edge captured ENC(1) (historical bit) Bi(1) Z(1,6), ZS 64 6 RB(1,6) =B(1,6)
Falling edge captured ENC(1) (historical bit) Bj(1) Z(1,7), ZS 128 7 RB(1,7) =B(1,7)
Capture input state 0 (indicator) Bx(0) 256 8 RB(1,8) =B(1,8)
Capture input state 1 (indicator) Bx(1) 512 9 RB(1,9) =B(1,9)
Software Travel Limits Enabled 1024 10 RB(1,10) =B(1,10) SLE, SLD, SLM(mode)
Soft limit mode (indicator): 0-Don’t Stop. 1-
Cause Fault. Default is 1 2048 11 RB(1,11) =B(1,11) SLM(mode)

Historical positive software overtravel limit Brs Z(1,12), Zrs,
ZS 4096 12 RB(1,12) =B(1,12) SLP=formula, RSLP

Historical negative software overtravel limit Bls Z(1,13), Zls,
ZS 8192 13 RB(1,13) =B(1,13) SLN=formula, RSLN

Real time positive soft limit (indicator) Bps 16384 14 RB(1,14) =B(1,14) RBps
Real time negative soft limit (indicator) Bms 32768 15 RB(1,15) =B(1,15) RBms

Status Word 2: Communications, Program and Memory
Description Bit To Clear Value Bit To read Assign Related Commands

Error on Communications
Channel 0 Z(2,0), ZS 1 0 RB(2,0) =B(2,0) RCHN(0), OCHN(), CCHN(), BAUD(0)=

Error on Communications
Channel 1 Z(2,1), ZS 2 1 RB(2,1) =B(2,1) RCHN(1), OCHN(), CCHN(),, BAUD(1)=

USB Error (Class 6 only) Z(2,2), ZS 4 2 RB(2,2) =B(2,2)
Reserved 3 8 3 RB(2,3) =B(2,3)
CAN Port Error Z(2,4), ZS 16 4 RB(2,4) =B(2,4) RCAN, CBAUD, CADDR
Reserved 5 32 5 RB(2,5) =B(2,5)
Ethernet Error (Class 6 only) Z(2,6) 64 6 RB(2,6) =B(2,6)

I²C Running 128 7 RB(2,7) =B(2,7) PRINT1(), GETCHR1,
OCHN(), CCHN()

Watchdog Event 256 8 RB(2,8) =B(2,8)
ADB (Animatics Data Block)
Bad Checksum 512 9 RB(2,9) =B(2,9)

Program Running 1024 10 RB(2,10) =B(2,10) RUN, RUN?, PAUSE, RESUME, END, GOTO,
GOSUB, RETURN, Z

Trace in Progress 2048 11 RB(2,11) =B(2,11)
EE Write Buffer Overflow Z(2,12) 4096 12 RB(2,12) =B(2,12) EPTR=, VST(), VLD()
EE Busy 8192 13 RB(2,13) =B(2,13) EPTR=, VST(), VLD()

Command Syntax Error Bs Z(2,14), Zs,
ZS 16384 14 RB(2,14) =B(2,14) RERRC, =ERRC, RERRW, =ERRW

Program Checksum Error Bk 32768 15 RB(2,15) =B(2,15)

Appendix: Status Word 1: Index Registration and Software Travel Limits

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 923 of 969

Status Word 3: PID State, Brake, Move Generation Indicators
Description Bit To Clear Value Bit To read Assign Related Commands

Reserved 0 1 0 RB(3,0) =B(3,0)
Torque Saturation 2 1 RB(3,1) =B(3,1)
Voltage Saturation 4 2 RB(3,2) =B(3,2)

Wraparound Occurred Bw Z(3,3), Zw,
ZS 8 3 RB(3,3) =B(3,3)

KG Enabled 16 4 RB(3,4) =B(3,4) KG=
Velocity Direction 32 5 RB(3,5) =B(3,5) VT=
Torque Direction 64 6 RB(3,6) =B(3,6)
I/O Fault Latch Z(3,7) 128 7 RB(3,7) =B(3,7)
Relative Position Mode 256 8 RB(3,8) =B(3,8)
Reserved 9 512 9 RB(3,9) =B(3,9) X, X(1), X(2), MFSDC()
Peak Current Saturation 1024 10 RB(3,10) =B(3,10)
Modulo Rollover Z(3,11), ZS 2048 11 RB(3,11) =B(3,11) PML, PMA

Brake Asserted 4096 12 RB(3,12) =B(3,12) BRKSRV, BRKTRJ, BRKENG, BRKRLS,
EOBK()

Brake OK 8192 13 RB(3,13) =B(3,13)
External Go Enabled 16384 14 RB(3,14) =B(3,14) EISM(6)
Velocity Target Reached 32768 15 RB(3,15) =B(3,15) VT=

Status Word 4: Interrupt Timers
Description Bit To Clear Value Bit To read Assign Related Commands

Timer 0 1 0 RB(4,0) =B(4,0) TMR(0,#)
Timer 1 2 1 RB(4,1) =B(4,1) TMR(1,#)
Timer 2 4 2 RB(4,2) =B(4,2) TMR(2,#)
Timer 3 8 3 RB(4,3) =B(4,3) TMR(3,#)
Reserved 16 4 RB(4,4) =B(4,4)
Reserved 32 5 RB(4,5) =B(4,5)
Reserved 64 6 RB(4,6) =B(4,6)
Reserved 128 7 RB(4,7) =B(4,7)
Timer 8 256 8 RB(4,8) =B(4,8) TMR(8,#)
Drive enabled 512 9 RB(4,9) =B(4,9)
Command request timeout 1024 10 RB(4,10) =B(4,10)
Fault handling enabled 2048 11 RB(4,11) =B(4,11)
Group fault 4096 12 RB(4,12) =B(4,12)
Group ready 8192 13 RB(4,13) =B(4,13)
Remote fault 16384 14 RB(4,14) =B(4,14)
Timeout event 32768 15 RB(4,15) =B(4,15)

Appendix: Status Word 3: PID State, Brake, Move Generation Indicators

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 924 of 969

Status Word 5: Interrupt Status Indicators
Description Bit To Clear Value Bit To read Assign Related Commands

Interrupt 0 enabled 1 0 RB(5,0) =B(5,0) ITR(), EITR(), ITRE, ITRD
Interrupt 1 enabled 2 1 RB(5,1) =B(5,1) ITR(), EITR(), ITRE, ITRD
Interrupt 2 enabled 4 2 RB(5,2) =B(5,2) ITR(), EITR(), ITRE, ITRD
Interrupt 3 enabled 8 3 RB(5,3) =B(5,3) ITR(), EITR(), ITRE, ITRD
Interrupt 4 enabled 16 4 RB(5,4) =B(5,4) ITR(), EITR(), ITRE, ITRD
Interrupt 5 enabled 32 5 RB(5,5) =B(5,5) ITR(), EITR(), ITRE, ITRD
Interrupt 6 enabled 64 6 RB(5,6) =B(5,6) ITR(), EITR(), ITRE, ITRD
Interrupt 7 enabled 128 7 RB(5,7) =B(5,7) ITR(), EITR(), ITRE, ITRD
Reserved 256 8 RB(5,8) =B(5,8)
Reserved 512 9 RB(5,9) =B(5,9)
Reserved 1024 10 RB(5,10) =B(5,10)
Reserved 2048 11 RB(5,11) =B(5,11)
Reserved 4096 12 RB(5,12) =B(5,12)
Reserved 8192 13 RB(5,13) =B(5,13)
Reserved 16384 14 RB(5,14) =B(5,14)
Interrupts Enabled 32768 15 RB(5,15) =B(5,15) ITRE, ITRD

Status Word 6: Drive Modes
Description Bit To Clear Value Bit To read Assign Related Commands

Trap Mode 1 0 RB(6,0) =B(6,0) MDT
Enhanced Trap Mode 2 1 RB(6,1) =B(6,1) MDE
Sine Mode 4 2 RB(6,2) =B(6,2) MDS
Vector Control 8 3 RB(6,3) =B(6,3)
Reserved 4 16 4 RB(6,4) =B(6,4)
Feedback Fault1 Z(6,5), ZS 32 5 RB(6,5) =B(6,5) MDT, MDE, MDS, MDC
MDH mode active 64 6 RB(6,6) =B(6,6)
Drive Enable Fault Z(6,7), ZS 128 7 RB(6,7) =B(6,7)
Angle Match 256 8 RB(6,8) =B(6,8)
TOB Enabled 512 9 RB(6,9) =B(6,9) MDE, MDB
Inverted 1024 10 RB(6,10) =B(6,10) MINV()
MTB Active 2048 11 RB(6,11) =B(6,11) MTB, FSA()
ABS Battery Fault 4096 12 RB(6,12) =B(6,12) ENCCTL()
Low Bus Voltage Z(6,13), ZS 8192 13 RB(6,13) =B(6,13)
High Bus Voltage Z(6,14), ZS 16384 14 RB(6,14) =B(6,14)
Regen Active 32768 15 RB(6,15) =B(6,15)
1. Defaults as health check of internal encoder. Other use depends on encoder mode (ENC0 or ENC1) and firm-
ware version. Set due to hardware problems with internal encoder (or external encoder when in ENC1 mode).
Contact factory for more details.

Appendix: Status Word 5: Interrupt Status Indicators

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 925 of 969

Status Word 7: Multiple Trajectory Support
Description Bit To Clear Value Bit To read Assign Related Commands

TG1 In Progress 1 0 RB(7,0) =B(7,0) G(1), X(1), MP(1), MV(1)
TG1 Accel/Ascend 2 1 RB(7,1) =B(7,1) G(1), X(1), MP(1), MV(1)
TG1 Slewing 4 2 RB(7,2) =B(7,2) G(1), X(1), MP(1), MV(1)
TG1 Decel/Descend 8 3 RB(7,3) =B(7,3) G(1), X(1), MP(1), MV(1)
TG1 Reserved/Dwell 16 4 RB(7,4) =B(7,4)
Reserved 5 32 5 RB(7,5) =B(7,5)
Reserved 6 64 6 RB(7,6) =B(7,6)
Reserved 7 128 7 RB(7,7) =B(7,7)
TG2 In Progress 256 8 RB(7,8) =B(7,8) G(2), X(2), MFR(2), MC(2), MFSDC(), MFSLEW()
TG2 Accel/Ascend 512 9 RB(7,9) =B(7,9) G(2), X(2), MFR(2), MC(2), MFSDC(), MFSLEW()

TG2 Slewing 1024 10 RB
(7,10) =B(7,10) G(2), X(2), MFR(2), MC(2), MFSDC(), MFSLEW()

TG2 Decel/Descend 2048 11 RB
(7,11) =B(7,11) G(2), X(2), MFR(2), MC(2), MFSDC(), MFSLEW()

TG2 Dwell (or higher Dwell in pro-
gress) 4096 12 RB

(7,12) =B(7,12) G(2), X(2), MFR(2), MC(2), MFSDC(), MFSLEW(), MFH,
MFHTP

Traverse Direction, 0:Fwd, 1:Rev 8192 13 RB
(7,13) =B(7,13) MFCTP()

Traverse Lower Dwell in Progress 16384 14 RB
(7,14) =B(7,14) MFSDC(), MFL, MFLTP

TS WAIT 32768 15 RB
(7,15) =B(7,15) PTS(), PRTS(), GS, X, TSWAIT

Appendix: Status Word 7: Multiple Trajectory Support

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 926 of 969

Status Word 8: Cam Support
Description Bit To Clear Value Bit To read Assign Related Commands

Cam User Bit 0 1 0 RB(8,0) =B(8,0) CTW()
Cam User Bit 1 2 1 RB(8,1) =B(8,1) CTW()
Cam User Bit 2 4 2 RB(8,2) =B(8,2) CTW()
Cam User Bit 3 8 3 RB(8,3) =B(8,3) CTW()
Cam User Bit 4 16 4 RB(8,4) =B(8,4) CTW()
Cam User Bit 5 32 5 RB(8,5) =B(8,5) CTW()
Cam Mode 0 64 6 RB(8,6) =B(8,6) MCE()
Cam Mode 1 128 7 RB(8,7) =B(8,7) MCE()
IP User Bit 0 256 8 RB(8,8) =B(8,8)
IP User Bit 1 512 9 RB(8,9) =B(8,9)
IP User Bit 2 1024 10 RB(8,10) =B(8,10)
IP User Bit 3 2048 11 RB(8,11) =B(8,11)
IP User Bit 4 4096 12 RB(8,12) =B(8,12)
IP User Bit 5 8192 13 RB(8,13) =B(8,13)
IP Mode 0 16384 14 RB(8,14) =B(8,14)
IP Mode 1 32768 15 RB(8,15) =B(8,15)

Status Word 9: No Bits Defined (Class 5 Only)
Description Bit To Clear Value Bit To read Assign Related Commands

Reserved 1 0
Reserved 2 1
Reserved 4 2
Reserved 8 3
Reserved 16 4
Reserved 32 5
Reserved 64 6
Reserved 128 7
Reserved 256 8
Reserved 512 9
Reserved 1024 10
Reserved 2048 11
Reserved 4096 12
Reserved 8192 13
Reserved 16384 14
Reserved 32768 15

Status Word 9: SD Card and DMX Information (Class 6 Only)
For more details on DMX, see the Moog Animatics SmartMotor™ DMX Guide.

Description Bit To Clear Value Bit To read Assign Related Com-
mands

SD card present 1 0 RB(9,0) =B(9,0)
SD card busy 2 1 RB(9,1) =B(9,1)
SD card access error Z(9,2) 4 2 RB(9,2) =B(9,2)
SD card user program
found (.smx) 8 3 RB(9,3) =B(9,3)

SD card param.ee found 16 4 RB(9,4) =B(9,4)
SD card encrypted user
program found (.smxe) 32 5 RB(9,5) =B(9,5)

DMX packets seen within
the last second1

Timeout 1
sec of no

valid pack-
ets

64 6 RB(9,6) =B(9,6)

DMX data received2 Z(9,7) 128 7 RB(9,7) =B(9,7)
DMX end of packet Z(9,8) 256 8 RB(9,8) =B(9,8)

Appendix: Status Word 8: Cam Support

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 927 of 969

Description Bit To Clear Value Bit To read Assign Related Com-
mands

received3

Reserved 512 9
Reserved 1024 10
Reserved 2048 11
Reserved 4096 12
Reserved 8192 13
Reserved 16384 14
Reserved 32768 15
1. Set on arrival of any start code; may/not be relevant data.
2. Set when the last expected motor channel arrives, not when entire packet arrives. E.g., if the set channel quantity is 2,
the flag is set when second byte is saved to aw[1]. Allows reaction ASAP on a per motor basis.
3. Set on arrival of last expected host-capable channel when that channel is received. Therefore, a full 512 channel
packet will set this bit at the end of the packet. Allows multiple motors to react to the same event simultaneously (on a
higher DMX slot/channel after getting their data).

Status Word 10: RxPDO Arrival Notification
Description Bit To Clear Value Bit To read Assign Related Commands

Controller enabled 1 0 RB(10,0) =B(10,0)
RxPDO 1 arrived Z(10,1) 2 1 RB(10,1) =B(10,1)
RxPDO 2 arrived Z(10,2) 4 2 RB(10,2) =B(10,2)
RxPDO 3 arrived Z(10,3) 8 3 RB(10,3) =B(10,3)
RxPDO 4 arrived Z(10,4) 16 4 RB(10,4) =B(10,4)
RxPDO 5 arrived Z(10,5) 32 5 RB(10,5) =B(10,5)
Reserved 64 6 RB(10,6) =B(10,6)
Reserved 128 7 RB(10,7) =B(10,7)
Reserved 256 8 RB(10,8) =B(10,8)
Reserved 512 9 RB(10,9) =B(10,9)
Reserved 1024 10 RB(10,10) =B(10,10)
Reserved 2048 11 RB(10,11) =B(10,11)
Reserved 4096 12 RB(10,12) =B(10,12)
Reserved 8192 13 RB(10,13) =B(10,13)
Reserved 16384 14 RB(10,14) =B(10,14)
Reserved 32768 15 RB(10,15) =B(10,15)
The user program should clear these status bits with a Z(10,bit) command, where bit is values 1–5,
after the event handler part of the user program is executed. Bit 0 cannot be cleared—it is an indic-
ation of the controller status.
NOTE: The ZS command will have no effect on these bits.

Appendix: Status Word 10: RxPDO Arrival Notification

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 928 of 969

Status Word 12: DMX Information (Class 5 Only)
NOTE: If DMX is used for Class 5, do not use the spare bits as user-controlled bits. For more details
on DMX, see the Moog Animatics SmartMotor™ DMX Guide.

Description Bit To Clear Value Bit To read Assign Related Commands
DMX packets seen
within the last
second1

Timeout 1 sec
of no valid

packets
1 0 RB(12,0) =B(12,0)

DMX data received2 User: use com-
mand UR(1). 2 1 RB(12,1) =B(12,1)

DMX end of packet
received3

User: use com-
mand UR(2). 4 2 RB(12,2) =B(12,2)

Reserved 8 3 RB(12,3) =B(12,3)
Reserved 16 4 RB(12,4) =B(12,4)
Reserved 32 5 RB(12,5) =B(12,5)
Reserved 64 6 RB(12,6) =B(12,6)
Reserved 128 7 RB(12,7) =B(12,7)
Reserved 256 8 RB(12,8) =B(12,8)
Reserved 512 9 RB(12,9) =B(12,9)
Reserved 1024 10 RB(12,10) =B(12,10)
Reserved 2048 11 RB(12,11) =B(12,11)
Reserved 4096 12 RB(12,12) =B(12,12)
Reserved 8192 13 RB(12,13) =B(12,13)
Reserved 16384 14 RB(12,14) =B(12,14)
Reserved 32768 15 RB(12,15) =B(12,15)
1. Set on arrival of any start code; may/not be relevant data.
2. Set when the last expected motor channel arrives, not when entire packet arrives. E.g., if the set
channel quantity is 2, the flag is set when second byte is saved to aw[1]. Allows reaction ASAP on a
per motor basis.
3. Set on arrival of last expected host-capable channel when that channel is received. Therefore, a
full 512 channel packet will set this bit at the end of the packet. Allows multiple motors to react to
the same event simultaneously (on a higher DMX slot/channel after getting their data).

Status Word 12: User Bits Word 0 (Class 6 Only)
Description Bit To Clear Value Bit To read Assign Related Commands

User Bit 0 1 0 RB(12,0) =B(12,0) US(0), UR(0)
User Bit 1 2 1 RB(12,1) =B(12,1) US(1), UR(1)
User Bit 2 4 2 RB(12,2) =B(12,2) US(2), UR(2)
User Bit 3 8 3 RB(12,3) =B(12,3) US(3), UR(3)
User Bit 4 16 4 RB(12,4) =B(12,4) US(4), UR(4)
User Bit 5 32 5 RB(12,5) =B(12,5) US(5), UR(5)
User Bit 6 64 6 RB(12,6) =B(12,6) US(6), UR(6)
User Bit 7 128 7 RB(12,7) =B(12,7) US(7), UR(7)
User Bit 8 256 8 RB(12,8) =B(12,8) US(8), UR(8)
User Bit 9 512 9 RB(12,9) =B(12,9) US(9), UR(9)
User Bit 10 1024 10 RB(12,10) =B(12,10) US(10), UR(10)
User Bit 11 2048 11 RB(12,11) =B(12,11) US(11), UR(11)
User Bit 12 4096 12 RB(12,12) =B(12,12) US(12), UR(12)
User Bit 13 8192 13 RB(12,13) =B(12,13) US(13), UR(13)
User Bit 14 16384 14 RB(12,14) =B(12,14) US(14), UR(14)
User Bit 15 32768 15 RB(12,15) =B(12,15) US(15), UR(15)

Appendix: Status Word 12: DMX Information (Class 5 Only)

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 929 of 969

Status Word 13: User Bits Word 1
Description Bit To Clear Value Bit To read Assign Related Commands

User Bit 16 1 0 RB(13,0) =B(13,0) US(16), UR(16)
User Bit 17 2 1 RB(13,1) =B(13,1) US(17), UR(17)
User Bit 18 4 2 RB(13,2) =B(13,2) US(18), UR(18)
User Bit 19 8 3 RB(13,3) =B(13,3) US(19), UR(19)
User Bit 20 16 4 RB(13,4) =B(13,4) US(20), UR(20)
User Bit 21 32 5 RB(13,5) =B(13,5) US(21), UR(21)
User Bit 22 64 6 RB(13,6) =B(13,6) US(22), UR(22)
User Bit 23 128 7 RB(13,7) =B(13,7) US(23), UR(23)
User Bit 24 256 8 RB(13,8) =B(13,8) US(24), UR(24)
User Bit 25 512 9 RB(13,9) =B(13,9) US(25), UR(25)
User Bit 26 1024 10 RB(13,10) =B(13,10) US(26), UR(26)
User Bit 27 2048 11 RB(13,11) =B(13,11) US(27), UR(27)
User Bit 28 4096 12 RB(13,12) =B(13,12) US(28), UR(28)
User Bit 29 8192 13 RB(13,13) =B(13,13) US(29), UR(29)
User Bit 30 16384 14 RB(13,14) =B(13,14) US(30), UR(30)
User Bit 31 32768 15 RB(13,15) =B(13,15) US(31), UR(31)

Status Word 16: On Board Local I/O Status: D-Style Motor
Description Bit To Clear Value Bit To read Assign Related Commands

On Board I/O 0 1 0 RB(16,0) =B(16,0) OS(0), OR(0), OUT(0)=
On Board I/O 1 2 1 RB(16,1) =B(16,1) OS(1), OR(1), OUT(1)=
On Board I/O 2 4 2 RB(16,2) =B(16,2) OS(2), OR(2), OUT(2)=
On Board I/O 3 8 3 RB(16,3) =B(16,3) OS(3), OR(3), OUT(3)=
On Board I/O 4 16 4 RB(16,4) =B(16,4) OS(4), OR(4), OUT(4)=
On Board I/O 5 32 5 RB(16,5) =B(16,5) OS(5), OR(5), OUT(5)=
On Board I/O 6 64 6 RB(16,6) =B(16,6) OS(6), OR(6), OUT(6)=
Reserved 7 128 7 RB(16,7) =B(16,7)
Reserved 8 256 8 RB(16,8) =B(16,8)
Reserved 9 512 9 RB(16,9) =B(16,9)
Reserved 10 1024 10 RB(16,10) =B(16,10)
Reserved 11 2048 11 RB(16,11) =B(16,11)
Reserved 12 4096 12 RB(16,12) =B(16,12)
Reserved 13 8192 13 RB(16,13) =B(16,13)
Reserved 14 16384 14 RB(16,14) =B(16,14)
Reserved 15 32768 15 RB(16,15) =B(16,15)

Appendix: Status Word 13: User Bits Word 1

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 930 of 969

Status Word 16: On Board Local I/O Status: M-Style Class 5 Motor
Description Bit To Clear Value Bit To read Assign Related Commands

On Board I/O 0 1 0 RB(16,0) =B(16,0) OS(0), OR(0), OUT(0)=
On Board I/O 1 2 1 RB(16,1) =B(16,1) OS(1), OR(1), OUT(1)=
On Board I/O 2 4 2 RB(16,2) =B(16,2) OS(2), OR(2), OUT(2)=
On Board I/O 3 8 3 RB(16,3) =B(16,3) OS(3), OR(3), OUT(3)=
On Board I/O 4 16 4 RB(16,4) =B(16,4) OS(4), OR(4), OUT(4)=
On Board I/O 5 32 5 RB(16,5) =B(16,5) OS(5), OR(5), OUT(5)=
On Board I/O 6 64 6 RB(16,6) =B(16,6) OS(6), OR(6), OUT(6)=
On Board I/O 7 128 7 RB(16,7) =B(16,7) OS(7), OR(7), OUT(7)=
On Board I/O 8 256 8 RB(16,8) =B(16,8) OS(8), OR(8), OUT(8)=
On Board I/O 9 512 9 RB(16,9) =B(16,9) OS(9), OR(9), OUT(9)=
On Board I/O 10 1024 10 RB(16,10) =B(16,10) OS(10), OR(10), OUT(10)=
Not Fault Output 2048 11 RB(16,11) =B(16,11)
Drive Enable Input 4096 12 RB(16,12) =B(16,12)
Reserved 13 8192 13 RB(16,13) =B(16,13)
Reserved 14 16384 14 RB(16,14) =B(16,14)
Reserved 15 32768 15 RB(16,15) =B(16,15)

Status Word 16: On Board Local I/O Status - Class 6 Motor
Description Bit To

Clear Value Bit To read Assign Related Commands

On Board input 0 1 0 RB(16,0) =B(16,0)
On Board input 1 2 1 RB(16,1) =B(16,1)
On Board input 2 4 2 RB(16,2) =B(16,2)
On Board input 3 8 3 RB(16,3) =B(16,3)
On Board I/O 4* 16 4 RB(16,4) =B(16,4) OS(4), OR(4), OUT(4)=
On Board I/O 5* 32 5 RB(16,5) =B(16,5) OS(5), OR(5), OUT(5)=
On Board input 6 64 6 RB(16,6) =B(16,6)
Drive Enable Input 128 7 RB(16,7) =B(16,7)
Brake output (default),
see EOBK for options. 256 8 RB(16,8) =B(16,8) EOBK(), BRKRLS, BRKENG, BRKSRV,

BRKTRJ, OS(8), OR(8), OUT(8)=
Not Fault Output
(default), see EOFT for
options.

512 9 RB(16,9) =B(16,9) EOFT(), OS(9), OR(9), OUT(9)=

Reserved 10 1024 10 RB(16,10) =B(16,10)
Reserved 11 2048 11 RB(16,11) =B(16,11)
Reserved 12 4096 12 RB(16,12) =B(16,12)
Reserved 13 8192 13 RB(16,13) =B(16,13)
Reserved 14 16384 14 RB(16,14) =B(16,14)
Reserved 15 32768 15 RB(16,15) =B(16,15)
*Consult specific product guide; not all Class 6 models support output on this particular I/O.

Appendix: Status Word 16: On Board Local I/O Status: M-Style Class 5 Motor

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 931 of 969

Status Word 17: Expanded I/O Status - D-Style AD1 Motor
Description Bit To Clear Value Bit To read Assign Related Commands

Exp I/O 16 1 0 RB(17,0) =B(17,0) OS(16), OR(16), OUT(16)=
Exp I/O 17 2 1 RB(17,1) =B(17,1) OS(17), OR(17), OUT(17)=
Exp I/O 18 4 2 RB(17,2) =B(17,2) OS(18), OR(18), OUT(18)=
Exp I/O 19 8 3 RB(17,3) =B(17,3) OS(19), OR(19), OUT(19)=
Exp I/O 20 16 4 RB(17,4) =B(17,4) OS(20), OR(20), OUT(20)=
Exp I/O 21 32 5 RB(17,5) =B(17,5) OS(21), OR(21), OUT(21)=
Exp I/O 22 64 6 RB(17,6) =B(17,6) OS(22), OR(22), OUT(22)=
Exp I/O 23 128 7 RB(17,7) =B(17,7) OS(23), OR(23), OUT(23)=
Exp I/O 24 256 8 RB(17,8) =B(17,8) OS(24), OR(24), OUT(24)=
Exp I/O 25 512 9 RB(17,9) =B(17,9) OS(25), OR(25), OUT(25)=
Reserved 10 1024 10 RB(17,10) =B(17,10)
Reserved 11 2048 11 RB(17,11) =B(17,11)
Reserved 12 4096 12 RB(17,12) =B(17,12)
Reserved 13 8192 13 RB(17,13) =B(17,13)
Reserved 14 16384 14 RB(17,14) =B(17,14)
Reserved 15 32768 15 RB(17,15) =B(17,15)

Appendix: Status Word 17: Expanded I/O Status - D-Style AD1 Motor

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 932 of 969

Fault and Status Words - DS2020 Combitronic System
This section provides the descriptions of the fault and status words for the DS2020 Combitronic
system. For SmartMotor status words, see Status Words - SmartMotor on page 921.

The DS2020 Combitronic system contains the fault/status information:
l Fault words, 0-2, which are reported through the RFAUSTS command, and whose fault reaction is

set through the FSAD command.
l Status words, 0-6, which are reported and assigned like other SmartMotor status words.

Refer to the next sections for details on the Fault and Status words.

Fault Words
During its operation, the DS2020 Combitronic system can signal more than 70 faults, which are
organized into three 32-bit fault words.

Command Description Report
Command Notes

- Returns the fault status word x RFAUSTS(x) x: 0 to 2
FSAD(n,m) Set reaction m (see the list below) to fault

number n (see the fault columns in the Fault
Tables section)

RFSAD(n) n: 1 to 73
m: 0 to 4

For each fault, the desired reaction m can be selected:

m Reaction
0 None
1 Send CANopen emergency message
2 Disable power stage
3 Slow down ramp
4 Quick stop ramp

127 Disable power stage for hard faults, not selectable or editable

l For hard faults, the reaction is always disable power stage. These faults respond to RFSAD(n)
with 127; they behave exactly like faults with code 2.

l Reactions 2, 3, 4 and 127 also send an emergency message.

l Reactions 3, 4, once the ramp is terminated, disable the drive. These two commands act like X, S
with that difference.

Fault Tables

The full list of standard DS2020 faults are shown in these tables; there is one table for each fault word
0 through 2. Note that:

l Red faults cannot occur in the DS2020 Combitronic system with resolver motor.

l The Fault column is the number that identifies the fault in the FSAD and RFSAD commands; the
reaction to a particular fault is based on the m value specified with the FSAD command.

Appendix: Fault and Status Words - DS2020 Combitronic System

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 933 of 969

l Hard faults, 1-8, 12, 13 and 19-21 (shown in Fault Word 0, bold text), are coded with reaction
127 and cannot be changed by the user.

Fault Word 0

bit Fault Fault Name Description Default
Reaction

0 0 Reserved Reserved -
1 1 Short-circuit phase U low IGBT fault phase U low 127
2 2 Short-circuit phase U high IGBT fault phase U high 127
3 3 Short-circuit phase V low IGBT fault phase V low 127
4 4 Short-circuit phase V high IGBT fault phase V high 127
5 5 Short-circuit phase W low IGBT fault phase W low 127
6 6 Short-circuit phase W high IGBT fault phase W high 127
7 7 Short-circuit IGBT recovery Recovery IGBT fault 127
8 8 Gate undervoltage Under voltage of IGBT gate 127
9 9 DC link undervoltage Bus voltage too low 2

10 10 DC link overvoltage Bus voltage too high 2
11 11 Drive overtemperature Temperature of the drive is too high 2
12 12 STO 1 low voltage Supply of STO 1 circuit not detected (fault active in every CiA402 state) 127
13 13 STO 2 low voltage Supply of STO 2 circuit not detected (fault active in every CiA402 state) 127
14 14 EEPROM fault Reading error on the EEPROM or content not valid 2
15 15 Software watchdog Software alarm 2
16 16 Parameter init. error Initialization error 2
17 17 Node ID data memory Not used 2
18 18 User data memory “Customer parameters” region of the memory corrupted / not configured 2
19 19 Restore data memory Not used 127
20 20 Factory data memory “Factory parameters” region of the memory corrupted / not configured 127
21 21 Calibration data memory Not used 127
22 22 Diagnosis data memory "Diagnostic parameters" region of memory corrupted/not configured 0
23 23 Brake feedback fault Brake status signal inconsistent 2
24 24 Motor temperature warning Motor temperature warning 1
25 25 Motor overtemperature Motor temperature fault 2
26 26 Missing feedback config. Standard transducer interface enabled but not configured 2
27 27 Transducer general fault Initialization error or transducer not detected 2
28 28 Sincos values fault Sinusoidal signal amplitude inconsistent 2
29 29 Hiperface position conflict Digital position (Hiperface protocol) inconsistent with calculated position 2
30 30 Hiperface status error Encoder status error (Hiperface protocol) 2
31 31 Hiperface transmit error Encoder transmission error (Hiperface protocol) 2

Fault Word 1

bit Fault Fault Name Description Default
Reaction

0 32 Hiperface receive error Encoder reception error (Hiperface protocol) 2
1 33 EnDat 22 warning message Warning message from EnDat 22 encoder 2
2 34 EnDat 22error 1 message Type 1 error message from EnDat 22 encoder 2
3 35 EnDat 22 error 2 message Type 2 error message from EnDat 22 encoder 2
4 36 EnDat 22 CRC error CRC error from EnDat 22 encoder 2
5 37 EnDat 22 position not ready Position error - not ready from EnDat 22 encoder 2
6 38 EnDat 22 not ready for strobe Strobe error - not ready from EnDat 22 encoder 2
7 39 Resolver sync. fault Resolver signal synchronization error (phase) 2
8 40 Resolver signals fault Signal resolver level error (amplitude) 2
9 41 Synchronization error Irregular frequency of internal interrupt 2

10 42 Interrupt time exceeded Internal interrupt signal not detected 2
11 43 Task time exceeded The execution time of the task has exceeded maximum time 2
12 44 Velocity limit Maximum speed exceeded 2
13 45 Excessive position error Following position error 2

Appendix: Fault Word 0

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 934 of 969

bit Fault Fault Name Description Default
Reaction

14 46 Position reference limit Not used 1
15 47 EtherCAT_link_fault Link EtherCAT not detected 2
16 48 EtherCAT_communication_fault EtherCAT communication generic error 2
17 49 EtherCAT_rpdo_time_out Time out received PDO (EtherCAT) 2
18 50 EtherCAT_rpdo_data Data error received PDO (EtherCAT) 2
19 51 EtherCAT_tpdo_time_out Time out transmitted PDO (EtherCAT) 2
20 52 EtherCAT_tpdo_data Data error transmitted PDO (EtherCAT) 2
21 53 internal_communication_fault Not Used 2
22 54 internal_communication_heartbeat_error Not Used 2
23 55 internal_receive_pdo_time_out Not Used 2
24 56 internal_transmit_pdo_time_out Not Used 2
25 57 Phases_not_ok Not Used 2
26 58 Overcurrent occurred Overcurrent fault 2
27 59 CAN communication fault CAN communication generic error 2
28 60 CAN RPDO0 timed out Time out one received PDO (CAN) 2
29 61 CAN RPDO1 timed out Time out two received PDO (CAN) 2
30 62 CAN RPDO0 data Data error one received PDO (CAN) 2
31 63 CAN RPDO1 data Data error two received PDO (CAN) 2

Fault Word 2

bit Fault Fault Name Description Default
Reaction

0 64 CAN TPDO0 timed out Time out one transmitted PDO (CAN) 2
1 65 CAN TPDO1 timed out Time out two transmitted PDO (CAN) 2
2 66 CAN TPDO0 data Data error one transmitted PDO (CAN) 2
3 67 CAN TPDO1 data Data error two transmitted PDO (CAN) 2
4 68 CAN life guard error Lifeguard time expired (CAN) 2
5 69 CAN sync consumer timed out Sync message timeout (CAN) 2
6 70 External signal fault Fault triggered by digital input 2
7 71 Overfrequency fault Over frequency (no-dual use limitation) 1
8 72 Historical positive H/W limit Positive limit switch asserted 4
9 73 Historical negative H/W limit Negative limit switch asserted 4

Status Words
This section describes the DS2020 Combitronic system's 16-bit status words, which can be reported
and assigned in the same manner as the other SmartMotor status words. For more details, see Status
Words - SmartMotor on page 921.

Status Word 0: Primary Fault/Status Indicator

Status Word 0 is compliant to SmartMotor status word 0, except for bit 9 (dE/dt is not available on the
DS2020 Combitronic system).

bit Fault Fault Name Description
0 - Drive ready Drive is correctly powered, not in fault, and the motor can be moved
1 - Motor is off Power stage is disabled (no PWM is generated)
2 - Trajectory in progress Trajectory generator is generating a trajectory

3 9, 10 Bus voltage fault Overvoltage or undervoltage condition happened (check SW2, bit 8,9 to know which
of them)

4 58 Overcurrent occurred Drive tries to draw more current than its maximum

5 11, 25 Excessive temperature fault Motor or drive temperature is too high (check SW2, bit 10,11 to know which of
them)

6 45 Excessive position error Position error EA exceeded the limit EL
7 44 Velocity limit Velocity exceeded the maximum motor speed.
8 - Real-time temperature limit Motor or drive temperature exceed the limit value.

Appendix: Fault Word 2

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 935 of 969

bit Fault Fault Name Description
9 - - -

10 - Positive H/W limit enabled Positive H/W limit switch is enabled and checked
11 - Negative H/W limit enabled Negative H/W limit switch is enabled and checked
12 72 Historical positive H/W limit Positive H/W limit switch has been hit (latched)
13 73 Historical negative H/W limit Negative H/W limit switch has been hit (latched)
14 - Positive H/W limit asserted Positive H/W limit switch is asserted
15 - Negative H/W limit asserted Negative H/W limit switch is asserted

Status Word 1: Current CiA DS402 State

Status word 1 indicates the current CiA DS402 state (see the Moog Animatics DS2020 Combitronic™
Installation and Startup Guide).

bit Fault Fault Name Description
0 - CiA402: Not ready to switch on CiA DS402 state
1 - CiA402: Switch on disabled CiA DS402 state
2 - CiA402: Ready to switch on CiA DS402 state
3 - CiA402: Switched on CiA DS402 state
4 - CiA402: Operation enabled CiA DS402 state
5 - CiA402: Quick stop active CiA DS402 state
6 - CiA402: Fault reaction active CiA DS402 state
7 - CiA402: Fault CiA DS402 state
8 - Position mode Drive is in Position Mode
9 - Velocity mode Drive is in Velocity Mode

10 - TG: Acceleration Acceleration part of trajectory is in execution
11 - TG: Constant speed Constant speed part of trajectory is in execution
12 - TG: Deceleration Deceleration part of trajectory is in execution
13 12 STO 1 low voltage fault On if supply of STO 1 circuit not detected (historical)
14 13 STO 2 low voltage fault On if supply of STO 2 circuit not detected (historical)
15 - - -

Status Word 2: Control and Hardware Faults

Status word 2 reports control and hardware faults.

bit Fault Fault Name Description
0 1 Short-circuit phase U low IGBT fault phase U low
1 2 Short-circuit phase U high IGBT fault phase U high
2 3 Short-circuit phase V low IGBT fault phase V low
3 4 Short-circuit phase V high IGBT fault phase V high
4 5 Short-circuit phase W low IGBT fault phase W low
5 6 Short-circuit phase W high IGBT fault phase W high
6 7 Short-circuit IGBT recovery Recovery IGBT fault
7 8 Gate undervoltage IGBT gate voltage too low
8 9 DC link undervoltage Bus voltage too low
9 10 DC link overvoltage Bus voltage too high

10 11 Drive overtemperature Drive temperature too high
11 24 Motor temperature warning Motor temperature near limit
12 25 Motor overtemperature Motor temperature too high
13 70 External signal fault Fault triggered by digital input
14 71 Overfrequency fault Generated current frequency exceeded “no dual-use” regulation limit
15 - - -

Status Word 3: Position/Velocity sensor and Brake Feedback Faults

Status word 3 reports all the faults related to position/velocity sensor (that can be resolver or
encoder) and brake feedback.

Appendix: Status Word 1: Current CiA DS402 State

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 936 of 969

bit Fault Fault Name Description
0 23 Brake feedback fault Brake status signal inconsistent
1 26 Missing feedback config. Standard transducer interface enabled but not configured
2 27 Transducer general fault Initialization error or transducer not detected
3 28 Sincos values fault Sinusoidal signal amplitude inconsistent
4 29 Hiperface position conflict Digital position (Hiperface protocol) inconsistent with calculated position
5 30 Hiperface status error Encoder status error (Hiperface protocol)
6 31 Hiperface transmit error Encoder transmission error (Hiperface protocol)
7 32 Hiperface receive error Encoder reception error (Hiperface protocol)
8 33 EnDat 22 warning message Warning message from EnDat 22 encoder
9 34 EnDat 22 error 1 message Type 1 error message from EnDat 22 encoder

10 35 EnDat 22 error 2 message Type 2 error message from EnDat 22 encoder
11 36 EnDat 22 CRC error CRC error from EnDat 22 encoder
12 37 EnDat 22 position not ready Position error - not ready from EnDat 22 encoder
13 38 EnDat 22 not ready for strobe Strobe error - not ready from EnDat 22 encoder
14 39 Resolver sync. fault Resolver signal synchronization error (phase)
15 40 Resolver signals fault Signal resolver level error (amplitude)

Status Word 4: Communication Faults

Status word 4 reports all the communication faults.

bit Fault Fault Name Description
0 59 CAN communication fault CAN communication generic error
1 60 CAN RPDO0 timed out Time out first received PDO (CAN)
2 61 CAN RPDO1 timed out Time out second received PDO (CAN)
3 62 CAN RPDO0 data Data error first received PDO (CAN)
4 63 CAN RPDO1 data Data error second received PDO (CAN)
5 64 CAN TPDO0 timed out Time out first transmitted PDO (CAN)
6 65 CAN TPDO1 timed out Time out second transmitted PDO (CAN)
7 66 CAN TPDO0 data Data error first transmitted PDO (CAN)
8 67 CAN TPDO1 data Data error second transmitted PDO (CAN)
9 68 CAN life guard error Life guard time expired (CAN)

10 69 CAN sync consumer timed out Sync message timeout (CAN)
11 - - -
12 - - -
13 - - -
14 - - -
15 - - -

Status Word 5: Software and Memory Faults

Status word 5 reports software and memory faults.

bit Fault Fault Name Description
0 14 EEPROM fault Reading error on the EEPROM or content not valid.
1 18 User data memory “Customer parameters” region of memory corrupted / not configured
2 20 Factory data memory “Factory parameters” region of memory corrupted / not configured
3 22 Diagnosis data memory "Diagnostic parameters" region of memory corrupted/not configured
4 41 Synchronization error Irregular frequency of internal interrupt
5 42 Interrupt time exceeded Internal interrupt signal not detected
6 43 Task time exceeded The execution time of the task has exceeded maximum time
7 - - -
8 - - -
9 - - -

10 - - -
11 - - -
12 - - -
13 - - -

Appendix: Status Word 4: Communication Faults

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 937 of 969

bit Fault Fault Name Description
14 - - -
15 - - -

Status Word 6: I/O States

Status word 6 reports I/O states.

bit Fault Fault Name Description
0 - I/O 0 On when 24V applied
1 - I/O 1 On when 24V applied
2 - I/O 2 On when 24V applied
3 - I/O 3 On when 24V applied
4 - I/O 4 On when 24V applied
5 - I/O 5 On when 24V applied
6 - - -
7 - - -
8 - - -
9 - - -

10 - - -
11 - - -
12 - - -
13 - - -
14 - STO 1 status On when STO 1 is powered
15 - STO 2 status On when STO 2 is powered

Appendix: Status Word 6: I/O States

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 938 of 969

Torque Curves

Understanding Torque Curves
Each set of torque curves depicts the limits of both continuous and peak torque for a given
SmartMotor™ over the full range of speed.

Peak Torque

The peak torque curve is derived from dyno (dynamometer) testing. It is the point at which peak current
limit hardware settings of the drive prevent further torque in an effort to protect the drive-stage
components.

Continuous Torque

The continuous torque curve is also derived from dyno testing. It is the point at which the temperature
rises from an ambient of 25ºC to the designed thermal limit.

For example, the motor will be placed on the dyno tester and set to operate at 1000 RPM continuously
with the load slowly increased until the controller reaches its maximum sustained thermal limit. This
limit is either 70ºC or 85ºC depending on the model number. All Class 5 SmartMotor servos are set to
85ºC.

Peak Torque Curve
(fit to curve)

No-Load
Maximum Speed

Voltage Limited

Speed (RPM)

M
o

to
r

T
o
rq

u
e

Continuous Torque Range

Thermally Limited

Peak Torque Range

Continuous
Torque Curve
(fit to curve)

Torque Curve

The lower-right side of the curve is limited by supply voltage. This is the point at which Back EMF
suppresses any further speed increase. Higher supply voltages will shift the zero torque point of the
curve further to the right.

Appendix: Torque Curves

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 939 of 969

Ambient Temperature Effects on Torque Curves and Motor Response:

If the motor is operated in an environment warmer than 25ºC, it will reach its thermal limit faster for a
given load and further limit continuous torque. Therefore, any given motor torque curve must be linearly
derated for a given ambient temperature from 25ºC to 85ºC for all Class 5 SmartMotor servos.

Supply Voltage Effects on Torque Curves and Motor Response:

Higher voltages have a two-fold effect on torque curves. As mentioned previously, raising the voltage
shifts the curve to the right; it also allows higher current into the drive. However, torque curves depict
maximum allowable torque at a given velocity.

If you double the supply voltage, the motor can sustain twice the original velocity. Acceleration is also
increased due to an increase in the peak torque curve. This may potentially be a significant reduction of
time to complete moves due to the a*t2 term in kinematic equations. This is useful for high-speed
indexing and fast start/stop motion.

NOTE: All torque curves shown in the Moog Animatics Product Catalog also show the shaft output
power curves.

Power can be calculated with this equation:

Power (W*) = Torque (N.m) x Speed (RPM) / 9.5488

*In some versions of Moog Animatics literature, this was incorrectly shown as "kW".

For any given mechanical system being moved by a SmartMotor, it is ideal to ensure the motor is
running within its optimum performance range (see the next figure). Through proper mechanical system
design, this can be achieved by adjusting one or more of these items:

l Gear reduction
l Belt reduction
l Lead screw pitch
l Pinion gear diameter

Ideal Operating

Bandwidth

Velocity

T
o

rq
u

e

P
o

w
e

r
Peak Torque

Continuous Torque

Contin
uous

Power

Peak Power

Ideal Operating Bandwidth

Appendix: Ambient Temperature Effects on Torque Curves and Motor Response:

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 940 of 969

Example 1: Rotary Application

Suppose you have a load that requires 300 RPM at the output of a gear head, and the optimum speed
range for the motor is 2100 RPM.

Divide the optimum operating speed by the load speed to get the ideal gear reduction. In this case:
2100 RPM / 300 RPM = 7. So a 7:1 gear reduction would allow the motor to operate in its most
efficient range.

Example 2: Linear Application

Suppose you need to run at 100 mm/sec using a ball screw, and the motor has an ideal range of 3000
RPM. 3000 RPM / 60 = 50 rotations per second (RPS). 100 mm/sec divided by 50 RPS is 2 mm per
rotation. Therefore, an ideal pitch would be 2 mm.

Dyno Test Data vs. the Derated Torque Curve
NOTE: For any given product model number, there may be variations of as much as ±10%.

The next figure depicts data points collected from dyno testing of a given SmartMotor model. A best-
fit torque curve is created from these data points and is then derated to at least 5% below the worst
case data points. The derated curve is shown in the Moog Animatics Product Catalog. This means that
within any given model number, every motor sold will perform at or higher than the advertised torque.
Theoretically, all motors should be no less than 5% higher than advertised and may be more than 20%
higher.

Motor Shaft Speed (RPM)

M
o

to
r

T
o
rq

u
e

Data Points from
 Dyno Testing

1

2

3

4

 Derated advertised torque curve

Motor Loading Areas

The diagram shows motor loading in four areas:

1. This is ideal and depicts a load within the normal operating range of the motor. The motor should
operate well and have no problems for many years.

2. The load is very close to the operating limit. The motor will run quite warm as compared to Point
1.

Appendix: Example 1: Rotary Application

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 941 of 969

3. The load exceeds the advertised level and exceeds +10% expected range of possible torque
capabilities. In this case, the motor will most likely either overheat quickly and fault out or
immediately generate a position error because it simply does not have enough power to support
the load demand.

WARNING: Using an undersized motor can cause unpredictable machine
performance and is a potential safety hazard (see Motor Sizing on page 32).

4. The load exceeds the advertised operating limit of the motor. However, due to data scatter and
derating, there may be some motors that will work and others that do not. This is because it falls
within the range of ±10% variation for motors for a given size. This can result in major problems
for the machine builder.

For example, imagine designing a machine that operates in this range. Then you replicate that
machine with many of them running on a production floor. One day, a motor at the lower end of
the ±10% expected variation is placed on a new machine and that motor generates spurious
drive faults. It appears as though the motor is malfunctioning because "all the other motors work
just fine." This is unfortunate because, in reality, all motors were undersized in the machine
design and are now operating outside of their advertised limits.

That is why it is important to properly calculate load torque to ensure the correct motor is designed
into the application (refer to the next section). Never assume that testing of one motor means all
motors of that size will work — it is simply not the case. You should never proceed without performing
proper load calculation and motor sizing. The goal is to have all motors operating below the advertised
limits, which will ensure reliable operation and long motor life.

Proper Sizing and Loading of the SmartMotor
It is important to properly calculate load torque to ensure the correct SmartMotor is selected and
designed into the application. Consider the next sample figure. If properly sized/loaded, the motor can
run at or under the Continuous Torque limit continuously, assuming 25°C ambient temperature. Further,
the motor can tolerate intermittent operation above the Continuous Torque limit up to the Peak Torque
limit for brief periods. However, that additional capacity may reduce as a function of time when
operating above the Continuous Torque limit.

In order to protect the motor, Moog Animatics has designed in safeguards to limit current that may
engage when the motor is operated for a sustained or accumulated brief periods above the continuous
ratings (i.e., operating above capacity for torque/time). This could lead to position error or position
error faults.

NOTE: These safeguards DO NOT indicate a defective motor. Rather, they are an indication that the
motor may not be properly sized for the intended application, or that other design or environmental
factors are affecting motor performance, such as unintended axial or radial forces acting on the
load, elevated ambient air temperature, improper mounting that prevents adequate heat sinking,
etc.

Appendix: Proper Sizing and Loading of the SmartMotor

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 942 of 969

Sample Power Chart

To ensure that your SmartMotor successfully performs as intended:
n Select the proper power supply

n Use the proper electrical interface

n Properly size the motor for the intended application

n Consider the thermal environment

n Adhere to the proper mechanical and environmental implementation

For more details on these items, see the SmartMotor Success Checklist in the Moog Animatics Product
Catalog.

Also, refer to these topics (in this section):
l Understanding Torque Curves on page 938

l Dyno Test Data vs. the Derated Torque Curve on page 940

Appendix: Proper Sizing and Loading of the SmartMotor

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 943 of 969

SmartMotor Troubleshooting
This topic provides information on SmartMotor troubleshooting "first steps" and also a troubleshooting
flowchart.

NOTE: This information is extracted from the Troubleshooting with Status Bits and SMI Tools
Application Note. For full details, please see that document on the Moog Animatics website.

Troubleshooting - First Steps
When diagnosing any problem, perform these basic first steps to reset and check the equipment.

1. Restart the motor.

2. Restart any associated devices (PLCs, HMIs, PCs).

3. Download a fresh copy of the program (especially if you’ve been making changes).

4. Check the wiring – make sure all connectors are secure and visually inspect all cables for any
signs of wear.

After completing those steps, if the problem still hasn’t been resolved, it’s time for a deeper
investigation to isolate the root cause. If you are unsure of where to start, you can use the steps
describe below. If you are trying to troubleshoot a specific error, please skip the next section.

NOTE: If possible, remove the motor from the machine and connect it to SMI using separate power
supplies and cables.

1. Are LEDs on?

If not, double check your power supply and cables to make sure proper connections are being
made. If you are measuring the appropriate voltage at the motor end of your cable, it's likely the
motor has been damaged and requires an RMA. If yes, consult the Understand the LEDs topic in
your SmartMotor installation guide.

NOTE: Class 5 D-style motors with the DE option and all M-style motors require separate
control and amplifier power. For Class 6 D-style motors, separate power is not required but is
highly recommended. See your SmartMotor installation guide for details.

l If you are using a Class 5 -DE option motor, please ensure power is being supplied to both
pin 15 and A1.

l If you are stuck in the bootloader, contact Moog Animatics for assistance.

l If the LEDs indicate you are not stuck in the bootloader, please move to the next step.

2. Can you establish communications?

If not, make sure your communication settings and hardware are correct. Run the Lockup Wizard
in SMI.

NOTE: If you can only establish communication using the SMI Lockup Wizard, your user
program may be setting up the port incorrectly. Clearing the EEPROM will reset the port
settings. However, be aware that clearing the EEPROM will also erase the user program.

If you still can’t establish communications, then it's possible the motor has been damaged and
requires an RMA. If you can, then move to the next step.

Appendix: SmartMotor Troubleshooting

http://www.animatics.com/support/install-guides
http://www.animatics.com/support/install-guides
#Contacts

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 944 of 969

3. Will the motor operate in torque mode?

Open up the SmartMotor Playground in SMI and move the motor in torque mode. Be aware,
torque mode is open loop and can cause undesirable motion if precaution is not taken. Please be
conscious of safety mechanisms like hardware limit switches, software limits, and E-stops. If not,
make sure that there are no errors and the drive ready bit is active. Also, make sure that there is
nothing physically impeding the shaft. If you cannot achieve motion, it's likely the motor requires
an RMA. If you can achieve motion, then the drive stage is likely functional. Move to the next
step.

4. Will the motor operate in position mode?

Again, use the SmartMotor Playground to command motion in either position mode or velocity
mode. If the motor fails to complete a move, it's possible the motor is damaged and requires an
RMA. If this step works, it's safe to assume the motor is functional. At this point, it's time to
start exploring other components in the system or the specific status bits described in the next
section.

Appendix: Troubleshooting - First Steps

A
p

p
e

n
d

ix

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 945 of 969

SmartMotor not

working

Supply appropriate

DC voltage

NO
Are

LEDs

ON

?

YES
Power

Supply

ON

?

YES

Request

RMA

NO

Can you

communicate

w/ mtr

?

Operate

in Torque

mode

?

Operate

in Pos./Vel.

mode

?

Issue with

feedback loop

Call apps or

request RMA

NO

YES Issue with

feedback loop

Motor is likely

functional

Call apps for

assistance

Check port settings,

run Lockup Wizard

Call apps or

request RMA

If still

NO

NO

NO

YES

YES

SmartMotor Troubleshooting Flowchart

For more details on this process, see the Troubleshooting with Status Bits and SMI Tools Application
Note on the Moog Animatics website.

Appendix: Troubleshooting - First Steps

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 946 of 969

Commands Listed Alphabetically
This section shows an alphabetical listing of all available commands and their descriptions.

NOTE: A superscript "R" character preceding the command indicates there is a corresponding
"report" version of that command.

(Single Space Character) Single Space Delimiter and String Terminator (see page 248)
R a...z 32-Bit Variables (see page 249)
R aa...zz 32-Bit Variables (see page 249)
R aaa...zzz 32-Bit Variables (see page 249)
R ab[index]=formula Array Byte [index] (see page 252)
R ABS(value) Absolute Value of () (see page 255)
R AC Acceleration Commanded (see page 256)
R ACOS(value) Arccosine (see page 259)
R ADDR=formula Address (for RS-232 and RS-485) (see page 261)
ADT=formula Acceleration/Deceleration Target (see page 263)
ADTS=formula Acceleration/Deceleration Target, Synchronized (see page 265)
R af[index]=formula Array Float [index] (see page 267)
Ai(enc) Arm Index Rising Edge (see page 270)
Aij(enc) Arm Index Rising Edge Then Falling Edge (see page 272)
Aj(enc) Arm Index Falling Edge (see page 274)
Aji(enc) Arm Index Falling Edge Then Rising Edge (see page 276)
R al[index]=formula Array Long [index] (see page 278)
R AMPS=formula Amps, PWM Limit (see page 281)
R ASIN(value) Arcsine (see page 284)
R AT=formula Acceleration Target (see page 286)
R ATAN(value) Arctangent (see page 289)
R ATOF(index) ASCII to Float (see page 291)
ATS=formula Acceleration Target, Synchronized (see page 292)
R aw[index]=formula Array Word [index] (see page 294)
R B(word,bit) Status Byte (see page 297)
R Ba Bit, Peak Overcurrent (see page 301)
R BAUD(channel)=formula Set BAUD Rate (RS-232 and RS-485) (see page 303)
R Be Bit, Position Error Limit (see page 305)
R Bh Bit, Overheat (see page 307)
R Bi(enc) Bit, Index Capture, Rising (see page 309)
R Bj(enc) Bit, Index Capture, Falling (see page 312)
R Bk Bit, Program EEPROM Data Status (see page 315)
R Bl Bit, Left Hardware Limit, Historical (see page 316)
R Bls Bit, Left Software Limit, Historical (see page 318)

Command Lists: Commands Listed Alphabetically

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 947 of 969

R Bm Bit, Left Hardware Limit, Real-Time (see page 320)
R Bms Bit, Left Software Limit, Real-Time (see page 322)
R Bo Bit, Motor OFF (see page 324)
R Bp Bit, Right Hardware Limit, Real-Time (see page 325)
R Bps Bit, Right Software Limit, Real-Time (see page 327)
R Br Bit, Right Hardware Limit, Historical (see page 329)
BREAK Break from CASE or WHILE Loop (see page 331)
BRKENG Brake Engage (see page 333)
BRKRLS Brake Release (see page 335)
BRKSRV Brake Servo, Engage When Not Servoing (see page 337)
BRKTRJ Brake Trajectory, Engage When No Active Trajectory (see page 339)
R Brs Bit, Right Software Limit, Historical (see page 341)
R Bs Bit, Syntax Error (see page 343)
R Bt Bit, Trajectory In Progress (see page 345)
R Bv Bit, Velocity Limit (see page 347)
R Bw Bit, Wrapped Encoder Position (see page 349)
R Bx(enc) Bit, Index Input, Real-Time (see page 351)
C{number} Command Label (see page 353)
R CADDR=formula CAN Address (see page 355)
R CAN, CAN(arg) CAN Bus Status (see page 357)
CANCTL(function,value) CAN Control (see page 359)
CASE formula Case Label for SWITCH Block (see page 360)
R CBAUD=formula CAN Baud Rate (see page 363)
CCHN(type,channel) Close Communications Channel (RS-232 or RS-485) (see page 365)
R CHN(channel) Communications Error Flag (see page 367)
R CLK=formula Millisecond Clock (see page 369)
COMCTL(function,value) Serial Communications Control (see page 370)
R COS(value) Cosine (see page 372)
R CP Cam Pointer for Cam Table (see page 374)
CTA(points,seglen[,location]) Cam Table Attribute (see page 376)
CTE(table) Cam Table Erase (see page 378)
R CTR(enc) Counter, Encoder, Step and Direction (see page 380)
R CTT Cam Table Total in EEPROM (see page 382)
CTW(pos[,seglen][,user]) Cam Table Write Data Points (see page 383)
R DEA Derivative Error, Actual (see page 386)
DEFAULT Default Case for SWITCH Structure (see page 388)
R DEL=formula Derivative Error Limit (see page 390)
DELM(arg) Derivative Error Limit Mode (see page 392)
R DFS(value) Dump Float, Single (see page 393)
DITR(int) Disable Interrupts (see page 394)
R DT=formula Deceleration Target (see page 396)

Command Lists: Commands Listed Alphabetically

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 948 of 969

DTS=formula Deceleration Target, Synchronized (see page 399)
R EA Error Actual (see page 401)
ECHO Echo Incoming Data on Communications Port 0 (see page 403)
ECHO0 Echo Incoming Data on Communications Port 0 (see page 405)
ECHO1 Echo Incoming Data on Communications Port 1 (see page 406)
ECHO_OFF Turn Off Echo on Communications Port 0 (see page 407)
ECHO_OFF0 Turn Off Echo on Communications Port 0 (see page 408)
ECHO_OFF1 Turn Off Echo on Communications Port 1 (see page 409)
ECS(counts) Encoder Count Shift (see page 410)
EIGN(...) Enable as Input for General-Use (see page 412)
EILN Enable Input as Limit Negative (see page 415)
EILP Enable Input as Limit Positive (see page 417)
EIRE Enable Index Register, Encoder Capture (see page 419)
EIRI Enable Index Register, Input Capture (see page 421)
EISM(x) E-Configure Input as Sync Controller (see page 423)
EITR(int) Enable Interrupts (see page 424)
R EL=formula Error Limit (see page 426)
ELSE IF-Structure Command Flow Element (see page 428)
ELSEIF formula IF-Structure Command Flow Element (see page 430)
ENC0 Encoder Zero (Close Loop on Internal Encoder) (see page 432)
ENC1 Encoder Zero (Close Loop on External Encoder) (see page 433)
ENCCTL(function,value) Encoder Control (see page 435)
ENCD(in_out) Set Encoder Bus Port as Input or Output (see page 437)
END End Program Code Execution (see page 439)
ENDIF End IF Statement (see page 441)
ENDS End SWITCH Structure (see page 443)
EOBK(IO) Enable Output, Brake Control (see page 445)
EOFT(IO) Enable Output, Fault Indication (see page 447)
EOIDX(number) Encoder, Output Index (see page 449)
R EPTR=formula EEPROM Pointer (see page 450)
R ERRC Error Code, Command (see page 451)
R ERRW Communication Channel of Most Recent Command Error (see page 453)
R ETH(arg) Get Ethernet Status and Errors (see page 455)
ETHCTL(function,value) Control Industrial Ethernet Network Features (see page 456)
F Force Into PID Filter (see page 457)
R FABS(value) Floating-Point Absolute Value of () (see page 463)
R FAUSTS(x) Returns Fault Status Word (see page 459)
R FD=expression Resolution to Set Units of Position/Velocity/Acceleration (see page 461)
FSA(cause,action) Fault Stop Action (see page 465)
R FSAD(n,m) Set Reaction to Fault (see page 467)
R FSQRT(value) Floating-Point Square Root (see page 469)
R FW Firmware Version (see page 471)
G Start Motion (GO) (see page 473)
R GETCHR Next Character from Communications Port 0 (see page 476)

Command Lists: Commands Listed Alphabetically

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 949 of 969

R GETCHR1 Next Character from Communications Port 1 (see page 478)
GOSUB(label) Subroutine Call (see page 480)
GOTO(label) Branch Program Flow to a Label (see page 482)
R GROUP(function,value) Group Address Settings (see page 484)
GS Start Synchronized Motion (GO Synchronized) (see page 487)
R HEX(index) Decimal Value of a Hex String (see page 489)
R HM_ADT=formula Homing Accel/Decel Target (see page 491)
R HM_MTHD=formula Homing Method (see page 492)
R HM_OSET=formula Homing Offset (see page 496)
R HM_VTS=formula Homing Velocity Target to Switch (see page 498)
R HM_VTZ=formula Homing Velocity Target to Zero (see page 500)
R I(enc) Index, Rising-Edge Position (see page 502)
R IDENT=formula Set Identification Value (see page 504)
IF formula Conditional Program Code Execution (see page 506)
R IN(...) Specified Input (see page 509)
R INA(...) Specified Input, Analog (see page 512)
IPCTL(function,"string") Set IP Address, Subnet Mask or Gateway (see page 515)
ITR(Int#,StatusWord,Bit#,BitState,Label#) Interrupt Setup (see page 517)
ITRD Interrupt Disable, Global (see page 520)
ITRE Enable Interrupts, Global (see page 522)
R J(enc) Index, Falling-Edge Position (see page 524)
R KA=formula Constant, Acceleration Feed Forward (see page 526)
R KD=formula Constant, Derivative Coefficient (see page 528)
R KG=formula Constant, Gravitational Offset (see page 530)
R KI=formula Constant, Integral Coefficient (see page 532)
R KII=formula Current Control Loop: Integrator (see page 534)
R KL=formula Constant, Integral Limit (see page 535)
R KP=formula Constant, Proportional Coefficient (see page 537)
R KPI=formula Current Control Loop: Proportional (see page 539)
R KS=formula Constant, Velocity Filter Option (for KD) (see page 540)
R KV=formula Constant, Velocity Feed Forward (see page 542)
R LEN Length of Character Count in Communications Port 0 (see page 544)
R LEN1 Length of Character Count in Communications Port 1 (see page 545)
R LFS(value) Load Float Single (see page 547)
LOAD Download Compiled User Program to Motor (see page 548)
LOCKP Lock Program (see page 551)
LOOP Loop Back to WHILE Formula (see page 553)
MC Mode Cam (Electronic Camming) (see page 555)
R MCDIV=formula Mode Cam Divisor (see page 557)
MCE(arg) Mode Cam Enable () (see page 558)
R MCMUL=formula Mode Cam Multiplier (see page 560)

Command Lists: Commands Listed Alphabetically

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 950 of 969

MCW(table,point) Mode Cam Where (Start Point) (see page 562)
MDB Enable TOB Feature (Commutation Mode) (see page 564)
MDC Mode Current (Commutation Mode) (see page 566)
MDE Mode Enhanced (Commutation Mode) (see page 568)
MDH Mode Hybrid (Commutation Mode) (see page 570)
MDHV Mode Hybrid Velocity (Commutation Mode) (see page 572)
MDS Mode Sine (Commutation Mode) (see page 574)
MDT Mode Trap (Commutation Mode) (see page 576)
MF0 Mode Follow, Zero External Counter (see page 578)
MFA(distance[,m/s]) Mode Follow Ascend (see page 580)
MFCTP(arg1,arg2) Mode Follow Control Traverse Point (see page 583)
MFD(distance[,m/s]) Mode Follow Descend (see page 585)
R MFDIV=formula Mode Follow Divisor (see page 588)
MFH(distance[,m/s]) Mode Follow, High Ascend/Descend Rate (see page 590)
R MFHTP=formula Mode Follow, High Traverse Point (see page 592)
MFL(distance[,m/s]) Mode Follow, Low Ascend/Descend Rate (see page 594)
R MFLTP=formula Mode Follow, Low Traverse Point (see page 596)
R MFMUL=formula Mode Follow Multiplier (see page 598)
MFR Mode Follow Ratio (see page 600)
MFSDC(distance,mode) Mode Follow, Stall-Dwell-Continue (see page 603)
MFSLEW(distance[,m/s]) Mode Follow Slew (see page 605)
R MH Mode, Homing (see page 607)
MINV(arg) Mode Inverse (Commutation Inverse) (see page 608)
R MODE Mode Operating (see page 610)
MP Mode Position (see page 613)
MS0 Mode Step, Zero External Counter (see page 616)
MSR Mode Step Ratio (see page 618)
MT Mode Torque (see page 620)
MTB Mode Torque Brake (see page 622)
MV Mode Velocity (see page 624)
NMT Send NMT State (see page 626)
O=formula, O(trj#)=formula Origin (see page 628)
R OC(...) Output Condition (see page 630)
OCHN(...) Open Channel (see page 632)
R OF(...) Output Fault (see page 634)
OFF Off (Drive Stage Power) (see page 636)
OR(value) Output, Reset (see page 638)
OS(...) Output, Set (see page 640)
OSH=formula, OSH(trj#)=formula Origin Shift (see page 642)
OUT(...)=formula Output, Activate/Deactivate (see page 644)
R PA Position, Actual (see page 646)
PAUSE Pause Program Execution (see page 648)
R PC, PC(axis) Position, Commanded (see page 650)
R PI Pi Constant (see page 653)

Command Lists: Commands Listed Alphabetically

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 951 of 969

PID# Proportional-Integral-Differential Filter Rate (see page 654)
R PMA Position, Modulo Actual (see page 657)
R PML=formula Modulo Position Limit (see page 659)
R PMT=formula Position, Modulo Target (see page 661)
R PRA Position, Relative Actual (see page 663)
R PRC Position, Relative Commanded (see page 666)
PRINT(...) Print Data to Communications Port (see page 669)
PRINT0(...) Print Data to Communications Port 0 (see page 673)
PRINT1(...) Print Data to Communications Port 1 (see page 677)
PRINT8(...) Print Data to USB Port (see page 680)
R PRT=formula Position, Relative Target (see page 683)
PRTS(...) Position, Relative Target, Synchronized (see page 685)
PRTSS(...) Position, Relative Target, Synchronized, Supplemental (see page 688)
R PT=formula Position, (Absolute) Target (see page 690)
PTS(...) Position Target, Synchronized (see page 692)
R PTSD Position Target, Synchronized Distance (see page 695)
PTSS(...) Position Target, Synchronized Supplemental (see page 696)
R PTST Position Target, Synchronized Time (see page 698)
R RANDOM=formula Random Number (see page 699)
RCKS Report Checksum (see page 701)
R RES Resolution (see page 702)
RESUME Resume Program Execution (see page 704)
RETURN Return From Subroutine (see page 706)
RETURNI Return Interrupt (see page 708)
RSP Report Sampling Rate and Firmware Revision (see page 710)
RSP1 Report Firmware Compile Date (see page 712)
RSP5 Report Network Card Firmware Version (see page 713)
RUN Run Program (see page 714)
RUN? Halt Program Execution Until RUN Received (see page 716)
S (as command) Stop Motion (see page 718)
SADDR# Set Address (see page 720)
R SAMP Sampling Rate (see page 722)
SCALEA(m,d) Scale Acceleration Value (see page 724)
SCALEP(m,d) Scale Position Value (see page 726)
SCALEV(m,d) Scale Velocity Value (see page 728)
SDORD(...) SDO Read (see page 730)
SDOWR(...) SDO Write (see page 732)
SILENT Silence Outgoing Communications on Communications Port 0 (see page 734)
SILENT1 Silence Outgoing Communications on Communications Port 1 (see page 736)
R SIN(value) Sine (see page 738)
SLD Software Limits, Disable (see page 740)
SLE Software Limits, Enable (see page 742)
SLEEP Ignore Incoming Commands on Communications Port 0 (see page 744)
SLEEP1 Ignore Incoming Commands on Communications Port 1 (see page 746)

Command Lists: Commands Listed Alphabetically

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 952 of 969

R SLM(mode) Software Limit Mode (see page 748)
R SLN=formula Software Limit, Negative (see page 750)
R SLP=formula Software Limit, Positive (see page 752)
SNAME("string") Set PROFINET Station Name (see page 754)
R SP2 Bootloader Version (see page 755)
R SP6 Serial Number (see page 756)
R SQRT(value) Integer Square Root (see page 757)
SRC(enc_src) Source, Follow and/or Cam Encoder (see page 759)
STACK Stack Pointer Register, Clear (see page 761)
STDOUT=formula Set Device Output (see page 764)
SWITCH formula Switch, Program Flow Control (see page 766)
R T=formula Torque, Open-Loop Commanded (see page 769)
TALK Talk on Communications Port 0 (see page 771)
TALK1 Talk on Communications Port 1 (see page 773)
R TAN(value) Tangent (see page 775)
R TEMP, TEMP(arg) Temperature, Motor (see page 777)
R TH=formula Temperature, High Limit (see page 779)
R TMR(timer,time) Timer (see page 782)
R TRQ Torque, Real-Time (see page 784)
R TS=formula Torque Slope (see page 786)
TSWAIT Trajectory Synchronized Wait (see page 788)
TWAIT(gen#) Trajectory Wait (see page 789)
R UIA Motor Current (see page 791)
R UJA Bus Voltage (see page 793)
UO(...)=formula User Status Bits (see page 795)
UP Upload Compiled Program and Header (see page 797)
UPLOAD Upload Standard User Program (see page 799)
UR(...) User Bits, Reset (see page 801)
US(...) User Bits, Set (see page 803)
R USB(arg) USB Status Word (see page 805)
R VA Velocity Actual (see page 807)
VAC(arg) Velocity Actual (filter) Control (see page 810)
R VC Velocity Commanded (see page 815)
R VL=formula Velocity Limit (see page 818)
VLD(variable,number) Variable Load (see page 820)
VST(variable,number) Variable Save (see page 824)
R VT=formula Velocity Target (see page 828)
VTS=formula Velocity Target, Synchronized Move (see page 831)
R W(word) Report Specified Status Word (see page 833)
WAIT=formula Wait for Specified Time (see page 835)
WAKE Wake Communications Port 0 (see page 837)
WAKE1 Wake Communications Port 1 (see page 839)

Command Lists: Commands Listed Alphabetically

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 953 of 969

WHILE formula While Condition Program Flow Control (see page 841)
X Decelerate to Stop (see page 844)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
Za Reset Overcurrent Flag (see page 850)
Ze Reset Position Error Flag (see page 851)
Zh Reset Temperature Fault (see page 852)
Zl Reset Historical Left Limit Flag (see page 853)
Zls Reset Left Software Limit Flag, Historical (see page 854)
Zr Reset Right Limit Flag, Historical (see page 855)
Zrs Reset Right Software Limit Flag, Historical (see page 856)
Zs Reset Command Syntax Error Flag (see page 857)
ZS Global Reset System State Flag (see page 858)
Zv Reset Velocity Limit Fault (see page 860)
Zw Reset Encoder Wrap Status Flag (see page 861)

Command Lists: Commands Listed Alphabetically

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 954 of 969

Commands Listed by Function
The section provides a functional listing of all available commands and their descriptions.

NOTE: A superscript "R" character preceding the command indicates there is a corresponding
"report" version of that command.

Communications Control 955

Data Conversion 956

EEPROM (Nonvolatile Memory) 956

I/O Control 956

Math Function 957

Motion Control 957

Program Access 960

Program Execution and Flow Control 960

Reset Commands 961

System 961

Variables 962

Command Lists: Commands Listed by Function

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 955 of 969

Communications Control
R ADDR=formula Address (for RS-232 and RS-485) (see page 261)
R BAUD(channel)=formula Set BAUD Rate (RS-232 and RS-485) (see page 303)
R CADDR=formula CAN Address (see page 355)
R CAN, CAN(arg) CAN Bus Status (see page 357)
CANCTL(function,value) CAN Control (see page 359)
R CBAUD=formula CAN Baud Rate (see page 363)
CCHN(type,channel) Close Communications Channel (RS-232 or RS-485) (see page 365)
R CHN(channel) Communications Error Flag (see page 367)
COMCTL(function,value) Serial Communications Control (see page 370)
ECHO Echo Incoming Data on Communications Port 0 (see page 403)
ECHO0 Echo Incoming Data on Communications Port 0 (see page 405)
ECHO1 Echo Incoming Data on Communications Port 1 (see page 406)
ECHO_OFF Turn Off Echo on Communications Port 0 (see page 407)
ECHO_OFF0 Turn Off Echo on Communications Port 0 (see page 408)
ECHO_OFF1 Turn Off Echo on Communications Port 1 (see page 409)
R ETH(arg) Get Ethernet Status and Errors (see page 455)
ETHCTL(function,value) Control Industrial Ethernet Network Features (see page 456)
R GETCHR Next Character from Communications Port 0 (see page 476)
R GETCHR1 Next Character from Communications Port 1 (see page 478)
R GROUP(function,value) Group Address Settings (see page 484)
IPCTL(function,"string") Set IP Address, Subnet Mask or Gateway (see page 515)
R LEN Length of Character Count in Communications Port 0 (see page 544)
R LEN1 Length of Character Count in Communications Port 1 (see page 545)
NMT Send NMT State (see page 626)
OCHN(...) Open Channel (see page 632)
SADDR# Set Address (see page 720)
SDORD(...) SDO Read (see page 730)
SDOWR(...) SDO Write (see page 732)
SILENT Silence Outgoing Communications on Communications Port 0 (see page 734)
SILENT1 Silence Outgoing Communications on Communications Port 1 (see page 736)
SLEEP Ignore Incoming Commands on Communications Port 0 (see page 744)
SLEEP1 Ignore Incoming Commands on Communications Port 1 (see page 746)
SNAME("string") Set PROFINET Station Name (see page 754)
STDOUT=formula Set Device Output (see page 764)
TALK Talk on Communications Port 0 (see page 771)
TALK1 Talk on Communications Port 1 (see page 773)
R USB(arg) USB Status Word (see page 805)
WAKE Wake Communications Port 0 (see page 837)
WAKE1 Wake Communications Port 1 (see page 839)

Command Lists: Commands Listed by Function

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 956 of 969

Data Conversion
R ATOF(index) ASCII to Float (see page 291)
R DFS(value) Dump Float, Single (see page 393)
R HEX(index) Decimal Value of a Hex String (see page 489)
R LFS(value) Load Float Single (see page 547)
PRINT(...) Print Data to Communications Port (see page 669)
PRINT0(...) Print Data to Communications Port 0 (see page 673)
PRINT1(...) Print Data to Communications Port 1 (see page 677)
PRINT8(...) Print Data to USB Port (see page 680)

EEPROM (Nonvolatile Memory)
R EPTR=formula EEPROM Pointer (see page 450)
R IDENT=formula Set Identification Value (see page 504)
VLD(variable,number) Variable Load (see page 820)
VST(variable,number) Variable Save (see page 824)

I/O Control
Ai(enc) Arm Index Rising Edge (see page 270)
Aij(enc) Arm Index Rising Edge Then Falling Edge (see page 272)
Aj(enc) Arm Index Falling Edge (see page 274)
Aji(enc) Arm Index Falling Edge Then Rising Edge (see page 276)
EIGN(...) Enable as Input for General-Use (see page 412)
EILN Enable Input as Limit Negative (see page 415)
EILP Enable Input as Limit Positive (see page 417)
EIRE Enable Index Register, Encoder Capture (see page 419)
EIRI Enable Index Register, Input Capture (see page 421)
EISM(x) E-Configure Input as Sync Controller (see page 423)
ENCD(in_out) Set Encoder Bus Port as Input or Output (see page 437)
EOBK(IO) Enable Output, Brake Control (see page 445)
EOFT(IO) Enable Output, Fault Indication (see page 447)
EOIDX(number) Encoder, Output Index (see page 449)
R I(enc) Index, Rising-Edge Position (see page 502)
R IN(...) Specified Input (see page 509)
R INA(...) Specified Input, Analog (see page 512)
R J(enc) Index, Falling-Edge Position (see page 524)
R OC(...) Output Condition (see page 630)
R OF(...) Output Fault (see page 634)
OR(value) Output, Reset (see page 638)
OS(...) Output, Set (see page 640)
OUT(...)=formula Output, Activate/Deactivate (see page 644)

Command Lists: Commands Listed by Function

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 957 of 969

Math Function
R ABS(value) Absolute Value of () (see page 255)
R ACOS(value) Arccosine (see page 259)
R ASIN(value) Arcsine (see page 284)
R ATAN(value) Arctangent (see page 289)
R COS(value) Cosine (see page 372)
R FABS(value) Floating-Point Absolute Value of () (see page 463)
R FSQRT(value) Floating-Point Square Root (see page 469)
R PI Pi Constant (see page 653)
R RANDOM=formula Random Number (see page 699)
R SIN(value) Sine (see page 738)
R SQRT(value) Integer Square Root (see page 757)
R TAN(value) Tangent (see page 775)

Motion Control
R AC Acceleration Commanded (see page 256)
ADT=formula Acceleration/Deceleration Target (see page 263)
ADTS=formula Acceleration/Deceleration Target, Synchronized (see page 265)
R AMPS=formula Amps, PWM Limit (see page 281)
R AT=formula Acceleration Target (see page 286)
ATS=formula Acceleration Target, Synchronized (see page 292)
BRKENG Brake Engage (see page 333)
BRKRLS Brake Release (see page 335)
BRKSRV Brake Servo, Engage When Not Servoing (see page 337)
BRKTRJ Brake Trajectory, Engage When No Active Trajectory (see page 339)
R CP Cam Pointer for Cam Table (see page 374)
CTA(points,seglen[,location]) Cam Table Attribute (see page 376)
CTE(table) Cam Table Erase (see page 378)
R CTR(enc) Counter, Encoder, Step and Direction (see page 380)
R CTT Cam Table Total in EEPROM (see page 382)
CTW(pos[,seglen][,user]) Cam Table Write Data Points (see page 383)
R DEA Derivative Error, Actual (see page 386)
R DEL=formula Derivative Error Limit (see page 390)
DELM(arg) Derivative Error Limit Mode (see page 392)
R DT=formula Deceleration Target (see page 396)
DTS=formula Deceleration Target, Synchronized (see page 399)
R EA Error Actual (see page 401)
ECS(counts) Encoder Count Shift (see page 410)
R EL=formula Error Limit (see page 426)
ENC0 Encoder Zero (Close Loop on Internal Encoder) (see page 432)

Command Lists: Commands Listed by Function

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 958 of 969

ENC1 Encoder Zero (Close Loop on External Encoder) (see page 433)
ENCCTL(function,value) Encoder Control (see page 435)
F Force Into PID Filter (see page 457)
R FAUSTS(x) Returns Fault Status Word (see page 459)
R FD=expression Resolution to Set Units of Position/Velocity/Acceleration (see page 461)
FSA(cause,action) Fault Stop Action (see page 465)
R FSAD(n,m) Set Reaction to Fault (see page 467)
G Start Motion (GO) (see page 473)
GS Start Synchronized Motion (GO Synchronized) (see page 487)
R HM_ADT=formula Homing Accel/Decel Target (see page 491)
R HM_MTHD=formula Homing Method (see page 492)
R HM_OSET=formula Homing Offset (see page 496)
R HM_VTS=formula Homing Velocity Target to Switch (see page 498)
R HM_VTZ=formula Homing Velocity Target to Zero (see page 500)
R KA=formula Constant, Acceleration Feed Forward (see page 526)
R KD=formula Constant, Derivative Coefficient (see page 528)
R KG=formula Constant, Gravitational Offset (see page 530)
R KI=formula Constant, Integral Coefficient (see page 532)
R KII=formula Current Control Loop: Integrator (see page 534)
R KL=formula Constant, Integral Limit (see page 535)
R KP=formula Constant, Proportional Coefficient (see page 537)
R KPI=formula Current Control Loop: Proportional (see page 539)
R KS=formula Constant, Velocity Filter Option (for KD) (see page 540)
R KV=formula Constant, Velocity Feed Forward (see page 542)
MC Mode Cam (Electronic Camming) (see page 555)
R MCDIV=formula Mode Cam Divisor (see page 557)
MCE(arg) Mode Cam Enable () (see page 558)
R MCMUL=formula Mode Cam Multiplier (see page 560)
MCW(table,point) Mode Cam Where (Start Point) (see page 562)
MDB Enable TOB Feature (Commutation Mode) (see page 564)
MDC Mode Current (Commutation Mode) (see page 566)
MDE Mode Enhanced (Commutation Mode) (see page 568)
MDH Mode Hybrid (Commutation Mode) (see page 570)
MDHV Mode Hybrid Velocity (Commutation Mode) (see page 572)
MDS Mode Sine (Commutation Mode) (see page 574)
MDT Mode Trap (Commutation Mode) (see page 576)
MF0 Mode Follow, Zero External Counter (see page 578)
MFA(distance[,m/s]) Mode Follow Ascend (see page 580)
MFCTP(arg1,arg2) Mode Follow Control Traverse Point (see page 583)
MFD(distance[,m/s]) Mode Follow Descend (see page 585)
R MFDIV=formula Mode Follow Divisor (see page 588)
MFH(distance[,m/s]) Mode Follow, High Ascend/Descend Rate (see page 590)
R MFHTP=formula Mode Follow, High Traverse Point (see page 592)

Command Lists: Commands Listed by Function

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 959 of 969

MFL(distance[,m/s]) Mode Follow, Low Ascend/Descend Rate (see page 594)
R MFLTP=formula Mode Follow, Low Traverse Point (see page 596)
R MFMUL=formula Mode Follow Multiplier (see page 598)
MFR Mode Follow Ratio (see page 600)
MFSDC(distance,mode) Mode Follow, Stall-Dwell-Continue (see page 603)
MFSLEW(distance[,m/s]) Mode Follow Slew (see page 605)
R MH Mode, Homing (see page 607)
MINV(arg) Mode Inverse (Commutation Inverse) (see page 608)
R MODE Mode Operating (see page 610)
MP Mode Position (see page 613)
MS0 Mode Step, Zero External Counter (see page 616)
MSR Mode Step Ratio (see page 618)
MT Mode Torque (see page 620)
MTB Mode Torque Brake (see page 622)
MV Mode Velocity (see page 624)
O=formula, O(trj#)=formula Origin (see page 628)
OFF Off (Drive Stage Power) (see page 636)
OSH=formula, OSH(trj#)=formula Origin Shift (see page 642)
R PA Position, Actual (see page 646)
R PC, PC(axis) Position, Commanded (see page 650)
PID# Proportional-Integral-Differential Filter Rate (see page 654)
R PMA Position, Modulo Actual (see page 657)
R PML=formula Modulo Position Limit (see page 659)
R PMT=formula Position, Modulo Target (see page 661)
R PRA Position, Relative Actual (see page 663)
R PRC Position, Relative Commanded (see page 666)
R PRT=formula Position, Relative Target (see page 683)
PRTS(...) Position, Relative Target, Synchronized (see page 685)
PRTSS(...) Position, Relative Target, Synchronized, Supplemental (see page 688)
R PT=formula Position, (Absolute) Target (see page 690)
PTS(...) Position Target, Synchronized (see page 692)
R PTSD Position Target, Synchronized Distance (see page 695)
PTSS(...) Position Target, Synchronized Supplemental (see page 696)
R PTST Position Target, Synchronized Time (see page 698)
S (as command) Stop Motion (see page 718)
SCALEA(m,d) Scale Acceleration Value (see page 724)
SCALEP(m,d) Scale Position Value (see page 726)
SCALEV(m,d) Scale Velocity Value (see page 728)
SLD Software Limits, Disable (see page 740)
SLE Software Limits, Enable (see page 742)
R SLM(mode) Software Limit Mode (see page 748)
R SLN=formula Software Limit, Negative (see page 750)
R SLP=formula Software Limit, Positive (see page 752)

Command Lists: Commands Listed by Function

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 960 of 969

SRC(enc_src) Source, Follow and/or Cam Encoder (see page 759)
R T=formula Torque, Open-Loop Commanded (see page 769)
R TRQ Torque, Real-Time (see page 784)
R TS=formula Torque Slope (see page 786)
R VA Velocity Actual (see page 807)
VAC(arg) Velocity Actual (filter) Control (see page 810)
R VC Velocity Commanded (see page 815)
R VL=formula Velocity Limit (see page 818)
R VT=formula Velocity Target (see page 828)
VTS=formula Velocity Target, Synchronized Move (see page 831)
X Decelerate to Stop (see page 844)

Program Access
LOAD Download Compiled User Program to Motor (see page 548)
LOCKP Lock Program (see page 551)
RCKS Report Checksum (see page 701)
UP Upload Compiled Program and Header (see page 797)
UPLOAD Upload Standard User Program (see page 799)

Program Execution and Flow Control
(Single Space Character) Single Space Delimiter and String Terminator (see page 248)
BREAK Break from CASE or WHILE Loop (see page 331)
C{number} Command Label (see page 353)
CASE formula Case Label for SWITCH Block (see page 360)
DEFAULT Default Case for SWITCH Structure (see page 388)
DITR(int) Disable Interrupts (see page 394)
EITR(int) Enable Interrupts (see page 424)
ELSE IF-Structure Command Flow Element (see page 428)
ELSEIF formula IF-Structure Command Flow Element (see page 430)
END End Program Code Execution (see page 439)
ENDIF End IF Statement (see page 441)
ENDS End SWITCH Structure (see page 443)
GOSUB(label) Subroutine Call (see page 480)
GOTO(label) Branch Program Flow to a Label (see page 482)
IF formula Conditional Program Code Execution (see page 506)
ITR(Int#,StatusWord,Bit#,BitState,Label#) Interrupt Setup (see page 517)
ITRD Interrupt Disable, Global (see page 520)
ITRE Enable Interrupts, Global (see page 522)
LOOP Loop Back to WHILE Formula (see page 553)
PAUSE Pause Program Execution (see page 648)
RESUME Resume Program Execution (see page 704)
RETURN Return From Subroutine (see page 706)
RETURNI Return Interrupt (see page 708)
RUN Run Program (see page 714)

Command Lists: Commands Listed by Function

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 961 of 969

RUN? Halt Program Execution Until RUN Received (see page 716)
STACK Stack Pointer Register, Clear (see page 761)
SWITCH formula Switch, Program Flow Control (see page 766)
R TMR(timer,time) Timer (see page 782)
TSWAIT Trajectory Synchronized Wait (see page 788)
TWAIT(gen#) Trajectory Wait (see page 789)
WAIT=formula Wait for Specified Time (see page 835)
WHILE formula While Condition Program Flow Control (see page 841)

Reset Commands
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
Za Reset Overcurrent Flag (see page 850)
Ze Reset Position Error Flag (see page 851)
Zh Reset Temperature Fault (see page 852)
Zl Reset Historical Left Limit Flag (see page 853)
Zls Reset Left Software Limit Flag, Historical (see page 854)
Zr Reset Right Limit Flag, Historical (see page 855)
Zrs Reset Right Software Limit Flag, Historical (see page 856)
Zs Reset Command Syntax Error Flag (see page 857)
ZS Global Reset System State Flag (see page 858)
Zv Reset Velocity Limit Fault (see page 860)
Zw Reset Encoder Wrap Status Flag (see page 861)

System
R B(word,bit) Status Byte (see page 297)
R Ba Bit, Peak Overcurrent (see page 301)
R Be Bit, Position Error Limit (see page 305)
R Bh Bit, Overheat (see page 307)
R Bi(enc) Bit, Index Capture, Rising (see page 309)
R Bj(enc) Bit, Index Capture, Falling (see page 312)
R Bk Bit, Program EEPROM Data Status (see page 315)
R Bl Bit, Left Hardware Limit, Historical (see page 316)
R Bls Bit, Left Software Limit, Historical (see page 318)
R Bm Bit, Left Hardware Limit, Real-Time (see page 320)
R Bms Bit, Left Software Limit, Real-Time (see page 322)
R Bo Bit, Motor OFF (see page 324)
R Bp Bit, Right Hardware Limit, Real-Time (see page 325)
R Bps Bit, Right Software Limit, Real-Time (see page 327)
R Br Bit, Right Hardware Limit, Historical (see page 329)
R Brs Bit, Right Software Limit, Historical (see page 341)
R Bs Bit, Syntax Error (see page 343)

Command Lists: Commands Listed by Function

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 962 of 969

R Bt Bit, Trajectory In Progress (see page 345)
R Bv Bit, Velocity Limit (see page 347)
R Bw Bit, Wrapped Encoder Position (see page 349)
R Bx(enc) Bit, Index Input, Real-Time (see page 351)
R CLK=formula Millisecond Clock (see page 369)
R ERRC Error Code, Command (see page 451)
R ERRW Communication Channel of Most Recent Command Error (see page 453)
R FW Firmware Version (see page 471)
R RES Resolution (see page 702)
RSP Report Sampling Rate and Firmware Revision (see page 710)
RSP1 Report Firmware Compile Date (see page 712)
RSP5 Report Network Card Firmware Version (see page 713)
R SAMP Sampling Rate (see page 722)
R SP2 Bootloader Version (see page 755)
R SP6 Serial Number (see page 756)
R TEMP, TEMP(arg) Temperature, Motor (see page 777)
R TH=formula Temperature, High Limit (see page 779)
R UIA Motor Current (see page 791)
R UJA Bus Voltage (see page 793)
UO(...)=formula User Status Bits (see page 795)
UR(...) User Bits, Reset (see page 801)
US(...) User Bits, Set (see page 803)
R W(word) Report Specified Status Word (see page 833)

Variables
R a...z 32-Bit Variables (see page 249)
R aa...zz 32-Bit Variables (see page 249)
R aaa...zzz 32-Bit Variables (see page 249)
R ab[index]=formula Array Byte [index] (see page 252)
R af[index]=formula Array Float [index] (see page 267)
R al[index]=formula Array Long [index] (see page 278)
R aw[index]=formula Array Word [index] (see page 294)

Command Lists: Commands Listed by Function

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 963 of 969

Commands for Combitronic
This section provides an alphabetical listing of all available Combitronic commands and their
descriptions. Refer to each command description for supported features, units or value range
differences, etc.

NOTE: A superscript "R" character preceding the command indicates there is a corresponding
"report" version of that command.

R a...z 32-Bit Variables (see page 249)
R aa...zz 32-Bit Variables (see page 249)
R aaa...zzz 32-Bit Variables (see page 249)
R ab[index]=formula Array Byte [index] (see page 252)
R AC Acceleration Commanded (see page 256)
ADT=formula Acceleration/Deceleration Target (see page 263)
R af[index]=formula Array Float [index] (see page 267)
Ai(enc) Arm Index Rising Edge (see page 270)
Aij(enc) Arm Index Rising Edge Then Falling Edge (see page 272)
Aj(enc) Arm Index Falling Edge (see page 274)
Aji(enc) Arm Index Falling Edge Then Rising Edge (see page 276)
R al[index]=formula Array Long [index] (see page 278)
R AMPS=formula Amps, PWM Limit (see page 281)
R AT=formula Acceleration Target (see page 286)
R aw[index]=formula Array Word [index] (see page 294)
R B(word,bit) Status Byte (see page 297)
BRKENG Brake Engage (see page 333)
BRKRLS Brake Release (see page 335)
BRKSRV Brake Servo, Engage When Not Servoing (see page 337)
BRKTRJ Brake Trajectory, Engage When No Active Trajectory (see page 339)
R CLK=formula Millisecond Clock (see page 369)
R CTR(enc) Counter, Encoder, Step and Direction (see page 380)
R DEA Derivative Error, Actual (see page 386)
R DEL=formula Derivative Error Limit (see page 390)
DITR(int) Disable Interrupts (see page 394)
R DT=formula Deceleration Target (see page 396)
R EA Error Actual (see page 401)
ECS(counts) Encoder Count Shift (see page 410)
EIGN(...) Enable as Input for General-Use (see page 412)
EILN Enable Input as Limit Negative (see page 415)
EILP Enable Input as Limit Positive (see page 417)
EITR(int) Enable Interrupts (see page 424)
R EL=formula Error Limit (see page 426)
ENC0 Encoder Zero (Close Loop on Internal Encoder) (see page 432)

Command Lists: Commands for Combitronic

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 964 of 969

ENC1 Encoder Zero (Close Loop on External Encoder) (see page 433)
END End Program Code Execution (see page 439)
EOBK(IO) Enable Output, Brake Control (see page 445)
EOFT(IO) Enable Output, Fault Indication (see page 447)
F Force Into PID Filter (see page 457)
R FAUSTS(x) Returns Fault Status Word (see page 459)
R FD=expression Resolution to Set Units of Position/Velocity/Acceleration (see page 461)
FSA(cause,action) Fault Stop Action (see page 465)
R FW Firmware Version (see page 471)
R FSAD(n,m) Set Reaction to Fault (see page 467)
G Start Motion (GO) (see page 473)
GOSUB(label) Subroutine Call (see page 480)
GOTO(label) Branch Program Flow to a Label (see page 482)
R GROUP(function,value) Group Address Settings (see page 484)
R HM_ADT=formula Homing Accel/Decel Target (see page 491)
R HM_MTHD=formula Homing Method (see page 492)
R HM_OSET=formula Homing Offset (see page 496)
R HM_VTS=formula Homing Velocity Target to Switch (see page 498)
R HM_VTZ=formula Homing Velocity Target to Zero (see page 500)
R I(enc) Index, Rising-Edge Position (see page 502)
R IDENT=formula Set Identification Value (see page 504)
R IN(...) Specified Input (see page 509)
R INA(...) Specified Input, Analog (see page 512)
ITRD Interrupt Disable, Global (see page 520)
ITRE Enable Interrupts, Global (see page 522)
R J(enc) Index, Falling-Edge Position (see page 524)
R KA=formula Constant, Acceleration Feed Forward (see page 526)
R KD=formula Constant, Derivative Coefficient (see page 528)
R KG=formula Constant, Gravitational Offset (see page 530)
R KI=formula Constant, Integral Coefficient (see page 532)
R KL=formula Constant, Integral Limit (see page 535)
R KP=formula Constant, Proportional Coefficient (see page 537)
R KS=formula Constant, Velocity Filter Option (for KD) (see page 540)
R KV=formula Constant, Velocity Feed Forward (see page 542)
MC Mode Cam (Electronic Camming) (see page 555)
R MCDIV=formula Mode Cam Divisor (see page 557)
R MCMUL=formula Mode Cam Multiplier (see page 560)
MDB Enable TOB Feature (Commutation Mode) (see page 564)
MDC Mode Current (Commutation Mode) (see page 566)
MDE Mode Enhanced (Commutation Mode) (see page 568)
MDH Mode Hybrid (Commutation Mode) (see page 570)

Command Lists: Commands for Combitronic

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 965 of 969

MDHV Mode Hybrid Velocity (Commutation Mode) (see page 572)
MDS Mode Sine (Commutation Mode) (see page 574)
MDT Mode Trap (Commutation Mode) (see page 576)
MF0 Mode Follow, Zero External Counter (see page 578)
MFA(distance[,m/s]) Mode Follow Ascend (see page 580)
MFCTP(arg1,arg2) Mode Follow Control Traverse Point (see page 583)
MFD(distance[,m/s]) Mode Follow Descend (see page 585)
R MFDIV=formula Mode Follow Divisor (see page 588)
MFH(distance[,m/s]) Mode Follow, High Ascend/Descend Rate (see page 590)
R MFHTP=formula Mode Follow, High Traverse Point (see page 592)
MFL(distance[,m/s]) Mode Follow, Low Ascend/Descend Rate (see page 594)
R MFLTP=formula Mode Follow, Low Traverse Point (see page 596)
R MFMUL=formula Mode Follow Multiplier (see page 598)
MFR Mode Follow Ratio (see page 600)
MFSDC(distance,mode) Mode Follow, Stall-Dwell-Continue (see page 603)
MFSLEW(distance[,m/s]) Mode Follow Slew (see page 605)
R MH Mode, Homing (see page 607)
MINV(arg) Mode Inverse (Commutation Inverse) (see page 608)
R MODE Mode Operating (see page 610)
MP Mode Position (see page 613)
MS0 Mode Step, Zero External Counter (see page 616)
MSR Mode Step Ratio (see page 618)
MT Mode Torque (see page 620)
MTB Mode Torque Brake (see page 622)
MV Mode Velocity (see page 624)
O=formula, O(trj#)=formula Origin (see page 628)
OFF Off (Drive Stage Power) (see page 636)
OR(value) Output, Reset (see page 638)
OS(...) Output, Set (see page 640)
OSH=formula, OSH(trj#)=formula Origin Shift (see page 642)
OUT(...)=formula Output, Activate/Deactivate (see page 644)
R PA Position, Actual (see page 646)
PAUSE Pause Program Execution (see page 648)
R PC, PC(axis) Position, Commanded (see page 650)
R PMA Position, Modulo Actual (see page 657)
R PML=formula Modulo Position Limit (see page 659)
R PMT=formula Position, Modulo Target (see page 661)
R PRT=formula Position, Relative Target (see page 683)
R PT=formula Position, (Absolute) Target (see page 690)
R RES Resolution (see page 702)
RESUME Resume Program Execution (see page 704)
RUN Run Program (see page 714)
S (as command) Stop Motion (see page 718)
R SAMP Sampling Rate (see page 722)

Command Lists: Commands for Combitronic

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 966 of 969

SCALEA(m,d) Scale Acceleration Value (see page 724)
SCALEP(m,d) Scale Position Value (see page 726)
SCALEV(m,d) Scale Velocity Value (see page 728)
SLD Software Limits, Disable (see page 740)
SLE Software Limits, Enable (see page 742)
R SLM(mode) Software Limit Mode (see page 748)
R SLN=formula Software Limit, Negative (see page 750)
R SLP=formula Software Limit, Positive (see page 752)
R SP2 Bootloader Version (see page 755)
R SP6 Serial Number (see page 756)
SRC(enc_src) Source, Follow and/or Cam Encoder (see page 759)
R T=formula Torque, Open-Loop Commanded (see page 769)
R TEMP, TEMP(arg) Temperature, Motor (see page 777)
R TH=formula Temperature, High Limit (see page 779)
R TMR(timer,time) Timer (see page 782)
R TRQ Torque, Real-Time (see page 784)
R TS=formula Torque Slope (see page 786)
R UIA Motor Current (see page 791)
R UJA Bus Voltage (see page 793)
UO(...)=formula User Status Bits (see page 795)
UR(...) User Bits, Reset (see page 801)
US(...) User Bits, Set (see page 803)
R VA Velocity Actual (see page 807)
R VC Velocity Commanded (see page 815)
R VL=formula Velocity Limit (see page 818)
R VT=formula Velocity Target (see page 828)
R W(word) Report Specified Status Word (see page 833)
X Decelerate to Stop (see page 844)
Z Total CPU Reset (see page 846)
Z(word,bit) Reset Specified Status Bit (see page 848)
ZS Global Reset System State Flag (see page 858)

Command Lists: Commands for Combitronic

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 967 of 969

Commands for DS2020 Combitronic
The section provides an alphabetical listing of all available DS2020 Combitronic system commands and
their descriptions. However, not all of the commands shown are Combitronic-supported commands (i.e.,
not all of the listed commands support Combitronic addressing/syntax). Refer to each command
description for supported features, units or value range differences, etc.

NOTE: On the command description page: if the full command is supported, the DS2020 Combitronic
system support will be noted in the APPLICATION row of the table; if only the report form of the
command is supported, the DS2020 Combitronic system support will be noted in the READ/REPORT
row of the table.

NOTE: A superscript "R" character preceding the command indicates there is a corresponding
"report" version of that command. However, refer to the previous NOTE regarding support specific
to the DS2020 Combitronic system.

R ADDR=formula Address (for RS-232 and RS-485) (see page 261)
ADT=formula Acceleration/Deceleration Target (see page 263)
Ai(enc) Arm Index Rising Edge (see page 270)
R AMPS=formula Amps, PWM Limit (see page 281)
R AT=formula Acceleration Target (see page 286)
R B(word,bit) Status Byte (see page 297)
R BAUD(channel)=formula Set BAUD Rate (RS-232 and RS-485) (see page 303)
R Be Bit, Position Error Limit (see page 305)
R Bi(enc) Bit, Index Capture, Rising (see page 309)
R CADDR=formula CAN Address (see page 355)
R CBAUD=formula CAN Baud Rate (see page 363)
R DT=formula Deceleration Target (see page 396)
R EA Error Actual (see page 401)
ECHO Echo Incoming Data on Communications Port 0 (see page 403)
ECHO_OFF Turn Off Echo on Communications Port 0 (see page 407)
EIGN(...) Enable as Input for General-Use (see page 412)
EILN Enable Input as Limit Negative (see page 415)
EILP Enable Input as Limit Positive (see page 417)
EISM(x) E-Configure Input as Sync Controller (see page 423)
R EL=formula Error Limit (see page 426)
F Force Into PID Filter (see page 457)
R FAUSTS(x) Returns Fault Status Word (see page 459)
R FD=expression Resolution to Set Units of Position/Velocity/Acceleration (see page 461)
R FSAD(n,m) Set Reaction to Fault (see page 467)
G Start Motion (GO) (see page 473)
R I(enc) Index, Rising-Edge Position (see page 502)
R IN(...) Specified Input (see page 509)
R KD=formula Constant, Derivative Coefficient (see page 528)
R KI=formula Constant, Integral Coefficient (see page 532)

Command Lists: Commands for DS2020 Combitronic

C
o

m
m

a
n

d
 L

is
t

Moog Animatics SmartMotor™ Developer's Guide, Rev. R

Page 968 of 969

R KP=formula Constant, Proportional Coefficient (see page 537)
R KV=formula Constant, Velocity Feed Forward (see page 542)
R MODE Mode Operating (see page 610)
MP Mode Position (see page 613)
MV Mode Velocity (see page 624)
O=formula, O(trj#)=formula Origin (see page 628)
OCHN(...) Open Channel (see page 632)
OFF Off (Drive Stage Power) (see page 636)
OUT(...)=formula Output, Activate/Deactivate (see page 644)
R PA Position, Actual (see page 646)
R PT=formula Position, (Absolute) Target (see page 690)
R RES Resolution (see page 702)
RSP Report Sampling Rate and Firmware Revision (see page 710)
S (as command) Stop Motion (see page 718)
SADDR# Set Address (see page 720)
SLEEP Ignore Incoming Commands on Communications Port 0 (see page 744)
R TEMP, TEMP(arg) Temperature, Motor (see page 777)
R TH=formula Temperature, High Limit (see page 779)
R UIA Motor Current (see page 791)
R UJA Bus Voltage (see page 793)
R VA Velocity Actual (see page 807)
R VT=formula Velocity Target (see page 828)
R W(word) Report Specified Status Word (see page 833)
WAKE Wake Communications Port 0 (see page 837)
X Decelerate to Stop (see page 844)
Z Total CPU Reset (see page 846)
ZS Global Reset System State Flag (see page 858)

Command Lists: Commands for DS2020 Combitronic

www.animatics.com

For Animatics product information, visit
For more information or to find the office nearest you, email animatics_sales@moog.com

Moog is a registered trademark of Moog Inc. and its subsidiaries.
All trademarks as indicated herein are the property of Moog Inc. and its subsidiaries.

TAKE A CLOSER LOOK

Americas - West Americas - East Europe Asia
Moog Animatics Moog Animatics Moog GmbH Moog Animatics
2581 Leghorn Street 1995 NC Hwy 141 Memmingen Branch

Allgaeustr. 8a
 Kichijoji Nagatani City Plaza 405

Mountain View, CA 94043 Murphy, NC 28906
87766 Memmingerberg

 1-20-1, Kichijojihoncho
United States United States

Germany
 Musashino-city, Tokyo 180-0004

 Japan

Tel: +1 650-960-4215 Tel: +49 8331 98 480-0 Tel: +81 (0)422 201251
Email: animatics_sales@moog.com Email: info.mm@moog.com Email: mcg.japan@moog.com

www.animatics.com

Moog Animatics, a sub-brand of Moog Inc. since 2011, is a global leader in integrated automation solutions. With over 30
years of experience in the motion control industry, the company has U.S. operations and international offices in Germany and
Japan as well as a network of Automation Solution Providers worldwide.

Moog Animatics SmartMotor™ Developer's Guide,
Rev. R, July 2022, PN: SC80100003-002

©2001–2022 Moog Inc. All rights reserved. All changes are reserved.

	Introduction
	Overview
	Combitronic Support
	Combitronic with the DS2020 Combitronic System

	Communication Lockup Wizard
	Safety Information
	Safety Symbols
	Other Safety Considerations
	Motor Sizing
	Environmental Considerations
	Machine Safety
	Documentation and Training
	Additional Equipment and Considerations

	Safety Information Resources

	Additional Documents
	Related Guides
	Other Documents

	Additional Resources

	Part 1: Programming the SmartMotor
	Beginning Programming
	Understanding Firmware Versions
	Downloading and Installing the Latest Firmware
	Understanding the FIRMWARE VERSION Field in the Command Descriptions
	Class 5 Firmware for D- and M-Style Motors
	Class 6 Firmware for M-Style (MT/MT2) Motors
	Class 6 Firmware for D-Style Motors
	DS2020 Combitronic System Firmware

	Setting the Motor Firmware Version in SMI
	Setting the Default Firmware Version
	Checking the Default Firmware Version

	Opening the SMI Window (Program Editor)
	Understanding the Program Requirements
	Creating a Hello World Program
	Entering the Program in the SMI Editor
	Adding Comments to the Code
	Checking the Program Syntax
	Saving the Program

	Downloading a Program to the SmartMotor
	Syntax Checking, Compiling and Downloading the Program
	Additional Notes on Downloaded Programs

	Running a Downloaded Program
	Using the Program Download Window
	Using the Terminal Window and Run Program Button
	Using the RUN Command in the Terminal Window

	Creating a Simple Motion Program

	SMI Software Features
	Introduction
	Menu Bar
	Toolbar
	Configuration Window
	Terminal Window
	Initiating Motion from the Terminal Window

	Information Window
	Program Editor
	Motor View
	SMI Trace Functions

	Monitor Window
	Serial Data Analyzer
	Chart View
	Chart View Example

	Macros (Keyboard Shortcuts or Hotkeys)
	Tuner
	SMI Options
	SMI Help
	Context-Sensitive Help Using F1
	Context-Sensitive Help Using the Mouse
	Help Buttons
	Hover Help
	Table of Contents

	Projects
	SmartMotor Playground
	Opening the SmartMotor Playground
	Moving the Motor

	Communication Details
	Introduction
	Connecting to a Host
	Daisy Chaining Multiple D‑Style SmartMotors over RS‑232
	ADDR=formula
	SLEEP, SLEEP1
	WAKE, WAKE1
	ECHO, ECHO1
	ECHO_OFF, ECHO_OFF1

	Serial Commands
	OCHN(type,channel,parity,bit rate,stop bits,data bits,mode,timeout)
	CCHN(type,channel)
	BAUDrate, BAUD(channel)=formula
	PRINT(), PRINT1()
	SILENT, SILENT1
	TALK, TALK1
	a=CHN(channel)
	a=ADDR
	Communicating over RS‑485

	Using Data Mode
	CAN Communications
	CADDR=formula
	CBAUD=formula
	=CAN, =CAN(arg)
	CANCTL(function,value)
	SDORD(...)
	SDOWR(...)
	NMT
	RB(2,4), x=B(2,4)
	Exceptions to NMT, SDORD and SDOWR Commands
	I/O Device CAN Bus Controller

	Combitronic Communications
	Combitronic Features
	Other Combitronic Benefits
	Program Loops with Combitronic
	Global Combitronic Transmissions
	Simplify Machine Support
	Combitronic with RS‑232 Interface
	Combitronic with the DS2020 Combitronic System

	Other CAN Protocols
	CANopen - CAN Bus Protocol
	DeviceNet - CAN Bus Protocol

	I²C Communications (Class 5 D‑Style Motors)
	OCHN(IIC,1,N,baud,1,8,D)
	CCHN(IIC,1)
	PRINT1(arg1,arg2, … ,arg_n)
	RGETCHR1, Var=GETCHR1
	RLEN1, Var=LEN1

	Motion Details
	Introduction
	Motion Command Quick Reference
	Basic Motion Commands
	Target Commands
	PT=formula
	PRT=formula
	ADT=formula
	AT=formula
	DT=formula
	VT=formula

	Motion Mode Commands
	MP
	MV
	MT

	Torque Commands
	TS=formula
	T=formula

	Brake Commands
	BRKRLS
	BRKENG
	BRKSRV
	BRKTRJ
	Brake Command Examples
	EOBK(IO)
	MTB

	Index Capture Commands
	DS2020 Combitronic System Index Capture

	Other Motion Commands
	G
	S
	X
	O=formula
	OSH=formula
	OFF
	SCALEA(m,d), SCALEP(m,d), SCALEV(m,d)

	Commutation Modes
	MDT
	MDE
	MDS
	MDC
	MDB
	MINV(0), MINV(1)

	Modes of Operation
	Torque Mode
	Torque Mode Example
	Dynamically Change from Velocity Mode to Torque Mode

	Velocity Mode
	Constant Velocity Example
	Change Commanded Speed and Acceleration

	Absolute (Position) Mode
	Absolute Move Example
	Two Moves with Delay Example
	Change Speed and Acceleration Example
	Shift Point of Origin Example

	Relative Position Mode
	Relative Mode Example

	Follow Mode with Ratio (Electronic Gearing)
	Electronic Gearing and Camming over CANopen
	Electronic Gearing Commands
	SRC(enc_src)
	MFR
	MSR
	MF0
	MS0
	MFMUL=formula, MFDIV=formula
	MFA(distance[,m/s])
	MFD(distance[,m/s])
	MFSLEW(distance[,m/s])

	Follow Internal Clock Source Example
	Follow Incoming Encoder Signal With Ramps Example
	Electronic Line Shaft
	ENCD(in_out)

	Spooling and Winding Overview
	Relative Position, Auto-Traverse Spool Winding
	MFSDC(distance,mode)

	Dedicated, Absolute Position, Winding Traverse Commands
	MFSDC(distance,2)
	MFLTP=formula
	MFHTP=formula
	MFCTP(arg1,arg2)
	MFL(distance[,m/s])
	MFH(distance[,m/s])
	ECS(counts)

	Single Trajectory Example Program
	Chevron Wrap Example
	Other Traverse Mode Notes
	Traverse Mode Status Bits

	Cam Mode (Electronic Camming)
	Electronic Camming Details
	Understanding the Inputs
	Should I choose Source Counts or Intermediate Counts?
	Should I choose Variable or Fixed cam?
	Electronic Camming Notes and Best Practices
	Examples

	Electronic Gearing and Camming over CANopen
	Electronic Camming Commands
	CTE(table)
	CTA(points,seglen[,location])
	CTW(pos[,seglen][,user])
	MCE(arg)
	MCW(table,point)
	RCP
	RCTT
	MC
	MCMUL=formula
	MCDIV=formula
	O(arg)=formula
	OSH(arg)=formula

	Cam Example Program

	Mode Switch Example

	Position Counters
	Modulo Position
	Modulo Position Commands

	Dual Trajectories
	Commands That Read Trajectory Information
	Dual Trajectory Example Program
	Using Mixed Mode Operations After Homing

	Synchronized Motion
	Synchronized-Target Commands
	PTS(), PRTS()
	VTS=formula
	ADTS=formula, ATS=formula, DTS=formula
	PTSS(), PRTSS()
	A Note About PTS and PRTS

	Other Synchronized-Motion Commands
	GS
	TSWAIT

	Program Flow Details
	Introduction
	Flow Commands
	RUN
	RUN?
	GOTO#, GOTO(label), C#
	GOSUB#, GOSUB(label), RETURN
	IF, ENDIF
	ELSE, ELSEIF
	WHILE, LOOP
	SWITCH, CASE, DEFAULT, BREAK, ENDS
	TWAIT
	WAIT=formula
	STACK
	END

	Program Flow Examples
	IF, ELSEIF, ELSE, ENDIF Examples
	WHILE, LOOP Examples
	GOTO(), GOSUB() Examples
	SWITCH, CASE, BREAK, ENDS Examples

	Interrupt Programming
	ITR(), ITRE, ITRD, EITR(), DITR(), RETURNI
	TMR(timer,time)

	Variables and Math
	Introduction
	Variable Commands
	EPTR=formula
	VST(variable,number)
	VLD(variable,number)

	Math Expressions
	Math Operations
	Logical Operations
	Integer Operations
	Floating Point Functions
	Math Operation Details and Examples

	Array Variables
	Array Variable Examples

	Error and Fault Handling Details
	Motion and Motor Faults
	Overview
	Drive Stage Indications and Faults
	Fault Bits

	Error Handling
	Example Fault-Handler Code
	PAUSE
	RESUME

	Limits and Fault Handling
	Position Error Limits
	dE/dt Limits
	Velocity Limits
	Hardware Limits
	Software Limits
	Fault Handling

	Monitoring the SmartMotor Status

	System Status
	Introduction
	Retrieving and Manipulating Status Words/Bits
	System and Motor Status Bits
	Reset Error Flags
	System Status Examples
	Timer Status Bits
	Interrupt Status Bits
	I/O Status
	User Status Bits
	Multiple Trajectory Support Status Bits
	Cam Status Bits
	Interpolation Status Bits
	Motion Mode Status
	RMODE, RMODE(arg)

	I/O Control Details
	I/O Port Hardware
	I/O Connections Example (Class 5 D‑Style Motors)
	I/O Voltage Protection
	Discrete Input and Output Commands
	Discrete Input Commands
	Discrete Output Commands

	Output Condition and Fault Status Commands
	Output Condition Commands
	Output Fault Status Reports

	General-Use Input Configuration
	Multiple I/O Functions Example

	Analog Functions of I/O Ports
	5 Volt Push-Pull I/O Analog Functions (Class 5 D‑Style Motors)
	24 Volt I/O Analog Functions (Class 5 D‑Style AD1 Option Motors, Class 5 M‑St...
	24 Volt I/O Analog Functions (Class 6 M‑Style Motors)
	24 Volt I/O Analog Functions (Class 6 D‑Style Motors)

	Special Functions of I/O Ports
	Class 5 D‑Style Motors: Special Functions of I/O Ports
	I/O Ports 0 and 1 – External Encoder Function Commands
	I/O Ports 2 and 3 – Travel Limit Inputs
	I/O Ports 4 and 5 – Communications
	I/O Port 6 – Go Command, Encoder Index Capture Input

	Class 5 M‑Style Motors: Special Functions of I/O Ports
	COM Port Pins 4, 5, 6, and 8 – A-quad-B or Step-and-Direction Modes
	I/O Ports 2 and 3 – Travel Limit Inputs
	I/O Port 5 – Encoder Index Capture Input
	I/O Port 6 – Go Command

	Class 6 Motors: Special Functions of I/O Ports
	A-quad-B or Step-and-Direction Modes
	I/O Ports 2 and 3 – Travel Limit Inputs
	I/O Port 4 and 5 – Encoder Index Capture Input
	I/O Port 6 – Go Command

	I/O Brake Output Commands
	I²C Expansion (D‑Style Motors)

	Tuning and PID Control
	Introduction
	Tuning and PID Control on the DS2020 Combitronic System

	Understanding the PID Control
	Tuning the PID Control
	Using F
	Setting KP
	Setting KD
	Setting KI and KL
	Setting EL=formula

	Other PID Tuning Parameters
	KG=formula
	KV=formula
	KA=formula

	Current Limit Control
	AMPS=formula

	Part 2: SmartMotor Command Reference
	(Single Space Character)
	a...z
	aa...zz
	aaa...zzz
	Ra...Rz
	Raa...Rzz
	Raaa...Rzzz

	ab[index]=formula
	Rab[index]

	ABS(value)
	RABS(value)

	AC
	RAC

	ACOS(value)
	RACOS(value)

	ADDR=formula
	RADDR

	ADT=formula
	ADTS=formula
	af[index]=formula
	Raf[index]

	Ai(enc)
	Aij(enc)
	Aj(enc)
	Aji(enc)
	al[index]=formula
	Ral[index]

	AMPS=formula
	RAMPS

	ASIN(value)
	RASIN(value)

	AT=formula
	RAT

	ATAN(value)
	RATAN(value)

	ATOF(index)
	RATOF(index)

	ATS=formula
	aw[index]=formula
	Raw[index]

	B(word,bit)
	RB(word,bit)

	Ba
	RBa

	BAUD(channel)=formula
	RBAUD(channel)

	Be
	RBe

	Bh
	RBh

	Bi(enc)
	RBi(enc); supports the DS2020 Combitronic system over RS-232 only

	Bj(enc)
	RBj(enc)

	Bk
	RBk

	Bl
	RBl

	Bls
	RBls

	Bm
	RBm

	Bms
	RBms

	Bo
	RBo

	Bp
	RBp

	Bps
	RBps

	Br
	RBr

	BREAK
	BRKENG
	BRKRLS
	BRKSRV
	BRKTRJ
	Brs
	RBrs

	Bs
	RBs

	Bt
	RBt

	Bv
	RBv

	Bw
	RBw

	Bx(enc)
	RBx(enc)

	C{number}
	CADDR=formula
	RCADDR

	CAN, CAN(arg)
	RCAN, RCAN(arg)

	CANCTL(function,value)
	CASE formula
	CBAUD=formula
	RCBAUD

	CCHN(type,channel)
	CHN(channel)
	RCHN(channel)

	CLK=formula
	RCLK

	COMCTL(function,value)
	COS(value)
	RCOS(value)

	CP
	RCP

	CTA(points,seglen[,location])
	CTE(table)
	CTR(enc)
	RCTR(enc)

	CTT
	RCTT

	CTW(pos[,seglen][,user])
	DEA
	RDEA

	DEFAULT
	DEL=formula
	RDEL

	DELM(arg)
	DFS(value)
	RDFS(value)

	DITR(int)
	DT=formula
	RDT

	DTS=formula
	EA
	REA

	ECHO
	ECHO0
	ECHO1
	ECHO_OFF
	ECHO_OFF0
	ECHO_OFF1
	ECS(counts)
	EIGN(...)
	EILN
	EILP
	EIRE
	EIRI
	EISM(x)
	EITR(int)
	EL=formula
	REL

	ELSE
	ELSEIF formula
	ENC0
	ENC1
	ENCCTL(function,value)
	ENCD(in_out)
	END
	ENDIF
	ENDS
	EOBK(IO)
	EOFT(IO)
	EOIDX(number)
	EPTR=formula
	REPTR

	ERRC
	RERRC

	ERRW
	RERRW

	ETH(arg)
	RETH(arg)

	ETHCTL(function,value)
	F
	FAUSTS(x)
	FD=expression
	FABS(value)
	RFABS(value)

	FSA(cause,action)
	FSAD(n,m)
	FSQRT(value)
	RFSQRT(value)

	FW
	RFW

	G
	GETCHR
	RGETCHR

	GETCHR1
	RGETCHR1

	GOSUB(label)
	GOTO(label)
	GROUP(function,value)
	GS
	HEX(index)
	RHEX(index)

	HM_ADT=formula
	HM_MTHD=formula
	RHM_MTHD

	HM_OSET=formula
	RHM_OSET

	HM_VTS=formula
	HM_VTZ=formula
	I(enc)
	RI(enc); supports the DS2020 Combitronic system over RS-232 only

	IDENT=formula
	RIDENT

	IF formula
	IN(...)
	RIN(...)

	INA(...)
	RINA(...)

	IPCTL(function,string)
	ITR(Int#,StatusWord,Bit#,BitState,Label#)
	ITRD
	ITRE
	J(enc)
	RJ(enc)

	KA=formula
	RKA

	KD=formula
	RKD

	KG=formula
	RKG

	KI=formula
	RKI

	KII=formula
	RKII

	KL=formula
	RKL

	KP=formula
	RKP

	KPI=formula
	RKPI

	KS=formula
	RKS

	KV=formula
	RKV

	LEN
	RLEN

	LEN1
	RLEN1

	LFS(value)
	RLFS(value)

	LOAD
	LOCKP
	LOOP
	MC
	MCDIV=formula
	RMCDIV

	MCE(arg)
	MCMUL=formula
	RMCMUL

	MCW(table,point)
	MDB
	MDC
	MDE
	MDH
	MDHV
	MDS
	MDT
	MF0
	MFA(distance[,m/s])
	MFCTP(arg1,arg2)
	MFD(distance[,m/s])
	MFDIV=formula
	MFH(distance[,m/s])
	MFHTP=formula
	MFL(distance[,m/s])
	MFLTP=formula
	MFMUL=formula
	MFR
	MFSDC(distance,mode)
	MFSLEW(distance[,m/s])
	MH
	MINV(arg)
	MODE
	RMODE

	MP
	MS0
	MSR
	MT
	MTB
	MV
	NMT
	N/A

	O=formula, O(trj#)=formula
	OC(...)
	ROC(...)

	OCHN(...)
	OF(...)
	ROF(...)

	OFF
	OR(value)
	OS(...)
	OSH=formula, OSH(trj#)=formula
	OUT(...)=formula
	PA
	RPA

	PAUSE
	PC, PC(axis)
	RPC, RPC(axis)

	PI
	RPI

	PID#
	PMA
	RPMA

	PML=formula
	RPML

	PMT=formula
	RPMT

	PRA
	RPRA

	PRC
	RPRC

	PRINT(...)
	PRINT0(...)
	PRINT1(...)
	PRINT8(...)
	PRT=formula
	RPRT

	PRTS(...)
	PRTSS(...)
	PT=formula
	RPT

	PTS(...)
	PTSD
	RPTSD

	PTSS(...)
	PTST
	RPTST

	RANDOM=formula
	RRANDOM

	RCKS
	RES
	RRES

	RESUME
	RETURN
	RETURNI
	RSP
	RSP1
	RSP5
	RUN
	RUN?
	S (as command)
	SADDR#
	SAMP
	RSAMP

	SCALEA(m,d)
	SCALEP(m,d)
	SCALEV(m,d)
	SDORD(...)
	RSDORD

	SDOWR(...)
	SILENT
	SILENT1
	SIN(value)
	RSIN(value)

	SLD
	SLE
	SLEEP
	SLEEP1
	SLM(mode)
	RSLM

	SLN=formula
	RSLN

	SLP=formula
	RSLP

	SNAME(string)
	SP2
	RSP2

	SP6
	RSP6

	SQRT(value)
	RSQRT(value)

	SRC(enc_src)
	STACK
	STDOUT=formula
	SWITCH formula
	T=formula
	RT

	TALK
	TALK1
	TAN(value)
	RTAN(value)

	TEMP, TEMP(arg)
	RTEMP, RTEMP(arg)

	TH=formula
	RTH

	TMR(timer,time)
	RTMR(timer)

	TRQ
	RTRQ

	TS=formula
	RTS

	TSWAIT
	TWAIT(gen#)
	UIA
	RUIA

	UJA
	RUJA

	UO(...)=formula
	UP
	UPLOAD
	UR(...)
	US(...)
	USB(arg)
	RUSB

	VA
	RVA

	VAC(arg)
	VC
	RVC

	VL=formula
	RVL

	VLD(variable,number)
	VST(variable,number)
	VT=formula
	RVT

	VTS=formula
	W(word)
	RW(word)

	WAIT=formula
	WAKE
	WAKE1
	WHILE formula
	X
	Z
	Z(word,bit)
	Za
	Ze
	Zh
	Zl
	Zls
	Zr
	Zrs
	Zs
	ZS
	Zv
	Zw

	Part 3: Example SmartMotor Programs
	Move Back and Forth
	Move Back and Forth with Watch
	Home Against a Hard Stop (Basic)
	Home Against a Hard Stop (Advanced)
	Home Against a Hard Stop (Two Motors)
	Home to Index Using Different Modes
	Maintain Velocity During Analog Drift
	Long-Term Storage of Variables
	Find Errors and Print Them
	Change Speed on Digital Input
	Pulse Output on a Given Position
	Stop Motion if Voltage Drops
	Camming - Variable Cam Example
	Camming - Fixed Cam with Input Variables
	Camming - Demo XY Circle
	Chevron Traverse & Takeup
	CAN Bus - Timed SDO Poll
	CAN Bus - I/O Block with PDO Poll
	CAN Bus - Time Sync Follow Encoder
	Text Replacement in an SMI Program

	Appendix
	Motion Command Quick Reference
	Array Variable Memory Map
	ASCII Character Set
	Binary Data
	Commands Affected by SCALE
	Command Error Codes
	Decoding the Error
	Finding the Error Source

	Glossary
	Math Operators
	Moment of Inertia
	Matching Motor to Load
	Improving the Moment of Inertia Ratio

	RCAN, RCHN and RMODE Status
	RCAN Status Decoder
	RCHN Status Decoder
	Clearing Serial Port Errors

	RMODE Status Decoder
	Mode Status Example

	Scale Factor Calculation
	Sample Rates
	PID Sample Rate Command
	Encoder Resolution and the RES Parameter
	Native Velocity and Acceleration Units
	Velocity Calculations
	Acceleration Calculations

	Status Words - SmartMotor
	Status Word 0: Primary Fault/Status Indicator
	Status Word 1: Index Registration and Software Travel Limits
	Status Word 2: Communications, Program and Memory
	Status Word 3: PID State, Brake, Move Generation Indicators
	Status Word 4: Interrupt Timers
	Status Word 5: Interrupt Status Indicators
	Status Word 6: Drive Modes
	Status Word 7: Multiple Trajectory Support
	Status Word 8: Cam Support
	Status Word 9: No Bits Defined (Class 5 Only)
	Status Word 9: SD Card and DMX Information (Class 6 Only)
	Status Word 10: RxPDO Arrival Notification
	Status Word 12: DMX Information (Class 5 Only)
	Status Word 12: User Bits Word 0 (Class 6 Only)
	Status Word 13: User Bits Word 1
	Status Word 16: On Board Local I/O Status: D‑Style Motor
	Status Word 16: On Board Local I/O Status: M‑Style Class 5 Motor
	Status Word 16: On Board Local I/O Status - Class 6 Motor
	Status Word 17: Expanded I/O Status - D‑Style AD1 Motor

	Fault and Status Words - DS2020 Combitronic System
	Fault Words
	Fault Tables
	Fault Word 0
	Fault Word 1
	Fault Word 2

	Status Words
	Status Word 0: Primary Fault/Status Indicator
	Status Word 1: Current CiA DS402 State
	Status Word 2: Control and Hardware Faults
	Status Word 3: Position/Velocity sensor and Brake Feedback Faults
	Status Word 4: Communication Faults
	Status Word 5: Software and Memory Faults
	Status Word 6: I/O States

	Torque Curves
	Understanding Torque Curves
	Peak Torque
	Continuous Torque
	Ambient Temperature Effects on Torque Curves and Motor Response:
	Supply Voltage Effects on Torque Curves and Motor Response:
	Example 1: Rotary Application
	Example 2: Linear Application

	Dyno Test Data vs. the Derated Torque Curve
	Proper Sizing and Loading of the SmartMotor

	SmartMotor Troubleshooting
	Troubleshooting - First Steps

	Commands Listed Alphabetically
	Commands Listed by Function
	Communications Control
	Data Conversion
	EEPROM (Nonvolatile Memory)
	I/O Control
	Math Function
	Motion Control
	Program Access
	Program Execution and Flow Control
	Reset Commands
	System
	Variables

	Commands for Combitronic
	Commands for DS2020 Combitronic

