
www.animatics.com

DESCRIBES THE CLASS 6
SMARTMOTOR™ SUPPORT FOR THE
ETHERCAT® PROTOCOL

CLASS 6 SMARTMOTOR™ TECHNOLOGY

ETHERCAT® IMPLEMENTATION FOR

FULLY INTEGRATED
SERVO MOTORS

Rev. K, August 2022

Copyright Notice
©2014-2022, Moog Inc.

Moog Animatics Class 6 SmartMotor™ EtherCAT Guide, Rev. K, PN:SC80100002-001.

This manual, as well as the software described in it, is furnished under license and may be used or
copied only in accordance with the terms of such license. The content of this manual is furnished for
informational use only, is subject to change without notice and should not be construed as a
commitment by Moog Inc., Animatics. Moog Inc., Animatics assumes no responsibility or liability for any
errors or inaccuracies that may appear herein.

Except as permitted by such license, no part of this publication may be reproduced, stored in a retrieval
system or transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise,
without the prior written permission of Moog Inc., Animatics.

The programs and code samples in this manual are provided for example purposes only. It is the user's
responsibility to decide if a particular code sample or program applies to the application being
developed and to adjust the values to fit that application.

Moog Animatics and the Moog Animatics logo, SmartMotor and the SmartMotor logo, Combitronic and
the Combitronic logo are all trademarks of Moog Inc., Animatics. CiA and CANopen are registered
community trademarks of CAN in Automation e.V. EtherCAT is a registered trademark and patented
technology, licensed by Beckhoff Automation GmbH, Germany. Other trademarks are the property of
their respective owners.

Please let us know if you find any errors or omissions in this manual so that we can improve it for
future readers. Such notifications should contain the words "EtherCAT Guide" in the subject line and be
sent by e-mail to: animatics_marcom@moog.com. Thank you in advance for your contribution.

Contact Us:

Americas - West
Moog Animatics
2581 Leghorn Street
Mountain View, CA 94043
USA

Americas - East
Moog Animatics
1995 NC Hwy 141
Murphy, NC 28906
USA

Tel: 1 650-960-4215

Support: 1 (888) 356-0357

Website: www.animatics.com

Email: animatics_sales@moog.com

Table of Contents

Introduction 9
Purpose 10

Combitronic Technology 10

Abbreviations 11

Safety Information 13

Safety Symbols 13

Other Safety Considerations 13

Motor Sizing 13

Environmental Considerations 13

Machine Safety 14

Documentation and Training 14

Additional Equipment and Considerations 15

Safety Information Resources 15

Additional Documents 16

Related Guides 16

Other Documents 16

Additional Resources 17

CANopen Resources 17

EtherCAT Resources 17

EtherCAT Overview 18
SmartMotor EtherCAT Overview 19

CANopen over EtherCAT (CoE) Description 20

Object Dictionary 20

PDO and SDO Communication 21

SDO 21

PDO 22

EtherCAT State Machine (ESM) 22

AL-Control Register 23

AL-Status Codes 24

ESM Transition Diagram 25

PDO Communications over EtherCAT 25

Receive PDO Example 25

Transmit PDO Example 26

Synchronized PDO Communications 26

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 3 of 197

Other Communications with the Motor 26

Supported Features 27
Supported CoE Features 28

CiA 402 Motion Modes 28

Dynamic PDO Mapping 28

Configurable Sync Manager 2 and 3 Assignment 28

DC-Sync Subordinate Mode with SYNC0 and SYNC1 28

DC-Sync Follower 29

Selectable Homing Modes 29

Selectable Interpolation Modes 29

Touch Probe Function 29

Status LEDs 30
Status LEDs - Class 6 M-Style 31

Status LEDs - Class 6 D-Style 32

Manufacturer-Specific Objects 33
I/O 34

User Variables 34

Calling Subroutines 35

Command Interface (Object 2500h) 36

Command Interface 36

Program Upload/Download 38

Upload from Motor 38

Download to Motor (SMX file) 38

Download to Motor (SMXE encrypted file) 39

CiA 402 Drive and Motion Control Profile 40
CiA 402 Profile Motion State Machine 41

Control Words, Status Words and the Drive State Machine 41

Status Word (Object 6041h) 42

Control Word (Object 6040h) 43

Motion Profiles 44

Position Mode 44

Absolute Position Mode Summary 45

Absolute Position Mode Example 45

Relative Position Example 46

Velocity Mode 48

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 4 of 197

Velocity Mode Summary 48

Velocity Mode Example 49

Torque Mode 49

Torque Mode Summary 50

Torque Mode Example 50

Cyclic Synchronous Position (CSP) Mode 51

CSP Control and Status Word 51

CSP Mode Example 52

Cyclic Synchronous Velocity (CSV) Mode 52

CSV Control and Status Word 52

CSV Mode Example 53

Cyclic Synchronous Torque (CST) Mode 54

CST Control and Status Word 54

CST Mode Example 55

Dynamic PDO Mapping Using CoE 56
Overview 57

Mapping and Communication Parameters Objects 57

Mapping Parameters Objects 58

Mapping Entries 58

Sync Manager Assignment Parameters 59

Dynamic PDO Assignment and Mapping Procedure 59

EtherCAT Synchronization Overview 61
Free Run Mode 61

DC Synchronization — Subordinate Mode 61

EtherCAT User Program Commands 62
EtherCAT Error Reporting Commands 63

=ETH, RETH 63

EtherCAT Network Control Commands 68

ETHCTL(action, value) 68

Troubleshooting 70
SDO Response Error Codes 71

Object Reference 73
Object Categories 76

Communication Profile 77

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 5 of 197

Object 1000h: Device Type 78

Object 1001h: Error Register 79

Object 1008h: Manufacturer Device Name 80

Object 1009h: Manufacturer Hardware Version 81

Object 100Ah: Manufacturer Software Version 82

Object 1018h: Identity Object 83

Object 1600h: Receive PDO Mapping Parameter 1 84

Object 1601h: Receive PDO Mapping Parameter 2 85

Object 1602h: Receive PDO Mapping Parameter 3 86

Object 1603h: Receive PDO Mapping Parameter 4 87

Object 1604h: Receive PDO Mapping Parameter 5 88

Object 1A00h: Transmit PDO Mapping Parameter 1 89

Object 1A01h: Transmit PDO Mapping Parameter 2 90

Object 1A02h: Transmit PDO Mapping Parameter 3 91

Object 1A03h: Transmit PDO Mapping Parameter 4 92

Object 1A04h: Transmit PDO Mapping Parameter 5 93

Object 1C00h: Sync Manager Com Type 94

Object 1C12h: Sync Manager 2 PDO Assignment 95

Object 1C13h Sync Manager 3 PDO Assignment 96

Object 1C32h DC-Sync Manager 2 Receive Object 97

Object 1C33h DC-Sync Manager 3 Transmit Object 99

Manufacturer-Specific Profile 101

Object 2101h: Bit IO 102

Object 2201h: User Variable 103

Object 2202h: Set Position Origin 104

Object 2203h: Shift Position Origin 105

Object 2204h: Mappable 32-bit Variables 106

Object 2205h Negative Software Position Limit 107

Object 2206h Positive Software Position Limit 108

Object 2209h Encoder Follow Control 109

Start/Stop Capability 109

Object 220Ah MFMUL 110

Object 220Bh MFDIV 111

Object 220Ch MFA 112

Object 220Dh MFD 113

Object 2220h: 8-Bit Mappable Variables 114

Object 2221h: 16-Bit Mappable Variables 115

Object 2301h: RMS Current 116

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 6 of 197

Object 2302h: Internal Temperature 117

Object 2303h: Internal Clock 118

Object 2304h: Motor Status 119

Object 2307h: Sample Period 128

Object 2309h: GOSUB R2 129

Object 2400h: Interpolation Mode Status 130

Object 2401h: Buffer Control 131

Object 2402h: Buffer Setpoint 132

Object 2403h: Interpolation User Bits 133

Object 2500h: Encapsulated SmartMotor Command 134

Drive and Motion Control Profile 135

Object 6040h: Control Word 137

Object 6041h: Status Word 139

Object 605Ah: Quick Stop Option Code 140

Object 605Ch: Disable Operation Option Code 141

Object 605Dh: Halt Option Code 142

Object 605Eh: Fault Reaction Option Code 143

Object 6060h: Modes of Operation 144

Object 6061h: Modes of Operation Display 145

Object 6062h: Position Demand Value 146

Object 6063h: Position Actual Internal Value 147

Object 6064h: Position Actual Value 148

Object 6065h: Following Error Window 149

Object 606Bh: Velocity Demand Value 150

Object 606Ch: Velocity Actual Value 151

Object 6071h: Target Torque 152

Object 6074h: Torque Demand Value 153

Object 6077h: Torque Actual 154

Object 6079h: DC Link Circuit Voltage 155

Object 607Ah: Target Position 156

Object 607Ch: Home Offset 157

Object 6080h: Max Motor Speed 159

Object 6081h: Profile Velocity in PP Mode 160

Object 6083h: Profile Acceleration 161

Object 6084h: Profile Deceleration 162

Object 6085h: Quick Stop Deceleration 163

Object 6087h: Torque Slope 164

Object 608Fh: Position Encoder Resolution 165

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 7 of 197

Object 6098h: Homing Method 166

Object 6099h: Homing Speeds 169

Object 609Ah: Homing Acceleration 170

Object 60B8h: Touch Probe Function 171

Object 60B9h: Touch Probe Status 174

Object 60BAh: Touch Probe Position 1 Positive Value 176

Object 60BBh: Touch Probe Position 1 Negative Value 177

Object 60BCh: Touch Probe Position 2 Positive Value 178

Object 60BDh: Touch Probe Position 2 Negative Value 179

Object 60C0h: Interpolation Sub-Mode Select 180

Object 60C1h: Interpolation Data Record 181

Object 60C2h: Interpolation Time Period 182

Object 60C4h: Interpolation Data Configuration 184

Object 60D0h: Touch Probe Source 185

Object 60F4h: Following Error Actual Value 186

Object 60FBh: Position Control Parameter Set 187

Object 60FCh: Position Demand Internal Value 189

Object 60FDh: Digital Inputs 190

Object 60FEh: Digital Outputs 192

Object 60FFh: Target Velocity 193

Object 6502h: Supported Drive Modes 194

Object 67FFh: Single Device Type 195

Reference Documents 196

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 8 of 197

Introduction

Introduction
This chapter provides information on the purpose and scope of this manual. It also provides information
on safety notation, related documents and additional resources.

Purpose 10

Combitronic Technology 10

Abbreviations 11

Safety Information 13

Safety Symbols 13

Other Safety Considerations 13

Motor Sizing 13

Environmental Considerations 13

Machine Safety 14

Documentation and Training 14

Additional Equipment and Considerations 15

Safety Information Resources 15

Additional Documents 16

Related Guides 16

Other Documents 16

Additional Resources 17

CANopen Resources 17

EtherCAT Resources 17

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 9 of 197

Purpose

Purpose
This manual explains the Moog AnimaticsClass 6 SmartMotor™ support for the EtherCAT® protocol. It
describes the major concepts that must be understood to integrate a SmartMotor follower with a PLC
or other EtherCATcontroller1. However, it does not cover all the low-level details of the EtherCAT
protocol.

NOTE: The feature set described in this version of the manual refers to motor firmware 6.0.2.21
(Class 6 M) / 6.4.2.54 (Class 6 D) or later.

This manual is intended for programmers or system developers who have read and understand the
EtherCAT Technology Group (ETG) and CiA 402 specifications. Therefore, this manual is not a tutorial
on that specification or the EtherCAT protocol. Instead, it should be used to understand the specific
implementation details for the Moog Animatics SmartMotor. Additionally, examples are provided for
the various modes of motion and accessing those modes through CANopen® over EtherCAT (CoE) to
operate the SmartMotor.

The Object Reference chapter of this manual includes details about the specific objects available in the
SmartMotor through EtherCAT. The objects include those required by EtherCAT, the CiA 402 motion
profile, and manufacturer-specific objects added by Moog Animatics. For details, see Object Reference
on page 73.

Combitronic Technology
The most unique feature of the SmartMotor is its ability to communicate with other SmartMotors and
share resources using Moog Animatics’ Combitronic™ technology. Combitronic is a protocol that
operates over a standard CAN interface. It may coexist with either CANopen or DeviceNet protocols. It
requires no single dedicated controller to operate. Each SmartMotor connected to the same network
communicates on an equal footing, sharing all information, and therefore, sharing all processing
resources.

For additional details, see the SmartMotor™ Developer's Guide.

1Moog Animatics has replaced the terms "master" and "slave" with "controller" and "follower",
respectively.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 10 of 197

Abbreviations

Abbreviations
This table provides a list of abbreviations used in this manual and their descriptions.

Abbreviation Description
ACK Acknowledgment
ADU Acceleration/Deceleration Units
BOOT Bootstrap (state)
CiA CAN in Automation
COB Communication Object
COB-ID Communication Object Identification
CoE CANopen over Ethernet
CSP Cyclic Synchronous Position (mode)
CST Cyclic Synchronous Torque (mode)
CSV Cyclic Synchronous Velocity (mode)
DC Direct Current

NOTE: "DC" is also used with DC-Sync; in this case, it means "Distributed Clock"
DC-Sync Distributed Clock Synchronization
ESC EtherCAT Follower Controller
ESI EtherCAT Follower Information (specification)
ESM EtherCAT State Machine
EtherCAT Ethernet for Control Automation Technology
FMMU Fieldbus Memory Management Unit
FSA Finite State Automaton
HM Homing (mode)
IN Input
INIT Initialization (state)
NMT Network Management (state)
OP Operational (state)
OUT Output
PDO Process Data Object
PDS Power Drive System
PDS FSA Power Drive System Finite State Automaton
PP Profile Position (mode)
PREOP Pre-Operational (state)

PU Position Units
PV Profile Velocity (mode)

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 11 of 197

Abbreviations

Abbreviation Description
RxPDO Receive PDO
SAFEOP Safe Operation (state)
SDO Service Data Object
SM Sync Manager
SMI SmartMotor Interface (software)
TQ Torque (mode)
TxPDO Transmit PDO
VU Velocity Units

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 12 of 197

Safety Information

Safety Information
This section describes the safety symbols and other safety information.

Safety Symbols
The manual may use one or more of these safety symbols:

WARNING: This symbol indicates a potentially nonlethal mechanical hazard, where
failure to comply with the instructions could result in serious injury to the operator
or major damage to the equipment.

CAUTION: This symbol indicates a potentially minor hazard, where failure to
comply with the instructions could result in slight injury to the operator or minor
damage to the equipment.

NOTE: Notes are used to emphasize non-safety concepts or related information.

Other Safety Considerations
The Moog Animatics SmartMotors are supplied as components that are intended for use in an
automated machine or system. As such, it is beyond the scope of this manual to attempt to cover all
the safety standards and considerations that are part of the overall machine/system design and
manufacturing safety. Therefore, this information is intended to be used only as a general guideline for
the machine/system designer.

It is the responsibility of the machine/system designer to perform a thorough "Risk Assessment" and to
ensure that the machine/system and its safeguards comply with the safety standards specified by the
governing authority (for example, ISO, OSHA, UL, etc.) for the site where the machine is being installed
and operated. For more details, see Machine Safety on page 14.

Motor Sizing

It is the responsibility of the machine/system designer to select SmartMotors that are properly sized
for the specific application. Undersized motors may: perform poorly, cause excessive downtime or
cause unsafe operating conditions by not being able to handle the loads placed on them. The System
Best Practices document, which is available on the Moog Animatics website, contains information and
equations that can be used for selecting the appropriate motor for the application.

Replacement motors must have the same specifications and firmware version used in the approved and
validated system. Specification changes or firmware upgrades require the approval of the system
designer and may require another Risk Assessment.

Environmental Considerations

It is the responsibility of the machine/system designer to evaluate the intended operating environment
for dust, high-humidity or presence of water (for example, a food-processing environment that requires
water or steam wash down of equipment), corrosives or chemicals that may come in contact with the
machine, etc. Moog Animatics manufactures specialized IP-rated motors for operating in extreme
conditions. For details, see the Moog Animatics Product Catalog, which is available on the Moog
Animatics website.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 13 of 197

Machine Safety

Machine Safety

In order to protect personnel from any safety hazards in the machine or system, the machine/system
builder must perform a "Risk Assessment", which is often based on the ISO 13849 standard. The
design/implementation of barriers, emergency stop (E-stop) mechanisms and other safeguards will be
driven by the Risk Assessment and the safety standards specified by the governing authority (for
example, ISO, OSHA, UL, etc.) for the site where the machine is being installed and operated. The
methodology and details of such an assessment are beyond the scope of this manual. However, there
are various sources of Risk Assessment information available in print and on the internet.

NOTE: The next list is an example of items that would be evaluated when performing the Risk
Assessment. Additional items may be required. The safeguards must ensure the safety of all
personnel who may come in contact with or be in the vicinity of the machine.

In general, the machine/system safeguards must:
l Provide a barrier to prevent unauthorized entry or access to the machine or system. The barrier

must be designed so that personnel cannot reach into any identified danger zones.
l Position the control panel so that it is outside the barrier area but located for an unrestricted

view of the moving mechanism. The control panel must include an E-stop mechanism. Buttons
that start the machine must be protected from accidental activation.

l Provide E-stop mechanisms located at the control panel and at other points around the
perimeter of the barrier that will stop all machine movement when tripped.

l Provide appropriate sensors and interlocks on gates or other points of entry into the protected
zone that will stop all machine movement when tripped.

l Ensure that if a portable control/programming device is supplied (for example, a hand-held
operator/programmer pendant), the device is equipped with an E-stop mechanism.

NOTE: A portable operation/programming device requires many additional system design
considerations and safeguards beyond those listed in this section. For details, see the safety
standards specified by the governing authority (for example, ISO, OSHA, UL, etc.) for the site
where the machine is being installed and operated.

l Prevent contact with moving mechanisms (for example, arms, gears, belts, pulleys, tooling, etc.).

l Prevent contact with a part that is thrown from the machine tooling or other part-handling
equipment.

l Prevent contact with any electrical, hydraulic, pneumatic, thermal, chemical or other hazards that
may be present at the machine.

l Prevent unauthorized access to wiring and power-supply cabinets, electrical boxes, etc.

l Provide a proper control system, program logic and error checking to ensure the safety of all
personnel and equipment (for example, to prevent a run-away condition). The control system
must be designed so that it does not automatically restart the machine/system after a power
failure.

l Prevent unauthorized access or changes to the control system or software.

Documentation and Training

It is the responsibility of the machine/system designer to provide documentation on safety, operation,
maintenance and programming, along with training for all machine operators, maintenance technicians,
programmers, and other personnel who may have access to the machine. This documentation must
include proper lockout/tagout procedures for maintenance and programming operations.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 14 of 197

Additional Equipment and Considerations

It is the responsibility of the operating company to ensure that:
l All operators, maintenance technicians, programmers and other personnel are tested and

qualified before acquiring access to the machine or system.
l The above personnel perform their assigned functions in a responsible and safe manner to

comply with the procedures in the supplied documentation and the company safety practices.
l The equipment is maintained as described in the documentation and training supplied by the

machine/system designer.

Additional Equipment and Considerations

The Risk Assessment and the operating company's standard safety policies will dictate the need for
additional equipment. In general, it is the responsibility of the operating company to ensure that:

l Unauthorized access to the machine is prevented at all times.

l The personnel are supplied with the proper equipment for the environment and their job
functions, which may include: safety glasses, hearing protection, safety footwear, smocks or
aprons, gloves, hard hats and other protective gear.

l The work area is equipped with proper safety equipment such as first aid equipment, fire
suppression equipment, emergency eye wash and full-body wash stations, etc.

l There are no modifications made to the machine or system without proper engineering
evaluation for design, safety, reliability, etc., and a Risk Assessment.

Safety Information Resources
Additional SmartMotor safety information can be found on the Moog Animatics website; open the topic
"Controls - Notes and Cautions" located at:

https://www.animatics.com/support/downloads/knowledgebase/controls---notes-and-cautions.html

OSHA standards information can be found at:

https://www.osha.gov/law-regs.html

ANSI-RIA robotic safety information can be found at:

http://www.robotics.org/robotic-content.cfm/Robotics/Safety-Compliance/id/23

UL standards information can be found at:

http://ulstandards.ul.com/standards-catalog/

ISO standards information can be found at:

http://www.iso.org/iso/home/standards.htm

EU standards information can be found at:

http://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/index_en.htm

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 15 of 197

https://www.animatics.com/support/downloads/knowledgebase/controls---notes-and-cautions.html
https://www.osha.gov/law-regs.html
http://www.robotics.org/robotic-content.cfm/Robotics/Safety-Compliance/id/23
http://ulstandards.ul.com/standards-catalog/
http://www.iso.org/iso/home/standards.htm
http://ec.europa.eu/growth/single-market/european-standards/harmonised-standards/index_en.htm

Additional Documents

Additional Documents
The Moog Animatics website contains additional documents that are related to the information in this
manual. Please refer to these lists.

Related Guides
l Class 6 D-Style SmartMotor™ Installation and Startup Guide

http://www.animatics.com/cl-6-d-style-install-startup-guide

l Class 6 M-Style SmartMotor™ Installation and Startup Guide

http://www.animatics.com/cl-6-install-startup-guide

l SmartMotor™ Developer's Guide

http://www.animatics.com/smartmotor-developers-guide

l SmartMotor™ Homing Procedures and Methods Application Note

http://www.animatics.com/homing-application-note

l SmartMotor™ System Best Practices Application Note

http://www.animatics.com/system-best-practices-application-note

In addition to the documents listed above, guides for fieldbus protocols and more can be found on the
website: https://www.animatics.com/support/downloads.manuals.html

Other Documents
l SmartMotor™ Certifications

https://www.animatics.com/certifications.html

l SmartMotor Developer's Worksheet
(interactive tools to assist developer: Scale Factor Calculator, Status Words, CAN Port Status,
Serial Port Status, RMODE Decoder and Syntax Error Codes)

https://www.animatics.com/support/downloads.knowledgebase.html

l Moog Animatics Product Catalog, which is available on the Moog Animatics website

http://www.animatics.com/support/moog-animatics-catalog.html

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 16 of 197

http://www.animatics.com/cl-6-d-style-install-startup-guide
http://www.animatics.com/cl-6-install-startup-guide
http://www.animatics.com/smartmotor-developers-guide
http://www.animatics.com/homing-application-note
http://www.animatics.com/system-best-practices-application-note
https://www.animatics.com/support/downloads.manuals.html
https://www.animatics.com/certifications.html
https://www.animatics.com/support/downloads.knowledgebase.html
http://www.animatics.com/support/moog-animatics-catalog.html

Additional Resources

Additional Resources
The Moog Animatics website contains useful resources such as product information, documentation,
product support and more. Please refer to these addresses:

l General company information:

http://www.animatics.com

l Product information:

http://www.animatics.com/products.html

l Product support (Downloads, How-to Videos, Forums and more):

http://www.animatics.com/support.html

l Contact information, distributor locator tool, inquiries:

https://www.animatics.com/contact-us.html

l Applications (Application Notes and Case Studies):

http://www.animatics.com/applications.html

CANopen Resources
CANopen is a common standard maintained by CAN in Automation (CiA):

l CAN in Automation website:

http://www.can-cia.org/

l CAN in Automation website — CANopen description:

http://www.can-cia.org/index.php?id=canopen

EtherCAT Resources
EtherCAT is a common standard maintained by EtherCAT Technology Group (ETG):

l EtherCAT Technology Group website:

http://www.ethercat.org/

l EtherCAT Technology Group website — EtherCAT description:

https://www.ethercat.org/en/technology.html

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 17 of 197

http://www.animatics.com/
http://www.animatics.com/products.html
http://www.animatics.com/support.html
https://www.animatics.com/contact-us.html
http://www.animatics.com/applications.html
http://www.can-cia.org/
http://www.can-cia.org/index.php?id=canopen
http://www.ethercat.org/
https://www.ethercat.org/en/technology.html

EtherCAT Overview

EtherCAT Overview
This chapter provides an overview of the EtherCAT communications protocol implementation on the
Moog Animatics SmartMotor.

SmartMotor EtherCAT Overview 19

CANopen over EtherCAT (CoE) Description 20

Object Dictionary 20

PDO and SDO Communication 21

SDO 21

PDO 22

EtherCAT State Machine (ESM) 22

AL-Control Register 23

AL-Status Codes 24

ESM Transition Diagram 25

PDO Communications over EtherCAT 25

Receive PDO Example 25

Transmit PDO Example 26

Synchronized PDO Communications 26

Other Communications with the Motor 26

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 18 of 197

SmartMotor EtherCAT Overview

SmartMotor EtherCAT Overview
This chapter provides an overview of the EtherCAT communications implementation on the Moog
Animatics SmartMotor.

Ethernet for Control Automation Technology (EtherCAT) is a high-performance, Ethernet-based
fieldbus system. EtherCAT uses full-duplex Ethernet physical layers. In short, EtherCAT has been
designed to be an industrial-communication network typically between a controller and many different
follower devices.

Other EtherCAT
Follower Devices

*Observe the Ethernet port IN/OUT labeling on your SmartMotor.
**Ring configuration requires an EtherCAT controller with two ports.

Optional ring for
cable redundancy**

Moog MC600 or
other PLC, PC, etc.
(controller device)

Class 6
SmartMotors

(follower devices)

*

*

*

*

EtherCAT Example System Diagram

NOTE: Unlike other fieldbus protocols, EtherCAT does not require terminators at each end of the
network bus.

Many network configurations are possible, such as line, tree or star. Requirements for specific
configurations depend on the capabilities of the EtherCAT controller device, the follower devices, and
use of other networking equipment. For more details, refer to the EtherCAT Technology Group website
at:

http://www.ethercat.org

The SmartMotor uses a special communications protocol (language) between the controller and
SmartMotor follower devices. This protocol is called CANopen over EtherCAT (CoE), which gives the
controller device a mechanism to address and transport data structures to and from the SmartMotor.
For details, see CANopen over EtherCAT (CoE) Description on page 20.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 19 of 197

http://www.ethercat.org/

CANopen over EtherCAT (CoE) Description

CANopen over EtherCAT (CoE) Description
CANopen is a common standard that allows communication between various devices. It is a
well-defined protocol that has been implemented over different physical bus structures. The
SmartMotors support CANopen over EtherCAT (CoE). The protocol is very similar to the SmartMotor
CANopen implementation over Control Area Network (CAN) bus. However, there are slight differences
in communication objects in the range 1000h to 1FFFh to support EtherCAT.

CoE is the common EtherCAT communication protocol. It offers two different transport layers:
l SDO for acyclic communication using EtherCAT Mailbox.

l PDO for cyclic communication using EtherCAT Process Data.

For details on these transport layers, see PDO and SDO Communication on page 21.

CoE provides mechanisms to configure PDOs for effective and efficient cyclic data exchange, which is
essential and primarily used for controls. See the next figure.

CANopen service (CoE)

Ethernet

EtherCAT

SDO

Process DataMailbox

Object Dictionary

AL Control/
AL Status

SmartMotor

PDO Mapping

Follower
Address

DL
Info

SyncM
Settings F

o
ll

o
w

e
r

In
fo

rm
at

io
n

FMMU n
FMMU n

FMMU n
FMMU n

Layer
Management

DL Control/
DL Status

SmartMotor CoE Diagram

Object Dictionary
All data in a device is organized into a common list of available objects. This is called the "object
library" or "object dictionary". It allows the controller to obtain some basic information, such as range
limits and descriptions, directly from the device.

EtherCAT Follower Information (ESI) files provide information, in XML file format, to PLCs and system
integrators that describes the organization of the object dictionary information. The SmartMotor ESI
XML file is provided on the Moog Animatics website Products > SmartMotor > Resources tab at:

www.animatics.com/products/smartmotor.resources.html

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 20 of 197

http://www.animatics.com/products/smartmotor.resources.html

PDO and SDO Communication

After opening that page, click Fieldbus Configurator Files > EtherCAT.

The XML file defines:
l The structures that are used for describing basic data types.

l The profiles or group of objects that are used for control of a SmartMotor. In the case of the
SmartMotor, this means that features common to motor control are defined, and specific data
objects are assigned to specific object numbers.

The SmartMotor supports the well-defined CANopen CiA 402 Drives and Motion Control Device Profile,
which has been adapted to work on EtherCAT, also. That profile has also been adopted by the
International Electrotechnical Commission (IEC) under the "Adjustable Speed Electrical Power Drive
Systems" specification (IEC 61800-7-200).

PDO and SDO Communication
In CANopen over EtherCAT, there are two different modes used for passing data: PDO and SDO. In both
forms of communication, data is accessed through the same object dictionary and object-numbering
scheme. The same list of objects (position target, velocity actual, status word, control word, etc.)
applies to both PDO and SDO communications. However, there are some objects that are deliberately
restricted and only accessed through SDO communication. For specific object details, see Object
Reference on page 73.

F
i
e
l
d
b
u
s

SmartMotor Motion
and Motor Control

SmartMotor User
Program

SmartMotor I/O

OBJECT DICTIONARY

SMARTMOTOR

Communications
Objects

Baud Rate

Etc.

CiA402 Motion
Objects

Velocity

Position

Etc.

SmartMotor-
Specific Objects

I/O

Command Interface

Etc.

SDO

PDO

PDO and SDO Communications

SDO
A Service Data Object (SDO) communication is intended for initial setup and occasional access to
objects that are seldom needed. Also, some EtherCAT controllers may use SDO communications if they

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 21 of 197

PDO

don't intend to configure any PDO communications.
l The SmartMotor provides access to SDO communications in the Pre-Operational and Operational

ESM states.
l Many PLCs only use access through SDO during a setup phase of operation, and they do so

through pre-scripted setup actions.

SDO communications have more overhead per communication because:
l The full object and subindex value are encoded in each SDO communication. This allows easy

access to any object, but it limits the amount of payload space available for data in each packet.
l SDO communications also expect a response from the follower back to the controller. Both read

and write operations confirm by either sending the requested data (read) or confirming that a
command was received (write).

PDO
A Process Data Object (PDO) communication allows for minimal overhead when transmitting
frequently-used data. Typically, this is used for information that is critical to an ongoing process, which
could include the speed, position, control word, etc.

The PDO communication does not specifically encode the object and sub-object information in each
packet. This information is agreed on between the controller and the follower before entering the
Operational state. For further information, see Dynamic PDO Mapping Using CoE on page 56.

This is a list of considerations for using and configuring PDO communication:
l Not all objects are suitable for access through PDO communication. Therefore, many objects are

disabled from PDO access.
l Some objects may be overwhelmed if they are not intended for cyclic updates and routinely

accessed by the controller.
l PDO communications do not give a response when received. This makes each transaction more

efficient but also does not provide feedback (for example, if a value is out of range).

EtherCAT State Machine (ESM)
The SmartMotor is required to run an EtherCAT State Machine (ESM) to indicate the available network
functions. The state machine offers a mechanism to configure the follower device for individual
applications. This occurs during the EtherCAT network initialization (INIT) phase and must complete
before the follower device is considered fully operational.

The ESM states are:
l INIT (Initialization state): In this state, there is no communication to the individual follower

objects. The controller accesses the DL-information registers, which are the very low-level
registers at the Data-Link level of EtherCAT.

l PREOP (Pre-Operational state): In this state, there is mailbox (SDO) communication to the
follower object dictionary. However, there are no PDO transfers taking place. This state does
permit follower Process Data Object (PDO) configuration by the controller. Typically, the
controller is allowed to configure the follower behavior before the follower enters subsequent
network states.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 22 of 197

AL-Control Register

l SAFEOP (Safe Operation state): In this state, there is mailbox (SDO) communication to the
follower device and PDO input data communication to the controller. However, the follower does
not accept Receive PDOs (RxPDOs) and its Transmit PDOs (TxPDOs) are maintained in a safe
state. The follower is allowed to perform synchronization to the network DC-Sync during this
phase, holding off transition to the subsequent Operational state.

l OP (Operational state): In this state, Process Data input and outputs are permitted. Therefore,
the follower accepts RxPDO information and transmits TxPDO information.

l BOOT (Bootstrap state): This state is optional. Therefore, it is not supported by the SmartMotor.

During the EtherCAT network startup, the controller and the SmartMotor (follower device) handle the
transitions between states using the AL-Control and AL-Status registers across the EtherCAT network
(see ESM Transition Diagram on page 25). This information is provided for advanced network use and
EtherCAT controller application development:

Summary of Actions: INIT to PREOP

The controller reads the Vendor ID, Product Code and Revision Number from the EEPROM
and configures:

l DL registers (0x10:0x11).

l Sync Manager registers (registers 0x800+) for mailbox communication.

l Initialization for DC-Sync (if supported).

Finally, the controller requests PREOP state by writing 0x2 to the AL-Control register
(register 0x120); it waits for status confirmation through the AL-Status register (register
0x130).

Summary of Actions: PREOP to SAFEOP

The controller configures follower parameters using mailbox communication:
l Process Data mapping of the SmartMotor. The SmartMotor validates the Process

Data mapping and configuration requested by the controller. If the Process Data
configuration is unacceptable, the SmartMotor returns an error.

l Registers for process data Sync Managers, configuring the dynamic payload size.

l Fieldbus Memory Management Unit (FMMU) registers (0x600 and greater).

Finally, the controller requests the SAFEOP state (0x4 to AL-Control register) and waits
for confirmation through the AL-Status register.

Summary of Actions: SAFEOP to OP

The controller sends valid outputs and requests the OP state (0x8 to AL-Control register).
The state is confirmed in the AL-Status register.

The SmartMotor evaluates the timing requirements due to Process Data payload size. The
timing information is updated in CoE objects 1C32h and 1C33h — that information will be
used by the controller application.

Incorrect EtherCAT Follower Controller (ESC) register configuration (DC-Sync, FMMU, Sync Manager,
etc.) can cause INIT, PREOP and SAFEOP errors. The AL-Status register (register 0x134) indicates the
error reasons.

AL-Control Register
The bits used for ESM state change requests are shown in the next table.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 23 of 197

AL-Status Codes

Bits 0:3 Value Description
1h Initialization (INIT) state of the network
2h Request for Pre-Operational (PREOP) state
3h Request for Bootstrap (BOOTSTRAP) state
4h Request for Safe Operational (SAFEOP) state
8h Request for Operational (OP) state

AL-Status Codes
The set of status codes used by the follower is extensive. For the purpose of this document, the next
table provides a subset of the complete set of codes.

Code Value Description
0x0000 No error
0x0001 Unspecified error
0x0002 Invalid request for state change
0x0003 Request for a unknown or unsupported state
0x0013 BOOTSTRAP state is not supported
0x0014 No valid firmware
0x0015 Invalid mailbox configuration in BOOTSTRAP state
0x0016 Invalid mailbox configuration in PREOP state
0x0017 Invalid Sync Manager configuration
0x0018 No valid inputs
0x0019 No valid outputs
0x001A Synchronization error
0x001B Sync Manager watchdog
0x001D Invalid output configuration for PDO; check dynamic mapping
0x001E Invalid input configuration for PDO; check dynamic mapping
0x0020 SmartMotor needs cold start or cycle power
0x0021 SmartMotor needs INIT
0x0022 SmartMotor needs PREOP
0x0023 SmartMotor needs SAFEOP
0x8000 SmartMotor is not ready
0x8001 PDO data sizes are not configured
0x8002 SmartMotor to Network Processor watchdog triggered
0x8003 DC-Sync configuration is invalid
0x8004 Firmware is booting
0x8005 Reboot of Network Processor requested
0x8006 EtherCAT network channel INIT requested

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 24 of 197

ESM Transition Diagram

Code Value Description
0x8007 Network Processor configuration is cleared

ESM Transition Diagram
The next diagram shows the relationship and interaction between the possible ESM states.

OPTIONAL

INITIALIZATION STATE

PRE-OPERATION STATE

SAFE-OPERATION STATE

OPERATION STATE

BOOTSTRAP

EtherCAT State Machine

For more details on the EtherCAT network management, see the EtherCAT Technology Group (ETG)
website at:

http://www.ethercat.org

PDO Communications over EtherCAT
Process Data Objects (PDO) are the cyclic data communications across the EtherCAT network between
the controller and follower device. PDO-transfers using CoE across EtherCAT are facilitated with two
different sync managers: Sync-Manager 2 (SM2) for Receive PDO (RxPDO) transfers from controller to
follower, and Sync-Manager 3 (SM3) Transmit PDO (TxPDO) transfers from follower to controller.

The size of the either the RxPDO or TxPDO is limited to 78 bytes in the SmartMotor, where a byte is
defined as a total of 8 bits. Therefore, during the process of dynamic mapping, the combined image of
the SmartMotor assignment and PDO mapping needs to be considered. For more details, see Dynamic
PDO Mapping Using CoE on page 56.

The EtherCAT controller and SmartMotor communicate the arrangement of PDO data during network
initialization so that any arrangement of data can be handled. Therefore, objects of the CoE
SmartMotor dictionary can be dynamically added by the application programmer.

Receive PDO Example
When operating the SmartMotor in CiA 402 Profile Velocity Mode, a typical RxPDO can be dynamically
mapped and configured to contain these objects from the CoE dictionary:

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 25 of 197

http://www.can-cia.org/index.php?id=155

Transmit PDO Example

Control Word object (6040h) — Unsigned 16 bits

Target Velocity object (60FFh) — Signed 32 bits

To further support the application, other objects are easily mappable to the RxPDO as needed. For
example, the Profile Acceleration object (6083h) could be added to the above list — this would allow
the EtherCAT controller to change the velocity profile.

Transmit PDO Example
When operating the SmartMotor in CiA 402 Profile Velocity Mode, a typical TxPDO can be dynamically
mapped and configured to contain these objects from the CoE dictionary:

l Status Word object (6041h) — Unsigned 16 bits

l Position Actual Value object (6064h) — Signed 32 bits

To further support the application, other objects can be mapped to the TxPDO as needed. For example,
the DC Link Circuit Voltage object (6079h) could be added to the above list — this would allow the
EtherCAT controller to monitor the servo bus voltage at the drive section of the SmartMotor.

Synchronized PDO Communications
The SmartMotor supports isochronous (equal time interval) synchronization using the EtherCAT
Distributed Clock feature. For supported synchronization modes, Object 1C32h DC-Sync Manager 2
Receive Object on page 97

Other Communications with the Motor
In addition to communicating with the SmartMotor as an EtherCAT device, you can also communicate
with it directly from a PC or laptop. This is useful if you need a "back door" into the motor, for example,
to modify the stored user program or download a new one, or for troubleshooting purposes.

For information on connecting the SmartMotor directly to a PC, see the Getting Started chapter in the
corresponding SmartMotor Installation and Startup Guide.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 26 of 197

Supported Features

Supported Features
This chapter provides information on the supported and unsupported features of the EtherCAT
specification.

Supported CoE Features 28

CiA 402 Motion Modes 28

Dynamic PDO Mapping 28

Configurable Sync Manager 2 and 3 Assignment 28

DC-Sync Subordinate Mode with SYNC0 and SYNC1 28

DC-Sync Follower 29

Selectable Homing Modes 29

Selectable Interpolation Modes 29

Touch Probe Function 29

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 27 of 197

Supported CoE Features

Supported CoE Features
This section describes the CANopen over Ethernet (CoE) features that are supported by the
SmartMotor.

CiA 402 Motion Modes
These motion modes are supported:

l Profile Position (PP, mode of operation: 1) — behaves like the SmartMotor MP mode; supports
"single setpoint" and "set of setpoints" modes

l Profile Velocity (PV, mode of operation: 3) — behaves like the SmartMotor MV mode

l Torque (TQ, mode of operation: 4) — behaves like the SmartMotor MT mode

l Cyclic Sync Position (CSP mode, mode of operation: 8)

l Cyclic Sync Velocity (CSV mode, mode of operation: 9)

l Cyclic Sync Torque (CST mode, mode of operation: 10)

l Homing (HM mode, mode of operation: 6)

The Supported Drive Modes object (6502h) is used to report the available modes of operation. The
Modes of Operation object (6060h) is used to request the mode of operation desired before setting the
Control Word object (6040h).

Dynamic PDO Mapping
There are objects used to simultaneously configure (map) up to five Receive PDOs and five Transmit
PDOs. These mappings are dynamic — any object with "PDO mappable" in its description can be
mapped to a PDO through the standard EtherCAT mapping procedure.

Dynamic mapping of objects to PDO is configured using objects 1600h, 1601h, 1602h, 1603h, 1604h,
1A00h, 1A01h, 1A02h, 1A03h and 1A04h. For details, see Dynamic PDO Mapping Using CoE on page
56.

Configurable Sync Manager 2 and 3 Assignment
For cyclic transfers, the SmartMotor allow the application program to define the number of PDO
mappings to a Sync Manager.

DC-Sync Subordinate Mode with SYNC0 and SYNC1
The SmartMotor EtherCAT Distributed Clock Synchronization (DC-Sync) hardware supports real-time
synchronization between the SmartMotors, the EtherCAT controller and other follower devices. The
SmartMotor requires both SYNC0 and SYNC1 signals from the DC-Sync hardware to operate in
Subordinate Mode. The SYNC0 signal is used to synchronize the internal time base of the SmartMotor
with the DC-Clock of the EtherCAT network. The SYNC1 signal is used for PDO transfer update
synchronization. The SYNC1 signal timing needs to be adjusted depending on the amount of PDO data
using the feedback and measurements obtained from objects 1C32h and 1C33h. For details, see Object
1C32h DC-Sync Manager 2 Receive Object on page 97.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 28 of 197

DC-Sync Follower

DC-Sync Follower
The SmartMotor EtherCAT hardware supports features enabling it to maintain Distributed Clock
Synchronization (DC-Sync) across a network segment.

Selectable Homing Modes
The SmartMotorEtherCAT hardware supports selectable homing modes (with or without index pulse).
Homing methods 1–14 are available, which use an index pulse; homing methods
17–30 are also available, which are similar to methods 1–14 but do not use an index pulse.

Selectable Interpolation Modes
The SmartMotorEtherCAT hardware supports selectable (linear or spline) interpolation modes. Linear
interpolation (default) generates a linear set of positions in the times between the data points. Spline
interpolation uses the current point, the next point, and the previous point to generate curvature of the
path over time.

Touch Probe Function
The SmartMotor EtherCAT hardware supports a touch probe function, which allows the motor's
position to be captured on a specific event. This feature is commonly used for homing, registration
applications or other cases where the motor position must be recorded at a specific point in time. This
value can be read back later, in a less time-critical manner, from the capture register.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 29 of 197

Status LEDs

Status LEDs
This chapter provides a description of the SmartMotor status LEDs.

NOTE: For information on the SmartMotor's connector pinouts and cable diagrams, refer to the
corresponding SmartMotor Installation and Startup Guide. Pay particular attention to the
IN/OUT labels on the Ethernet ports — these must be observed for EtherCAT networks.

NOTE: If you have set your PC's network adapter to a fixed IP address for temporary connections
to SmartMotors with SMI, remember to return it to DHCP when done to avoid local area network
connectivity issues.

Status LEDs - Class 6 M-Style 31

Status LEDs - Class 6 D-Style 32

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 30 of 197

Status LEDs - Class 6 M-Style

Status LEDs - Class 6 M-Style
This section describes the functionality of the Status LEDs on the Class 6 M-style SmartMotor.

 Off No power

 Solid green Drive on

 Blinking green Drive off, no faults

 Triple red flash Watchdog fault

 Solid red Faulted or no drive enable input

 Off Not busy
 Solid green Drive on, trajectory in progress

Off No error

Blinking red

Invalid configuration; check DC
sync settings

Solid red

Application controller failure

Blinking

Pre-operational state

Solid Normal operation

Single flash Safe-operational state

Off No/bad cable; no/bad Link port

Solid green Link established

Flashing # red Flashes fault code* (see below)
when Drive LED is solid red

Blinking green Activity

Single red flash Follower device application has
changed the EtherCAT state

Double red flash Application controller failure

Flickering red Booting error

Off No/bad cable; no/bad Link port

Solid green Link established

Blinking green Activity

Off No Error

Flashing green Active

Flashing red Suspended

Solid red USB power detected, no
configuration

USB Active LED

Blinking green

Busy, do not remove card

Solid green

Card detected

Solid red

Card with no SmartMotor data

SD Card LED (for SD Card-equipped motors)
No card, bad or damaged cardOff

*For details, see “Understanding the SD Card” in the
Class 6 SmartMotor™ Installation & Startup Guide.

LED 4: EtherCAT Link 1 Input LED

LED 2: EtherCAT Error LED

LED 0: Motor Drive LED

LED 5: EtherCAT Link 2 Output LED

LED 3: EtherCAT Run LED

LED 1: Motor Busy LED

LED 0: Motor Drive LED LED 1: Motor Busy LED

LED 3: EtherCAT Run LED

LED 5: EtherCAT Link 2 Output LED

LED 2: EtherCAT Error LED

LED 4: EtherCAT Link 1 Input LED

LED Status on Power-up:
• With no program and the travel limit inputs are low:

LED 0 solid red; motor is in fault state due to travel limit fault

LED 1 off

• With no program and the travel limits are high:
LED 0 solid red for 500 milliseconds then flashing green

LED 1 off

• With a program that only disables travel limits:

LED 0 red for 500 milliseconds then flashing green

LED 1 off

Flash
1
2
3
4
5
6
7
8
9

10
11

Description
NOT Used
Bus Voltage
Over Current
Excessive Temperature
Excessive Position
Velocity Limit
dE/Dt - First derivative of position error is excessive
Hardware Positive Limit Reached
Hardware Negative Limit Reached
Software Positive Travel Limit Reached
Software Negative Travel Limit Reached

LED 1 Fault Codes:

*Busy LED pauses for 2 seconds before flashing the code

Flickering Initializing

Flickering = On/Off in 0.1 sec; Blinking = On/Off in 0.5 sec; Flashing = separated by 1 sec for EtherCAT LEDs and 2 sec for Fault Codes

Under cover:
USB Active LED
SD Card LED (for SD
Card-equipped motors)*

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 31 of 197

Status LEDs - Class 6 D-Style

Status LEDs - Class 6 D-Style
This section describes the functionality of the Status LEDs on the Class 6 D-style SmartMotor.

 Off No power

 Solid green Drive on

 Blinking green Drive off, no faults

 Triple red flash Watchdog fault

 Solid red Faulted or no drive enable input

 Off Not busy
 Solid green Drive on, trajectory in progress

Off No error

Blinking red

Invalid configuration; check DC
sync settings

Solid red

Application controller failure

Blinking

Pre-operational state

Solid Normal operation

Single flash Safe-operational state

Off No/bad cable; no/bad Link port

Solid green Link established

Flashing # red Flashes fault code* (see below)
when Drive LED is solid red

Blinking green Activity

Single red flash Follower device application has
changed the EtherCAT state

Double red flash Application controller failure

Flickering red Booting error

Off No/bad cable; no/bad Link port

Solid green Link established

Blinking green Activity

Off No Error

LED 0: Motor Drive LED LED 1: Motor Busy LED

LED 3: EtherCAT Run LED

LED 6 & 7: EtherCAT Link 2 Output LED

LED 2: EtherCAT Error LED

LED 4 & 5: EtherCAT Link 1 Input LED

LED Status on Power-up:
• With no program and the travel limit inputs are low:

LED 0 solid red; motor is in fault state due to travel limit fault

LED 1 off

• With no program and the travel limits are high:
LED 0 solid red for 500 milliseconds then flashing green

LED 1 off

• With a program that only disables travel limits:

LED 0 red for 500 milliseconds then flashing green

LED 1 off

Flash
1
2
3
4
5
6
7
8
9

10
11

Description
NOT Used
Bus Voltage
Over Current
Excessive Temperature
Excessive Position
Velocity Limit
dE/Dt - First derivative of position error is excessive
Hardware Positive Limit Reached
Hardware Negative Limit Reached
Software Positive Travel Limit Reached
Software Negative Travel Limit Reached

LED 1 Fault Codes:

*Busy LED pauses for 2 seconds before flashing the code

Flickering Initializing

Flickering = On/Off in 0.1 sec; Blinking = On/Off in 0.5 sec; Flashing = separated by 1 sec for EtherCAT LEDs and 2 sec for Fault Codes

LED 0 Motor Drive LED

LED 1 Motor Busy LED

LED 3 EtherCAT Bus Fail LED
LED 2 EtherCAT System Fail LED

LED 4/5 EtherCAT Link 1 Port LEDs

LED 6/7 EtherCAT Link 2 Port LEDs

Industrial Ethernet Option

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 32 of 197

Manufacturer-Specific Objects

Manufacturer-Specific Objects
This chapter provides details on manufacturer-specific objects.

I/O 34

User Variables 34

Calling Subroutines 35

Command Interface (Object 2500h) 36

Command Interface 36

Program Upload/Download 38

Upload from Motor 38

Download to Motor (SMX file) 38

Download to Motor (SMXE encrypted file) 39

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 33 of 197

I/O

I/O
The CiA 402 motion profile provides limited access to the onboard I/O of the SmartMotor. However,
there are other manufacturer-specific objects that provide more I/O control.

As part of the CiA 402 motion profile, objects 60FDh and 60FEh are provided. For details, see Object
60FDh: Digital Inputs on page 190 and Object 60FEh: Digital Outputs on page 192.

For general access to individual I/O pins, the Bit I/O object (2101h) offers a more specific way to send
commands. This feature works on the EtherCAT motors. It can be used to disable the limit inputs if
desired. For more details, see Object 2101h: Bit IO on page 102.

NOTE: The limit-switch inputs for all SmartMotors must be satisfied before motion is allowed. The
inputs must either be physically wired or disabled if not connected. Additionally, EtherCAT motors
require the drive-enable input to be true (high) for motion to start.

User Variables
The SmartMotor has an array of user variables that are accessible to user programs and are visible as
EtherCAT objects. This provides a common area where information can be shared between a user
program and the EtherCAT network.

The variables use predefined names: a–z, aa–zz and aaa–zzz, which comprise a total of 78 variables;
these are 32-bit signed integers.

Additionally, there is a 204-byte array. It can be accessed as 8, 16 or 32-bit signed values. For more
details, see the SmartMotor™ Developer's Guide.

A wider range of user variables is accessible through the User Variable object (2201h). However, this
mechanism does not allow PDO communications — object 2201 is only available through SDO
communications. Therefore, it is typically used to pass constants or other configuration data at startup,
when a PLC may pass SDO data. During the Operational state, a controller may continue to pass data to
variables through object 2201h if it is capable of SDO communication at that time. For more details,
see the Object 2201h: User Variable on page 103.

Often, the mapping variable is used to send or receive a field of bits. When receiving, the bitwise
program operators can be used: | (or), & (and), !| (xor). For example, the next IF expression will be true
when bit 3 is set:

IF (ddd&8)!=0 'Will be true when ddd bit 3 is true.
... do action
ENDIF

When transmitting, these are some simple techniques for setting bitwise values:

aaa=aaa|8 'Set bit 3.
aaa=aaa|bbb 'Logical OR all bits from aaa and bbb; save to aaa.
aaa=aaa!|64 'Toggle bit 6 (XOR).
aaa=aaa&-9 'Clear bit 3 and leave other bits alone.
aaa=aaa&(-3&-9) 'Clear bit 1 and 3 at the same time.
aaa=aaa|(2|8) 'Set bit 1 and 3 at the same time.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 34 of 197

Calling Subroutines

The next table lists the bit numbers and the corresponding decimal values used to set with OR (for 16
bits, only) or clear with AND (for 16 bits, only).

Bit number
(0–15)

Decimal value to
set bit with OR

(for 16 bits, only)

Decimal value to
clear bit with AND
(for 16 bits, only)

0 1 –2
1 2 –3
2 4 –5
3 8 –9
4 16 –17
5 32 –33
6 64 –65
7 128 –129
8 256 –257
9 512 –513
10 1024 –1025
11 2048 –2049
12 4096 –4097
13 8192 –8193
14 16384 –16385
15 32768 –32769

Calling Subroutines
The functionality of the SmartMotor can be extended by creating and loading a user program into the
motor. There are two ways to control the running of this program: a GOSUB call, or a RUN command to
run the entire program from the top of the program.

NOTE: A user program will always automatically run from the start when the motor is powered on or
reset unless the RUN? command is included at the top of the user program. The RUN command is
not the same as the RUN? command. For details on these commands, see the SmartMotor™
Developer's Guide.

The GOSUB R2 object (2309h) provides access to the GOSUB, RUN and END commands. It is PDO
mappable, and it only reacts to a change of value. For details, see Object 2309h: GOSUB R2 on page
129.

Bit 8 of the Status Word object (6041h) can be used to determine when the subroutine called with
object 2309h has finished. When the bit clears, the subroutine has completed.

Calls to subroutines using object 2309h are automatically blocked if a previous call made through
object 2309h is still busy. When that subroutine returns, bit 8 of the Status Word object (6041h) will
clear.

NOTE: Unlike GOSUB, there is no EtherCAT access to the GOTO function.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 35 of 197

Command Interface (Object 2500h)

Command Interface (Object 2500h)
The SmartMotor has many commands that are not mapped to CoE objects. Many of these commands
are obscure or take a complex set of arguments. A mechanism is provided to access these commands
by sending a command string to object 2500h.

This section provides details on the object 2500h command interface and use in program
upload/download.

Command Interface
This section describes the command interface for the Encapsulated Animatics Command object
(2500h). This object provides an interface to the SmartMotor command language. Please note that:

l The status information must read back from subindex 3 of object 2500h.

l This object is not accessible through PDO.

The next table describes the elements of object 2500h.

Object Subindex Description
2500h 0 Number of entries (3).
2500h 1 Command string to motor "VISIBLE STRING" type.
2500h 2 Response from motor "VISIBLE STRING" type.
2500h 3 Status from motor "UNSIGNED 8" type.

2500h 4 Program print & report string "OCTET STRING" type. It may contain nulls. Note
that null is not considered a terminator in this string. The string length is
indicated by the size of SDO transfer, up to 64 bytes.

The status bits in subindex 3 of object 2500h are:

Bit Description
0 Command in progress.
1 Command complete/response ready (of object 2500h subindex 2).
2 Overflow of command response (of object 2500h subindex 2).
3 Reserved.
 4* Program output (of object 2500h subindex 4)—PRINT or report in a running user program is

waiting to be read.
 5* Program output overflow (of object 2500h subindex 4)—the 64 bytes was exceeded by a

PRINT in the user program.
6–7 Reserved.

*These two bits are cleared by a read of object 2500h subindex 4. Note that a user program will pause
on the next PRINT statement for up to a certain timeout period specified by the CANCTL command.
For details, see CANCTL(action, value) on page 1.

This procedure describes the steps to send a command:

1. Check that the "command in progress" = 0.

2. Write the command to subindex 1 of object 2500h; terminate the command with a null value.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 36 of 197

Command Interface

3. Read the status from subindex 3 of object 2500h; check the status of the "command complete"
bit.

4. Repeat the previous step if the "command complete" bit is 0.

5. When the "command complete" bit is 1, the command has completed. If it was a report command,
there will be a string response to read in subindex 2 of object 2500h; if it was a non-report
command, there will be no response. The values are ASCII-encoded decimal format.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 37 of 197

Program Upload/Download

Program Upload/Download
The Encapsulated Animatics Command object (2500h) behaves like a string command. Therefore, it can
support the upload and download of user programs. The next sections describe the upload and
download procedures.

Upload from Motor

These steps are used to upload a user program from the SmartMotor to the host:

1. The host writes to the motor's subindex 1 of object 2500h with the UPLOAD (or UP) command.
Strings need to be null-terminated like most commands.

2. The host checks the "Response ready" and "Command in progress" flags in subindex 3 of object
2500h.

3. When "Response ready" = 1, the host will read a data block of 0–31 bytes plus the null
terminator from subindex 2 of object 2500h.

4. The previous step is repeated until the "Command in progress" flag is 0 and the "Response
ready" flag is 0. That indicates the process has completed.

NOTE: On the final cycle of the upload, the motor will always set the "Response ready" flag before
clearing the "Command in progress" flag. This ensures that the host has a reliable indicator when the
final cycle has occurred and will not wait forever. In other words, the host should stop looking for a
response as soon as both of those flags are clear.

Download to Motor (SMX file)

First, an SMX file must be generated from the SMS source program in the SMI software, Be sure that
the correct motor target was chosen, You may need to select Compile > Compiler Default Firmware
Version from the SMI main menu.

These steps are used to download a user program from the host to the SmartMotor:

1. The host writes to motor's subindex 1 of object 2500h with the LOAD command. Strings need to
be null-terminated like most commands.

2. The host waits for the "Command in progress" flag (bit 0) in subindex 3 of object 2500h to return
to 0.

3. The host writes the program data to subindex 1 of object 2500h, first 32 bytes, with no null
terminator. This can include a header and anything after the header. The CAN command manager
will consume the header and whatever comes after it.

4. The host waits for the "Command in progress" flag (bit 0) in subindex 3 of object 2500h to return
to 0. This serves as the ACK (acknowledgment) signal. There is no reading of subindex 2 of
object 2500h.

NOTE: Do not attempt to read subindex 2 of object 2500h because that buffer is used for
other purposes during this procedure.

5. The host writes more program data to subindex 1 of object 2500h, 32 bytes at a time, with no
null terminator. Handshaking continues through the "Command in progress" flag. Transmission
may be ended at any time by sending 0xFF 0xFF 0x20 in the character stream. There may be a
delay in responses from CANopen as the motor is busy finalizing the program load. If this causes
timeouts, increase the amount of time before requesting handshake on this last section.

NOTE: This sequence does not need to fall in the same buffer segment. There is no need to pad the
buffer.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 38 of 197

Download to Motor (SMXE encrypted file)

Download to Motor (SMXE encrypted file)

First, convert an existing SMX file to SMXE format. From the SMI software main menu, selectTools >
Create smxe File.

NOTE: At the time the SMX is compiled from the SMS program, be sure that the SMX file is
compiled for the specific motor type that you will be loading into. From the SMI software main
menu, select Compile > Compiler Default Firmware Version.

These steps are used to download a user program from the host to the SmartMotor:

1. The host writes to motor's subindex 1 of object 2500h with the LOAD(7) command. Strings need
to be null-terminated like most commands.

2. The host waits for the "Command in progress" flag (bit 0) in subindex 3 of object 2500h to return
to 0.

3. The host writes the program data to subindex 1 of object 2500h, first 32 bytes, with no null
terminator. Because the data is encrypted, you will simply copy byte-for-byte from the source
SMXE file. This can include a header and anything after the header. The CAN command manager
will consume the header and whatever comes after it.

4. The host waits for the "Command in progress" flag (bit 0) in subindex 3 of object 2500h to return
to 0. This serves as the ACK (acknowledgment) signal. There is no reading of subindex 2 of
object 2500h.

NOTE: Do not attempt to read subindex 2 of object 2500h because that buffer is used for
other purposes during this procedure.

5. The host writes more program data to subindex 1 of object 2500h, 32 bytes at a time, with no
null terminator. Handshaking continues through the "Command in progress" flag. There may be a
delay in responses from CANopen as the motor is busy finalizing the program load. If this causes
timeouts, increase the amount of time before requesting handshake on this last section.

NOTE: This sequence does not need to fall in the same buffer segment. There is no need to pad the
buffer.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 39 of 197

CiA 402 Drive and Motion Control Profile

CiA 402 Drive and Motion Control Profile
The CiA 402 Drive and Motion Control Profile supports the motion control of the SmartMotor. The
associated objects comprise a large portion of the object dictionary (see Drive and Motion Control
Profile on page 135). This profile is supported by many vendors of industrial controls.

CiA 402 Profile Motion State Machine 41

Control Words, Status Words and the Drive State Machine 41

Status Word (Object 6041h) 42

Control Word (Object 6040h) 43

Motion Profiles 44

Position Mode 44

Absolute Position Mode Summary 45

Absolute Position Mode Example 45

Relative Position Example 46

Velocity Mode 48

Velocity Mode Summary 48

Velocity Mode Example 49

Torque Mode 49

Torque Mode Summary 50

Torque Mode Example 50

Cyclic Synchronous Position (CSP) Mode 51

CSP Control and Status Word 51

CSP Mode Example 52

Cyclic Synchronous Velocity (CSV) Mode 52

CSV Control and Status Word 52

CSV Mode Example 53

Cyclic Synchronous Torque (CST) Mode 54

CST Control and Status Word 54

CST Mode Example 55

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 40 of 197

CiA 402 Profile Motion State Machine

CiA 402 Profile Motion State Machine
Support for the CiA 402 motion profile (DS402) in the SmartMotor includes the Control Word object
(6040h) and the Status Word object (6041h). Under all types of motion, the control word starts or
stops the drive and the status word reports the state of the drive.

However, the type of motion profile is not controlled with these objects — it is commanded through the
Modes of Operation object (6060h) and reported from the Modes of Operation Display object (6061h).
For more details, see the examples in Motion Profiles on page 44.

Control Words, Status Words and the Drive State Machine
Refer to the next diagram of the DS402 Drive State Machine. The power drive system finite state
automaton (PDS FSA) is described in the DS402 specification. This is the mechanism used to command
the motor to begin a new move or turn the drive on/off. The DS402 specification describes several
operation states controlled by the Control Word object (6040h) and read back using the Status Word
object (6041h).

Start

Not ready to
switch on

Switch on
disabled

Ready to
switch on

Switched on

Operation
enabled

Quick stop
active

Fault

Fault reaction
active

Power on and initialization

Successful
initialization

Fault
reaction
complete

Automatic
transition

From any state

Automatic
transition

through
Switched on

state

Control Word:
Bit 1 = 1
Bit 2 = 1

Control Word:
Bit 0 = 1

Control Word:
Bit 3 = 1 Control Word:

Bit 3 = 0

Control Word:
Bit 0 = 0

Control Word:
Bit 0 = 0

Control Word:
Bit 2 = 0

or
Bit 1 = 0

Control Word:
Bit 1 = 0

Control Word:
Bit 7 = 1

Control Word:
Bit 2 = 0

Control Word:
Bit 2 = 0

or
Bit 1 = 0Control Word:

Bit 1 = 0

Status Word:
xxxx_xxxx_x00x_0111

Status Word:
xxxx_xxxx_x0xx_1111

Status Word:
xxxx_xxxx_x1xx_0000

Status Word:
xxxx_xxxx_x01x_0001

Status Word:
xxxx_xxxx_x01x_0011

Status Word:
xxxx_xxxx_x01x_0111

Status Word:
xxxx_xxxx_x0xx_1000

Status Word:
xxxx_xxxx_x0xx_0000

Control Word:
Bit 0 = 1
Bit 3 = 1

DS402 Drive State Machine

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 41 of 197

Status Word (Object 6041h)

Status Word (Object 6041h)
The Status Word object (6041h) reports the PDS FSA state machine per the DS402 specification.
These distinct states are defined, where "x" is a bit that could be either a 1 or a 0:

Status Word 6041h

(16 bits)
PDS FSA state Meaning

xxxx xxxx x0xx 0000 Not ready to switch on Drive is off
xxxx xxxx x1xx 0000 Switch on disabled Drive is off
xxxx xxxx x01x 0001 Ready to switch on Drive is off
xxxx xxxx x01x 0011 Switched on Drive is off
xxxx xxxx x01x 0111 Operation enabled Drive is enabled
xxxx xxxx x00x 0111 Quick stop active Drive is enabled
xxxx xxxx x0xx 1111 Fault reaction active Drive is enabled
xxxx xxxx x0xx 1000 Fault Drive is off

The state "Operation enabled" is the only one allowing normal operation (motion) of the motor.

The quick stop will automatically transition out of the "Quick stop active" state to the "Switch on
disabled" state.

The "Fault reaction active" state will automatically transition to the "Fault" state unless the fault
reaction is "slow to a stop" rather than OFF or MTB.

For more details, see Object 6041h: Status Word on page 139.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 42 of 197

Control Word (Object 6040h)

Control Word (Object 6040h)
The Control Word object (6040h) must be written to command the motor to start motion. Only certain
state transitions are allowed. Therefore, the PLC or host writing to the Control Word object (6040h)
should read the Status Word object (6041h) to determine the current state.

The next table describes the bits in the Control Word object (6040h). For more details, see Object
6040h: Control Word on page 137.

State to enter
Bits of the Control Word

Allowed from
Bit 7 Bit 3 Bit 2 Bit 1 Bit 0

Switch on disabled 0 X X 0 X Ready to switch on,
Switched on,
Operation enabled,
Quick stop active (by forcing bit
1 to a 0)

Ready to switch on 0 X 1 1 0 Switch on disabled,
Switched on,
Operation enabled

Switched on 0 0 1 1 1 Ready to switch on,
Operation enabled

Operation Enabled 0 1 1 1 1 Ready to switch on,
Switched on

Quick Stop active 0 X 0 1 X Operation enabled,
Ready to switch on,
Switched on

Switch on disabled N/A N/A N/A N/A N/A Quick stop active (automatic
transition when quick stop
completes)

Switch on disabled 0 to 1
transition

X X X X Fault

Fault N/A N/A N/A N/A N/A Fault reaction active (automatic
transition when fault reaction
completes)

Fault reaction active N/A N/A N/A N/A N/A Occurrence of a fault will leave
current state (automatic
transition when fault occurs)

NOTE: Rising edge of bit 7 clears the fault unless a fault condition still exists.

A typical startup sequence of values to write to the control word is:

1. 0000h — Starting value.

2. 0080h — Clear past faults.

3. 0006h — Enter "Ready to Switch On" state.

4. 000Fh — Enter "Operation Enabled" state; for velocity or torque mode, this starts motion.

5. 001Fh — Start a homing or position move.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 43 of 197

Motion Profiles

Motion Profiles
This section provides example values written to specific objects for various motion profiles.

In these examples, it can be assumed that the writes are made through either PDO or SDO
communications. Typically, objects like the Control Word object (6040h) would be written cyclically
with PDO communications. However, it is also possible for a single SDO write to set these values. If
PDO communications are used, it is assumed that the controller is writing values continuously, and the
noted sequence indicates when a value should be changed to a new value.

Position Mode
This section describes the process for creating a motion using Absolute Position mode and Relative
Position mode.

It is assumed that either the SmartMotor's drive-enable input and hardware limit switch inputs are in
the ready state, or the user has issued the appropriate I/O commands to disable the limits. For details,
see Object 2101h: Bit IO on page 102.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 44 of 197

Absolute Position Mode Summary

Absolute Position Mode Summary

The nexttable provides a summary of settings for creating a motion using Absolute Position mode. For
a different example in step format, see the next section.

Description SMI
Command

Index
Object
Code

Sub-
Index

Data

Length Hex Dec

Disable positive limit switch
input

CAUTION: Skip this
step if limit switches
are in use.

EIGN(2) 2101h 03 02 0002 2

Disable negative limit switch
input

CAUTION: Skip this
step if limit switches
are in use.

EIGN(3) 2101h 03 02 0003 3

Reset status word ZS 6040h 00 02 0080 128
0000 0000 1000 0000

Set Mode Position MP 6060h 00 01 01 1

Set profile speed in PP mode VT=xxxx 6081h 00 04 0000C350 50000

Set target position PT=0 607Ah 00 04 00000000 0

Set acceleration AT=xxxx 6083h 00 04 00000064 100

Set deceleration DT=xxxx 6084h 00 04 00000064 100

Change state: Ready to
switch on

6040h 00 02 0006 6
0000 0000 0000 0110

Change state: Switched on 6040h 00 02 0007 7
0000 0000 0000 0111

Enable command, single set-
point (motion not actually
started yet)

6040h 00 02 002F 47
0000 0000 0010 1111

Begin motion to target pos-
ition

G 6040h 00 02 003F 63
0000 0000 0011 1111

Prepare for next command 6040h 00 02 002F 47
0000 0000 0010 1111

Set target position PT=1000 607Ah 00 04 000003E8 1000

Begin motion to target pos-
ition

G 6040h 00 02 003F 63
0000 0000 0011 1111

Absolute Position Mode Example

This procedure shows the steps for creating a motion using Absolute Position mode. For details on
Absolute Position mode, see the SmartMotor™ Developer's Guide.

NOTE:
Position Units (PU): encoder counts
Acceleration/Deceleration Units (ADU): (encoder counts per (sample2)) * 65536
Velocity Units (VU): encoder counts per sample * 65536

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 45 of 197

Relative Position Example

1. Clear the faults by setting the Control Word object (6040h) to these values:

a. 0

b. 0080h (128 decimal)

c. 0

2. Set the Modes of Operation object (6060h) to the value 1 (decimal).

3. Set the Profile Velocity object (6081h) to the desired speed in VU (for example, the decimal
value 100000). This is always a positive value. The target position determines the direction of
motion.

4. Set the Profile Acceleration object (6083h) to the desired acceleration in ADU (for example, the
decimal value 10).

5. Set the Profile Deceleration object (6084h) to the desired deceleration in ADU (for example, the
decimal value 10).

6. Set the Target Position object (607Ah) to the desired absolute position in PU.

7. Initialize and start the motion by setting the Control Word object (6040h) to the values:

a. 0006h (6 decimal) — This is required to satisfy the CiA 402 drive state machine. For
details, see CiA 402 Profile Motion State Machine on page 41.

b. 002Fh (47 decimal) — This configures the single-setpoint positioning mode.

c. 003Fh (63 decimal) — The motion begins.

8. Wait for the motion to complete.

9. Set the Target Position object (607Ah) to a new absolute position in PU. Motion will not begin at
this time.

10. Initialize, start and stop the motion by setting the Control Word object (6040h) to these values:

a. 002Fh (47 decimal) — Bit 4 must be transitioned for the new setpoint to begin. By writing
that value to the Control Word object (6040h), bit 4 will begin in the low state. The next
step will write a different value to that object, which will transition bit 4 to a high state.

b. 003Fh (63 decimal) — Starts the motion.

c. 013Fh (319 decimal) — Stops the motion. The motor will decelerate before reaching the
target.

11. Initialize and resume the motion by setting the Control Word object (6040h) to these values:

a. 002Fh (47 decimal) — bit 4 must be transitioned for the motion to resume. By writing
that value to the Control Word object (6040h), bit 4 will begin in the low state. The next
step will write a different value to that object, which will transition bit 4 to a high state.

b. 003Fh (63 decimal) — the motion resumes.

12. Turn off motor by setting the Control Word object (6040h) to the value 0.

Relative Position Example

This procedure shows the steps for creating a motion using Relative Position mode. For details on
Relative Position mode, see the SmartMotor™ Developer's Guide.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 46 of 197

Relative Position Example

1. Clear the faults by setting the Control Word object (6040h) to these values:

a. 0

b. 0080h (128 decimal)

c. 0

2. Set the Modes of Operation object (6060h) to the value 1 (decimal).

3. Set the Profile Velocity object (6081h) to the desired speed in VU (for example, the decimal
value 100000). This is always a positive value. The target position determines the direction of
motion.

4. Set the Profile Acceleration object (6083h) to the desired acceleration in ADU (for example, the
decimal value 10).

5. Set the Profile Deceleration object (6084h) to the desired deceleration in ADU (for example, the
decimal value 10).

6. Set a relative target by setting the Target Position object (607Ah) to the desired relative
position in PU.

7. Initialize and start the motion by setting the Control Word object (6040h) to these values:

a. 0006h (6 decimal) — This is required to satisfy the 402 drive state machine.

b. 006Fh (111 decimal) — This configures the single-setpoint mode of positioning.

c. 007Fh (127 decimal) — The motion begins. This sets bit 6 to indicate a relative move.

8. Wait for the motion to complete.

NOTE: If a relative move is commanded while a previous one is in progress, the ending target
position for the in-progress move is replaced. The new ending position is calculated by adding
the current commanded position (when the command is received) and the relative target
(object 607A). The previous ending target position is not a part of this calculation.

9. Set a relative target by setting the Target Position object (607Ah) to the desired relative
position in PU. Motion will not begin at this time.

10. Set a new target and start the motion by setting the Control Word object (6040h) to these
values:

a. 006Fh (111 decimal) — Bit 4 must be transitioned for the new setpoint to begin. By
writing that value to the Control Word object (6040h), bit 4 will begin in the low state. The
next step will write a different value to that object, which will transition bit 4 to a high
state.

b. 007Fh (127 decimal) — The motion begins.

11. Stop the motion by setting the Control Word object (6040h) to the value 017Fh (383 decimal).
The motor will decelerate before reaching the target.

12. Initialize and resume the motion by setting the Control Word object (6040h) to these values:

a. 006Fh (111 decimal) — Bit 4 must be transitioned for the motion to resume. By writing
that value to the Control Word object (6040h), bit 4 will begin in the low state. The next
step will write a different value to that object, which will transition bit 4 to a high state.

b. 007Fh (127 decimal) — The motion resumes. It performs a relative move from the current
position (not the original position).

13. Turn off motor by setting the Control Word object (6040h) to the value 0.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 47 of 197

Velocity Mode

Velocity Mode
This section describes the process for creating a motion using Velocity mode.

It is assumed that either the SmartMotor's drive-enable input and hardware limit switch inputs are in
the ready state, or the user has issued the appropriate I/O commands to disable the limits. For details,
see Object 2101h: Bit IO on page 102.

Velocity Mode Summary

The next table provides a summary of settings for creating a motion using Velocity mode. For a
different example in step format, see the next section.

Description SMI
Command

Index
Object
Code

Sub-
Index

Data

Length Hex Dec

Disable positive limit switch
input

CAUTION: Skip this
step if limit switches
are in use.

EIGN(2) 2101h 03 02 0002 2

Disable negative limit switch
input

CAUTION: Skip this
step if limit switches
are in use.

EIGN(3) 2101h 03 02 0003 3

Reset status word ZS 6040h 00 02 0080 128
0000 0000 1000 0000

Set Mode Velocity MV 6060h 00 01 03 3

Set velocity in PV mode VT=xxxx 60FFh 00 04 0000C350 50000

Set acceleration AT=xxxx 6083h 00 04 00000064 100

Set deceleration DT=xxxx 6084h 00 04 00000064 100

Change state: Ready to
switch on

6040h 00 02 0006 6
0000 0000 0000 0110

Change state: Switched on 6040h 00 02 0007 7
0000 0000 0000 0111

Start command G 6040h 00 02 000F 15
0000 0000 0000 1111

Update velocity while
already running in PV mode

VT=xxxx, G 60FFh 00 04 000186A0 100000

Halt command (set bit 8) X (default)

See object
605Dh

6040h 00 02 010F 271
xxxx xxx1 0000 1111

Start command G 6040h 00 02 000F 15
0000 0000 0000 1111

Quick stop command (bit 2 =
0)

Quick stop
then OFF

See objects
6085h, 605Ah

6040h 00 02 000B 11
xxxx xxxx 0000 1011

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 48 of 197

Velocity Mode Example

Velocity Mode Example

This procedure shows the steps for creating a motion using Velocity mode. For details on Velocity
mode, see the SmartMotor™ Developer's Guide.

NOTE:
Position Units (PU): encoder counts
Acceleration/Deceleration Units (ADU): (encoder counts per (sample2)) * 65536
Velocity Units (VU): encoder counts per sample * 65536

1. Clear the faults by setting the Control Word object (6040h) to these values:

a. 0

b. 0080h (128 decimal)

c. 0

2. Set the Modes of Operation object (6060h) to the value 3 (decimal).

3. Set the Target Velocity object (60FFh) to the desired speed in VU (for example, the decimal
value 100000). To reverse the direction of motion, use a negative value.

4. Set the Profile Acceleration object (6083h) to the desired acceleration in ADU (for example, the
decimal value 10).

5. Set the Profile Deceleration object (6084h) to the desired deceleration in ADU (for example, the
decimal value 10).

6. Set the Control Word object (6040h) to the value 0006h (6 decimal). This is required to satisfy
the CiA 402 drive state machine. For details, see CiA 402 Profile Motion State Machine on page
41.

7. Start, stop and resume the motion by setting the Control Word object (6040h) to these values:

a. 000Fh (15 decimal) — Starts the motion

b. 010Fh (271 decimal) — Stops the motion

c. 000Fh (15 decimal) — Resumes the motion

8. Change the speed by setting the Target Velocity object (60FFh) to the desired speed in VU (for
example, the decimal value 200000). The motor will immediately accelerate /decelerate to the
new speed. To reverse the direction of motion, use a negative value.

9. Turn off motor by setting the Control Word object (6040h) to the value 0.

Torque Mode
This section describes the process for creating a motion using Torque mode.

It is assumed that either the SmartMotor's drive-enable input and hardware limit switch inputs are in
the ready state, or the user has issued the appropriate I/O commands to disable the limits. For details,
see Object 2101h: Bit IO on page 102.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 49 of 197

Torque Mode Summary

Torque Mode Summary

The next table provides a summary of settings for creating a motion using Torque mode. For a different
example in step format, see the next section.

Description SMI
Command

Index
Object
Code

Sub-
Index

Data

Length Hex Dec

Disable positive limit switch
input

CAUTION: Skip this
step if limit switches
are in use.

EIGN(2) 2101h 03 02 0002 2

Disable negative limit switch
input

CAUTION: Skip this
step if limit switches
are in use.

EIGN(3) 2101h 03 02 0003 3

Reset status word ZS 6040h 00 02 0080 128
0000 0000 1000 0000

Set Mode Torque MT 6060h 00 01 04 4

Set Torque Slope TS=xxxx 6087h 00 04 000000C8 200

Set Target Torque T=xxxx 6071h 00 02 0064 100

Change state: Ready to
switch on

6040h 00 02 0006 6
0000 0000 0000 0110

Change state: Switched on 6040h 00 02 0007 7
0000 0000 0000 0111

Start command G 6040h 00 02 000F 15
0000 0000 0000 1111

Update torque while already
running in TQ mode

T=xxxx, G 6071h 00 02 0096 150

Halt command (set bit 8) X (default)

See object
605Dh

6040h 00 02 010F 271
xxxx xxx1 0000 1111

Start command G 6040h 00 02 000F 15
0000 0000 0000 1111

Quick stop command (bit 2 =
0)

Quick stop
then OFF

See object
605Ah

6040h 00 02 000B 11
xxxx xxxx 0000 1011

Torque Mode Example

This procedure shows the steps for creating a motion using Torque mode. For details on torque mode,
see the SmartMotor™ Developer's Guide.

NOTE: Units entered for objects 6071h and 6087h are specific to the DS402 profile. In other words,
they do not use the units that would be used by the T= or TS= commands. For details, see Object
6071h: Target Torque on page 152. Also, see
Object 6087h: Torque Slope on page 164.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 50 of 197

Cyclic Synchronous Position (CSP) Mode

1. Clear the faults by setting the Control Word object (6040h) to these values:

a. 0

b. 0080h (128 decimal)

c. 0

2. Set the Modes of Operation object (6060h) to the value 4 (decimal).

3. Set the Target Torque object (6071h) as desired (for example, the decimal value 100). To
reverse the direction of motion, use a negative value.

4. Set the Torque Slope object (6087h) as desired (for example, the decimal value 200). This
controls the ramp-up/down rate to the previously-specified Target Torque.

5. Set the Control Word object (6040h) to the value 0006h (6 decimal). This is required to satisfy
the CiA 402 drive state machine. For details, see CiA 402 Profile Motion State Machine on page
41.

6. Start, stop and resume the motion by setting the Control Word object (6040h) to these values:

a. 000Fh (15 decimal) — Starts the motion

b. 010Fh (271 decimal) — Stops the motion

c. 000Fh (15 decimal) — Resumes the motion

7. Change the torque by setting the Target Torque object (6071h) as desired (for example, the
decimal value 50). The motor will immediately ramp up/down to the setting. To reverse the
direction of motion, use a negative value.

8. Turn off the motor by setting the Control Word object (6040h) to the value 0.

Cyclic Synchronous Position (CSP) Mode
This section describes the process for creating a motion using Cyclic Synchronous Position (CSP) mode.

In CSP mode, the EtherCAT controller is responsible for defining the velocity profile to the motor and
is in control of the trajectory generation. The SmartMotor will interpolate the target position between
these cyclic updates. The EtherCAT controller defines the acceleration and velocity provided by the
cyclic updates of the absolute target-position values.

NOTE: DC Sync (both SYNC0 and SYNC1) must be configured and enabled. SYNC1 is used as the
time base for interpolation between position data points.

It is assumed that either the SmartMotor's drive-enable input and hardware limit switch inputs are in
the ready state, or the user has issued the appropriate I/O commands to disable the limits. For details,
see Object 2101h: Bit IO on page 102.

CSP Control and Status Word

For this operation mode, there are no mode-specific bits in the Control Word object (6040h) —
operation mode bits 4, 5, 6 and 9 are ignored by the SmartMotor. In this operation mode, the Halt bit
(8) is also ignored by the SmartMotor because the Halt function is managed by the controlling device.
For this mode, the definition of the Status Word object (6041h) is defined as shown in the next table.

Bit Definition
10 Reserved (use either 0 or 1)
12 0 = Target Position is ignored; 1 = Target Position is used
13 0 = NO position error; 1 = position error

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 51 of 197

CSP Mode Example

CSP Mode Example

This procedure shows the steps for creating a motion using cyclic updates of the target position.

1. Clear the faults by setting the Control Word object (6040h) to these values:

a. 0

b. 0080h (128 decimal)

c. 0

2. Using the same object, enable the ready switch by setting the value to 0006h.

3. Set the Modes of Operation object (6060h) to the value 8 (decimal).

4. Set the Max Motor Speed object 6080h to the desired RPM limit (for example, the decimal value
1000).

5. Enable motion by setting the Control Word object (6040h) to the value 000Fh. The SmartMotor:
l Monitors the position error.

l Uses the target position updates as absolute values. See the next NOTE.

6. Read the Position Actual Value object (6064h), and initialize the trajectory generator.

7. Update the Target Position object (607Ah). This step must be cyclically repeated to complete
the move.

NOTE: The motor interprets the value written to the Target Position object (607Ah) as an
absolute position. For example, if the previous value written to object 607Ah was 100, and
the next value written is 500, then the move will be 400 counts forward. Therefore, to avoid a
large jump, the first target written to object 607Ah should be chosen carefully in relation to
the motor's current position.

8. Disable the operation by setting the Control Word object (6040h) to the value 0007h.

9. Turn off the motor by setting the Control Word object (6040h) to the value 0.

Cyclic Synchronous Velocity (CSV) Mode
This section describes how to use Cyclic Sync Velocity (CSV) mode to create a motion.

In CSV mode, the trajectory generator is located in the control device, not in the SmartMotor device. In
a cyclic-synchronous manner, it provides a target velocity to the SmartMotor, which performs velocity
control and torque control. If desired, the position-control loop may be closed over the communication
system. Also, the SmartMotor can provide the controlling device with actual values for position,
velocity and torque.

It is assumed that either the SmartMotor's drive-enable input and hardware limit switch inputs are in
the ready state, or the user has issued the appropriate I/O commands to disable the limits. For details,
see Object 2101h: Bit IO on page 102.

CSV Control and Status Word

For this operation mode, there are no mode-specific bits in the Control Word object (6040h) —
operation mode bits 4, 5, 6 and 9 are ignored by the SmartMotor. In this operation mode, the Halt bit
(8) is also ignored by the SmartMotor because the Halt function is managed by the controlling device.
For this mode, the definition of the Status Word object (6041h) is defined as shown in the next table.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 52 of 197

CSV Mode Example

Bit Definition
10 Reserved (use either 0 or 1)
12 0 = Target Velocity is ignored; 1 = Target Velocity is used
13 Reserved (use either 0 or 1)

CSV Mode Example

This procedure shows the steps for creating a motion using cyclic updates of the target velocity.
Incrementing the target velocity from one update to the next will cause acceleration.

1. Clear the faults by setting the Control Word object (6040h) to these values:

a. 0

b. 0080h (128 decimal)

c. 0

2. Using the same object, enable the ready switch by setting the value to 0006h.

3. Set the Modes of Operation object (6060h) to the value 0009h.

4. Set the Max Motor Speed object 6080h to the desired RPM limit (for example, the decimal value
1000).

5. Enable motion by setting the Control Word object (6040h) to the value 000Fh.

6. Read the Velocity Actual Value object (606Ch), and initialize the trajectory generator.

7. Update the Target Velocity object (60FFh). This step must be cyclically repeated to complete
the move.

8. Disable the operation by setting the Control Word object (6040h) to the value 0007h.

9. Turn off the motor by setting the Control Word object (6040h) to the value 0.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 53 of 197

Cyclic Synchronous Torque (CST) Mode

Cyclic Synchronous Torque (CST) Mode
This section describes the process for creating a force using Cyclic Synchronous Torque (CST) mode.

Torque
Control

Sensors

DS402 SmartMotor

Max Speed

(6080 hex)

Target Torque

(6071 hex)

Actual Torque

(6077 hex)

Velocity Actual

(606C hex)

Position Actual

(6064 hex)

KPI

KII

Cyclic Synchronous Torque Mode

Cyclic Synchronous Torque Mode Diagram

In CST mode, the trajectory generator is located in the EtherCAT control device instead of the
SmartMotor. In a cyclic synchronous manner, the control device provides a target torque to the
SmartMotor, which performs torque control. The SmartMotor can provide actual values for position,
velocity and torque to the control device. However, the control device must close the velocity loop
and/or position loop.

It is assumed that either the SmartMotor's drive-enable input and hardware limit switch inputs are in
the ready state, or the user has issued the appropriate I/O commands to disable the limits. For details,
see Object 2101h: Bit IO on page 102.

CST Control and Status Word

For this operation mode, there are no mode-specific bits in the Control Word object (6040h) —
operation mode bits 4, 5, 6 and 9 are ignored by the SmartMotor. In this operation mode, the Halt bit
(8) is also ignored by the SmartMotor because the Halt function is managed by the controlling device.
For this mode, the definition of the Status Word object (6041h) is defined as shown in the next table.

Bit Definition
10 Reserved (use either 0 or 1)
12 0 = Target Torque is ignored; 1 = Target Torque is used
13 Reserved (use either 0 or 1)

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 54 of 197

CST Mode Example

CST Mode Example

This procedure shows the steps for creating a moment of force (torque) at the SmartMotor shaft using
cyclic updates of the target torque.

1. Clear the faults by setting the Control Word object (6040h) to these values:

a. 0

b. 0080h (128 decimal)

c. 0

2. Using the same object, enable the ready switch by setting the value to 0006h.

3. Set the Modes of Operation object (6060h) to the value 8 (decimal).

4. Set the Max Motor Speed object 6080h to the desired RPM limit (for example, the decimal value
1000).

5. Enable motion by setting the Control Word object (6040h) to the value 000Fh

6. Read the Torque Actual object (6077h), and initialize the trajectory generator.

7. Update the Target Torque object (6071h). This step must be cyclically repeated to complete the
move and close the control loops.

8. Disable the operation by setting the Control Word object (6040h) to the value 0007h.

9. Turn off the motor by setting the Control Word object (6040h) to the value 0.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 55 of 197

Dynamic PDO Mapping Using CoE

Dynamic PDO Mapping Using CoE
This section describes the low-level steps for enabling PDO communications that must occur at startup
between the EtherCAT controller and the SmartMotor.

Overview 57

Mapping and Communication Parameters Objects 57

Mapping Parameters Objects 58

Mapping Entries 58

Sync Manager Assignment Parameters 59

Dynamic PDO Assignment and Mapping Procedure 59

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 56 of 197

Overview

Overview
Process Data Objects (PDOs) are containers that hold one or more objects of data. The set of objects in
a PDO can be configured through the process of dynamic mapping. In a SmartMotor, this means that
data objects such as the Velocity Actual Value object (606Ch) and the Status Word object (6041h) can
be placed in the same PDO transmission sent from the motor. The same can be done for receive PDOs;
the motor will unpack the PDO it receives according to the mapping configuration and consume the
data objects.

A set of objects is available for performing object mapping. These objects are included in the set known
as the Communication Profile objects (1000h–1FFFh). This is the standard for any EtherCAT devices
that support dynamic mapping, which includes CoE devices. For details on the Communication Profile
objects, see Communication Profile on page 77.

NOTE: Some EtherCAT controllers may have a graphical interface or automated means of
performing this mapping.

Mapping and Communication Parameters Objects
The next table lists the overall set of mapping and communication parameters objects. Note that all of
these contain sub-objects, which are described in the tables later in this section.

Object
decimal hex Description
5632 1600 Receive PDO1 Mapping Parameters
5633 1601 Receive PDO2 Mapping Parameters
5634 1602 Receive PDO3 Mapping Parameters
5635 1603 Receive PDO3 Mapping Parameters
5636 1604 Receive PDO5 Mapping Parameters

6656 1A00 Transmit PDO1 Mapping Parameters
6657 1A01 Transmit PDO2 Mapping Parameters
6658 1A02 Transmit PDO3 Mapping Parameters
6659 1A03 Transmit PDO3 Mapping Parameters
6660 1A04 Transmit PDO5 Mapping Parameters

7186 1C12 Receive PDO SM Assignment
7187 1C13 Transmit PDO SM Assignment

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 57 of 197

Mapping Parameters Objects

Mapping Parameters Objects
The Mapping Parameters objects (receive and transmit) all have sub-objects of the same structure:

subindex (decimal) Description
0 Number of Entries. Defines the number of objects that are mapped within this

PDO. For instance, if "Mapping Entry 1" and "Mapping Entry 2" have been set-up,
then write the number 2 here.

1 Mapping Entry 1: Points to mapped object.*
2 Mapping Entry 2: Points to mapped object.*
3 Mapping Entry 3: Points to mapped object.*
4 Mapping Entry 4: Points to mapped object.*

*For details, see Mapping Entries on page 58, and see Dynamic PDO Assignment and Mapping
Procedure on page 59.

Mapping Entries
Only four mapping entries are allocated for the SmartMotor. Therefore, a maximum of four objects can
be mapped into a PDO. The mapping entries must be filled contiguously starting from mapping entry 1.
For example, for three entries, use mapping entry 1, 2, and 3.

All of these mapping entries are UNSIGNED32-bit values. There are three pieces of data packed into
each of these fields to represent the object to be mapped:

l The object number

l The object subindex (0 if no sub-object)

l The object size (in bits)

Therefore, in the form: (hex) nnnniiss
l n: object number

l i: subindex

l s: size

This example uses the Velocity Actual Value object (606Ch):

(hex) 606c0020

CAUTION: There is a specific procedure defined by the EtherCAT specification for
mapping a variable. This procedure must be used or an error will occur and prevent
the change to the mapping.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 58 of 197

Sync Manager Assignment Parameters

Sync Manager Assignment Parameters
The Sync Manager Assignment objects (receive and transmit) 1C12 and 1C13 all have sub-objects of
the same structure:

subindex (decimal) Description
0 Number of Entries. Defines the number of PDO objects that are assigned to the

SM. For instance, if "Assignment Entry 1" and "Assignment Entry 2" have been set
up, then write the value 2.

1 For 1C12, valid entries are 1600h–1604h.
For 1C13, valid entries are 1A00h–1A04h.

2 For 1C12, valid entries are 1600h–1604h.
For 1C13, valid entries are 1A00h–1A04h.

3 For 1C12, valid entries are 1600h–1604h.
For 1C13, valid entries are 1A00h–1A04h.

4 For 1C12, valid entries are 1600h–1604h.
For 1C13, valid entries are 1A00h–1A04h.

5 For 1C12, valid entries are 1600h–1604h.
For 1C13, valid entries are 1A00h–1A04h.

Dynamic PDO Assignment and Mapping Procedure
This procedure uses the previous Velocity Actual Value object example. Transmit PDO 1 is mapped to
contain the Velocity Actual Value object (606Ch) and the Status Word object (6041h).

1. Enter the ESM Pre-Operational state.

2. Set the number of entries to 0 in subindex 0 of the Sync Manager 2 PDO Assignment object
(1C12h) and the Sync Manager 3 PDO Assignment object (1C13h).

3. Set the number of entries to 0 in subindex 0 of the Transmit PDO Mapping Parameter 1 object
(1A00h).

4. Using the same object (1A00h), set the mapping object. It uses a 32-bit value with the order:
highest 2 bytes: object; next byte: subindex; the last byte: length in bits.

a. For the actual velocity, set subindex 2 = 606c0020h.

b. For the status word, set subindex 1 = 60410010h.

5. Using the same object (1A00h), set the number of entries back to the number of items created in
the previous step — set subindex 0 to the value 2.

6. Set the number of entries to 0 in subindex 0 of the Receive PDO Mapping Parameter 1 object
(1600h).

7. Set the number of entries to 0 in subindex 0 of the Receive PDO Mapping Parameter 2 object
(1601h).

8. Set the mapping object. The value is a 32 -bit value in this order: highest 2 bytes: object; next
byte: subindex; the last byte: length in bits.

a. Set subindex 1 of object 1600h = 60400010h for Control Word.

b. Set subindex 1 of object 1601h = 60FF0020h for Actual Velocity.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 59 of 197

Dynamic PDO Assignment and Mapping Procedure

9. Set the number of entries in the mapping parameter objects back to the number of items
created in the previous step:

a. Set subindex 0 of object 1600h to the value 1.

b. Set subindex 0 of object 1601h to the value 1.

10. Set the assignments for Sync Manager 2:

a. Set subindex 1 of object 1C12h = 1600h.

b. Set subindex 2 of object 1C12h = 1601h.

11. Set the assignments for Sync Manager 3:

a. Set subindex 1 of object 1C13h = 1A00h.

12. Set the number of entries in the assignment parameter objects back to the number of items
created in the previous step:

a. Set subindex 0 of object 1C12h to the value 2.

b. Set subindex 0 of object 1C13h to the value 1.

13. Enter the ESM Safe Operational state.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 60 of 197

EtherCAT Synchronization Overview

EtherCAT Synchronization Overview
Using the hardware signals SYNC0 and SYNC1, which are based on the EtherCAT distributed clock (DC)
unit, the SmartMotor can operate in either Free Run or DC Synchronization (DC-Sync) mode.

Free Run Mode
As the name implies, Free Run mode offers no synchronization between the controller and followers
(SmartMotors). The SmartMotor will accept data routinely but without synchronization.

DC Synchronization — Subordinate Mode
The SmartMotor offers DC-Sync using the EtherCAT Subordinate mode. In this mode, the SmartMotor
will phase lock loop its internal real-time motor control to the SYNC0 signal derived from the DC unit.
When Subordinate mode is used, the SYNC1 signal is a multiple of the SYNC0 signal. In the
SmartMotor, the SYNC1 command is used to synchronize processing of the Receive PDO and Transmit
PDO process-data transfers.

DC-Sync Manager 2 Receive object (1C32h) and DC-Sync Manager 3 Transmit object (1C33h) are used
during the initial phases of the EtherCAT network to configure and maintain DC-Sync. The size of the
process data Receive PDO and Transmit PDO can change the "Calc and Copy Time" needed by the
SmartMotor. This time can be read from subindex 6 of objects 1C32h and 1C33h. For more details on
these objects, see Object 1C32h DC-Sync Manager 2 Receive Object on page 97 and Object 1C33h DC-
Sync Manager 3 Transmit Object on page 99.

Sync 0 Event
Sync 1 Event

Sync 0 Event Sync 0 Event Sync 0 Event

Sync 0 Event
Sync 1 Event

Sync 0 Cycle Time

0x1C32:05 (Min Cycle Time)

0x1C32:09 (Delay Time)

0x1C32:02 (Cycle Time)

 0x1C32:06 (Calc & Copy Time) 0x1C33:06 (Calc & Copy Time)

0x1C33:09 (Delay Time)

DC Synchronization Diagram

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 61 of 197

EtherCAT User Program Commands

EtherCAT User Program Commands
This chapter provides details on the EtherCAT commands used with the SmartMotor and its user
program. SmartMotor programming is described in the SmartMotor™ Developer's Guide. The
SmartMotor user program allows the motor to take on autonomous or distributed control functions
needed in an application.

EtherCAT Error Reporting Commands 63

=ETH, RETH 63

EtherCAT Network Control Commands 68

ETHCTL(action, value) 68

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 62 of 197

EtherCAT Error Reporting Commands

EtherCAT Error Reporting Commands
These are related commands. For more details on these commands, see the SmartMotor™ Developer's
Guide.

=ETH, RETH
Get EtherCAT error
The =ETH and RETH commands are used to assign/report errors and certain status information for the
EtherCAT bus.

l Assigned to a program variable: x=ETH(y)

l As a report: RETH(y)

Where y is:

Assignment Report Description

=ETH(0) RETH(0)

Gets the Ethernet status bits:
(*Indicates an error bit)

 0* Network processor initialization failure
Read specific error code from ETH(54);
Contact Moog Animatics

 1* Network processor configuration failure
Typically from an invalid EEPROM setting, or possibly an ETHCTL
command parameter error; read specific error code from ETH(54)

2 Reserved
 3* Network processor failure

Likely due to excessive control power supply noise or ESD event
4 Reserved
5 Reserved
6 Reserved
7 Reserved
8 Reserved
9 Reserved
10 Sync 1 Interrupt active

The configuration from the controller uses sync signals, and the
system is in Safe-Operational or Operational mode

11 Waiting for sync signals
The controller requested the motor to go to Operational mode; it
is waiting to receive a Sync 0 and Sync 1 interrupt

12 Received the sync signals
The motor sent an acknowledgment to the controller confirming
that it is ready to go Operational

13 Reserved
14 Reserved

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 63 of 197

=ETH, RETH

Assignment Report Description
15 Reserved
 16* SDO Error

An error occurred when writing or reading a valid SDO;
read specific error code from ETH(20), ETH(21), ETH(22), ETH(23)

 17* PDO Error
An error occurred when writing or reading a valid PDO; read spe-
cific error code from ETH(25), ETH(26), ETH(27), ETH(28)

NOTE: Object 2304h, subindex 3, bit 6 (Ethernet error) reports true if
any error indications above are set. In a user program, this is a simpler
test than attempting to filter the result of RETH for the error conditions.

=ETH(1) RETH(1)

Gets the value of the current EtherCAT State Machine (ESM) state:

1 Init
2 Pre-Operational
4 Safe-Operational
8 Operational

=ETH(2) RETH(2) Gets the value of the Control Word object (6040h)
=ETH(3) RETH(3) Gets the value of the Status Word object (6041h)

=ETH(5) RETH(5) LFW firmware version as 32-bit integer. E.g., 3.1.0.1 would be a value
50397185 (0x03010001).

=ETH(6) RETH(6) The current Network Lost program label number. For details, see
ETHCTL(action, value) on page 68.

=ETH(7) RETH(7)

Processor type:

-1 Failed
0 Unknown
1 netX 10
2 netX 50
3 netX 51/52
4 netX 100

=ETH(8) RETH(8)

Protocol type:

0 Not defined
1 PROFINET
2 EtherCAT
3 EtherNet/IP

=ETH(9) RETH(9) The current value assigned to the Network Lost action. For details, see
ETHCTL(action, value) on page 68.

=ETH(12) RETH(12) Gets status of ETHCTL(12). For details, see ETHCTL(action, value) on
page 68.

=ETH(13) RETH(13) Gets status of ETHCTL(13). For details, see ETHCTL(action, value) on
page 68.

RETH(18) MAC ID string formatted; report only.
E.g., 00:01:02:a9:ff:00

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 64 of 197

=ETH, RETH

Assignment Report Description

=ETH(19) RETH(19)

Report the detected LFW Protocol Class. This gives a wider range of
values than the known and supported protocols listed in ETH(8). Values
designated according to NXF/LFW file loaded into network processor
and are too numerous to list here. These are the values for the supported
protocols: (introduced in firmware 6.0.2.41 or later).

0 Not defined
21 PROFINET
9 EtherCAT
10 EtherNet/IP

... Other values may be possible, but only those listed above are sup-
ported.

=ETH(20) RETH(20) Gets last error code from a SDO read or write;
refer to this when ETH(0), bit 16 is indicated

=ETH(21) RETH(21) Gets object index from a SDO read or write error;
refer to this when ETH(0), bit 16 is indicated

=ETH(22) RETH(22) Gets object subindex from a SDO read or write error
refer to this when ETH(0), bit 16 is indicated

=ETH(23) RETH(23) Gets the direction of the SDO error; 0=read, 1=write;
refer to this when ETH(0), bit 16 is indicated

=ETH(25) RETH(25) Gets error code from a PDO read or write;
refer to this when ETH(0), bit 17 is indicated

=ETH(26) RETH(26) Gets object index from a PDO read or write error;
refer to this when ETH(0), bit 17 is indicated

=ETH(27) RETH(27) Gets object subindex from a PDO read or write error;
refer to this when ETH(0), bit 17 is indicated

=ETH(28) RETH(28) Gets the direction of the PDO error; 0=read, 1=write;
refer to this when ETH(0), bit 17 is indicated

=ETH(30) RETH(30) Gets the present receive PDO size in bytes
=ETH(31) RETH(31) Gets the present transmit PDO size in bytes

=ETH(32) RETH(32)

Gets the current state of the error LED:

0 LED off
1 LED permanently on
2 LED flickering
3 LED flickers only once
4 LED blinking
5 LED single flash
6 LED double flash
7 LED triple flash
8 LED quadruple flash
9 LED quintuple flash

=ETH(33) RETH(33)
Get the Sync control bits:

8 Sync Out unit is activated

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 65 of 197

=ETH, RETH

Assignment Report Description
9 SYNC0 generation is activated
10 SYNC1 generation is activated

11 Sync Out unit is activated automatically when system time is writ-
ten

NOTE: More than one of these bits can be set during any read

=ETH(34) RETH(34) Gets the value of the SmartMotor station alias; a value of zero means
unused

=ETH(35) RETH(35) Gets the SYNC0 cycle time in nanoseconds
=ETH(36) RETH(36) Gets the SYNC1 cycle time in nanoseconds
=ETH(37) RETH(37) Gets the SYNC1 cycle time in microseconds

=ETH(38) RETH(38)

Gets the Sync PDI configuration bits:

0 SYNC0 Output type:
0 Push-pull
1 Open-drain/Open-source (depends on bit 1)
NOTE: Bit is ignored; they always work as push-pull

1 SYNC0 Polarity:
0 Low active
1 High active

2 SYNC0 Output enable/disable:
0 Disabled
1 Enabled

3 SYNC0 mapped to PDI-IRQ:
0 Disabled
1 Enabled

4 SYNC1 Output type:
0 Push-pull
1 Open-drain/Open-source (depends on bit 5)
NOTE: Bit is ignored; they always work as push-pull

5 SYNC1 Polarity:
0 Low active
1 High active

6 SYNC1 Output enable/disable:
0 Disabled
1 Enabled

7 SYNC1 mapped to PDI-IRQ:
0 Disabled
1 Enabled

=ETH(39) RETH(39) Gets the last-requested network state
=ETH(40) RETH(40) Gets the SYNC1 timeout value in milliseconds

=ETH(41) RETH(41) Gets the minimum cycle time in nanoseconds from Object 1C32h,
subindex 005.

=ETH(42) RETH(42) Gets cycle time in nanoseconds. Measurements of the DC-Sync timing
parameters in the SmartMotor is set in ETHCTL(42). For details, see

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 66 of 197

=ETH, RETH

Assignment Report Description
ETHCTL(action, value) on page 68.

=ETH(48) RETH(48)
Low 3 bytes of MAC ID (device ID) as integer.
E.g., for a MACID of 00:01:02:a9:ff:00, this command reports 11140864
(00 a9 ff 00 hex)

=ETH(49) RETH(49)
High 3 bytes of MAC ID (device ID) as integer.
E.g., for a MACID of 00:01:02:a9:ff:00, this command reports 258 (00 00
01 02 hex)

=ETH(50) RETH(50) Gets the last internal error code
=ETH(51) RETH(51) Gets the last internal error code source

=ETH(53) RETH(53)

Gets the last error code from a request to change states:

17 Invalid requested state change
23 Invalid sync manager configuration
29 Invalid output Configuration
30 Invalid input configuration
43 No valid inputs or outputs configured
45 No Sync error
53 Invalid sync cycle time

=ETH(54) RETH(54)
Gets the Initialization error code;
for further information, read this error when ETH(0), bits 0 or 1 are indic-
ated

=ETH(55) RETH(55) Gets the AL status code; see AL-Status Codes on page 24

=ETH(60) RETH(60) Gets the state of the homing invert option. See ETHCTL(action, value) on
page 68

The ETH(0), ETH(33) ETH(38), RETH(0), RETH(33) and RETH(38) commands are used to report a bit map
of information from the EtherCAT bus. For these commands, more than one bit can be set at a time.
The commands report a decimal number that is a combination of the bits shown in the previous table.

A calculator with a binary display function can convert this decimal number to indicate the set of bits
shown. Also, the SmartMotor Developer's Worksheet can be used for this conversion. It is available
from the Moog Animatics website Knowledgebase at:

www.animatics.com/support/downloads.knowledgebase.html

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 67 of 197

http://www.animatics.com/support/downloads.knowledgebase.html

EtherCAT Network Control Commands

EtherCAT Network Control Commands
These are related commands. For more details on these commands, see the SmartMotor™ Developer's
Guide.

ETHCTL(action, value)
Control network features
Commands execute based on the action argument as defined in the next table:

Action = Description
6 ETHCTL(6,<value>) - Network Lost user program label number.

This setting is nonvolatile.

Program label to jump to if the Network Lost action, ETHCTL(9,<value>), is either set to 4
or 5.

9 ETHCTL(9,<value>) - Network Lost action.

This setting is nonvolatile.

0 – Ignore, no action (default setting)
1 – Send OFF command to motor (servo off)
2 – Send X command to motor (smooth stop)
3 – Send S command to motor (hard stop)
4 – Send GOSUB(x) command, where x is the value of the user program label as defined by
ETHCTL(6,<value>).
5 – Send GOTO(x) command, where x is the value of the user program label as defined by
ETHCTL(6,<value>).

NOTE: Loss of network is an edge-triggered event if the state changed from Operational
to Safe-Operational without being commanded.

12 ETHCTL(12,<value>) - This action uses these value arguments:

l Value = 0: Clears bit 14 in the status word (6041h). This is the default value at
power-up of the motor.

l Value = 1: Sets bit 14 in the status word (6041h).

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 68 of 197

ETHCTL(action, value)

Action = Description
13 ETHCTL(13,<value>) - This action uses these value arguments:

l Value = 0: Disables access to several objects listed below. Clears "remote" bit 9 in
the status word 6041 hex.

l Value = 1: Enables access to several objects listed below. By default, this is the
state at power-up of the motor. Sets "remote" bit 9 in the status word 6041 hex.
The list of objects affected are:

o 6040h: Control Word
o 6060h: Modes of Operation
o 6071h: Target Torque
o 6072h: Max Torque
o 607Ah: Target Position
o 6081h: Profile Velocity (pp mode)
o 6083h: Profile Acceleration
o 6084h: Profile Deceleration
o 6087h: Torque Slope
o 60FBh: Subindex 1–8,10: PID parameters
o 60FFh: Target Velocity

20–23 Resets the SDO error registers: RETH(20) to RETH(23); clears the SDO error bit in RETH
(0). The value argument is ignored.

25–28 Resets the SDO error registers: RETH(25) to RETH(28); clears the SDO error bit in RETH
(0). The value argument is ignored.

34 ETHCTL(34,<value>) - Sets the station alias; a value of 0 disables the station alias setting.
42 ETHCTL(42,<value>) - Sets the value of Object 1C32h, subindex 008.

Starts measurements of the DC-Sync timing parameters in the SmartMotor.
0 – All measurements cleared
1 – initiates continuous measurements and updates subindexes 5 and 6 with the worst-
case measurement.

50–51 Resets the internal error registers: RETH(50) and RETH(51); the value argument is ignored.
53 Resets the state change error register: RETH(53); the value argument is ignored.
55 Resets the AL status error register: RETH(55); the value argument is ignored.
60 Inverts the homing input if set to 1. Value is 0 by default to disable this option. Requires

firmware 6.0.2.31 or later

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 69 of 197

Troubleshooting

Troubleshooting
This section provides troubleshooting information for solving SmartMotor problems that may be
encountered when using EtherCAT. For additional support resources, see the Moog Animatics Support
page at:

http://www.animatics.com/support.html

Issue Cause Solution
EtherCAT Communication Issues
Controller does not
recognize motor.

Motor not powered. Check Pwr/servo LED. If LED is not lit, check
wiring.

Unconnected or miswired
Ethernet connector, or
wiring between motors is
broken.

Check that EtherCAT connector is correctly
wired and connected to motor. For details,
see Connectors and Pinouts on page 1.

Wrong firmware. For Class 6 motors, the firmware should be:
6.0.1.x motors, the firmware should be
2.5.28.x (RSP5) network communications
firmware.

Red EtherCAT error
LED.

Hard failure (not typically
cleared).

Cycle motor power. If LED remains on (solid)
after several power-cycle attempts, then
contact product support.

Communication and Control Issues
Motor control power
light does not
illuminate.

Control power supply is
off or not properly
connected.

Check that control power is properly
connected and turned on. For details, see
Connectors and Pinouts on page 1.

Motor does not
communicate with SMI.

Transmit, receive, or
ground pins are not
connected correctly.

Ensure that transmit, receive and ground are
all connected properly to the host PC.

Motor program is stuck in
a continuous loop or is
disabling communications.

To prevent the program from running on
power up, use the Communications Lockup
Wizard located on the SMI software
Communications menu.

Motor disconnects from
SMI sporadically.

COM port buffer settings
are too high.

Adjust the COM port buffer settings to their
lowest values.

Poor connection on serial
cable.

Check the serial cable connections and/or
replace it.

Power supply unit (PSU)
brownout.

PSU may be too high-precision and/or
undersized for the application, which causes it
to brown-out during motion. Make moves less
aggressive, increase PSU size, or change to a
linear unregulated power supply.

Motor stops
communicating over
USB or serial port after
power reset, requires
re-detection.

Motor does not have its
address set in the user
program. NOTE: Serial
addresses are lost when
motor power is off or
reset.

Use the SADDR or ADDR= command within
the program to set the motor address.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 70 of 197

http://www.animatics.com/support.html
../../../../../Content/Connections_ECAT.htm
../../../../../Content/Connections_ECAT.htm

SDO Response Error Codes

Issue Cause Solution
Red PWR SERVO light
illuminated.

Critical fault. To discover the source of the fault, use the
Motor View tool located on the SMI software
Tools menu.

Common Faults
Bus voltage fault. Bus voltage is either too

high or too low for
operation.

Check servo bus voltage. If motor uses the DE
power option, ensure that both drive and
control power are connected.

Overcurrent occurred. Motor intermittently drew
more than its rated level
of current. Does not cease
motion

Consider making motion less abrupt with
softer tuning parameters or acceleration
profiles.

Excessive temperature
fault.

Motor has exceeded
temperature limit of 85°C.
Motor will remain
unresponsive until it cools
down below 80°C.

Motor may be undersized or ambient
temperature is too high. Consider adding heat
sinks or forced air cooling to the system.

Excessive position
error.

The motor's commanded
position and actual
position differ by more
than the user-supplied
error limit.

Increase error limit, decrease load, or make
movement less aggressive.

Historical
positive/negative
hardware limit faults.

A limit switch was tripped
in the past.

Clear errors with the ZS command.

Motor does not have limit
switches attached.

Configure the motor to be used without limit
switches by setting their inputs as general
use.

Programming and SMI Issues
Several commands not
recognized during
compiling.

Compiler default firmware
version set incorrectly.

Use the Compiler default firmware version
option in the SMI software Compile menu to
select a default firmware version closest to
the motor's firmware version. In the SMI
software, view the motor's firmware version
by right-clicking the motor and selecting
Properties.

SDO Response Error Codes

The next table shows the list of possible errors (abort codes) from a remote device as defined by
EtherCAT and/or remote device datasheet.

NOTE: Unlisted codes are reserved.

Code
Description

Hex Dec
0503 0000h 84082688 Toggle bit not alternated.
0504 0000h 84148224 SDO protocol timed out.
0504 0001h 84148225 Client/server command specifier not valid or unknown.
0504 0005h 84148229 Out of memory.
0601 0000h 100728832 Unsupported access to an object.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 71 of 197

SDO Response Error Codes

Code
Description

Hex Dec
0601 0001h 100728833 Attempt to read a write only object.
0601 0002h 100728834 Attempt to write a read only object.
0601 0003h 100728835 Subindex cannot be written, SI0 must be 0 for write access.
0601 0004h 100728836 SDO complete access not supported for objects of variable length such

as ENUM object types.
0601 0005h 100728837 Object length exceeds mailbox size.
0601 0006h 100728838 Object mapped to RxPDO, SDO download blocked.
0602 0000h 100794368 Object does not exist in the object dictionary.
0604 0041h 100925505 Object cannot be mapped to the PDO.
0604 0042h 100925506 Number and length of objects to be mapped would exceed PDO length.
0604 0043h 100925507 General parameter incompatibility reason.
0604 0047h 100925511 General internal incompatibility in the device.
0606 0000h 101056512 Access failed due to a hardware error.
0607 0010h 101122064 Data type does not match—length of service parameter does not

match.
0607 0012h 101122066 Data type does not match—length of service parameter too high.
0607 0013h 101122067 Data type does not match—length of service parameter too low.
0609 0011h 101253137 Subindex does not exist.
0609 0030h 101253168 Value range of parameter exceeded (only for write access).
0609 0031h 101253169 Value of parameter written too high.
0609 0032h 101253170 Value of parameter written too low.
0609 0036h 101253174 Maximum value is less than minimum value.
0800 0000h 134217728 General error.
0800 0020h 134217760 Data cannot be transferred or stored to the application.
0800 0021h 134217761 Data cannot be transferred or stored to the application because of

local control.
0800 0022h 134217762 Data cannot be transferred or stored to the application because of the

present device state.
0800 0023h 134217763 Object dictionary dynamic generation fails or no object dictionary is

present (e.g., object dictionary is generated from file and generation
fails because of a file error).

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 72 of 197

Object Reference

Object Reference
This chapter provides details on the EtherCAT objects used with the Moog Animatics SmartMotor. The
TOC below groups the objects by category.

Object Categories 76

Communication Profile 77

Object 1000h: Device Type 78

Object 1001h: Error Register 79

Object 1008h: Manufacturer Device Name 80

Object 1009h: Manufacturer Hardware Version 81

Object 100Ah: Manufacturer Software Version 82

Object 1018h: Identity Object 83

Object 1600h: Receive PDO Mapping Parameter 1 84

Object 1601h: Receive PDO Mapping Parameter 2 85

Object 1602h: Receive PDO Mapping Parameter 3 86

Object 1603h: Receive PDO Mapping Parameter 4 87

Object 1604h: Receive PDO Mapping Parameter 5 88

Object 1A00h: Transmit PDO Mapping Parameter 1 89

Object 1A01h: Transmit PDO Mapping Parameter 2 90

Object 1A02h: Transmit PDO Mapping Parameter 3 91

Object 1A03h: Transmit PDO Mapping Parameter 4 92

Object 1A04h: Transmit PDO Mapping Parameter 5 93

Object 1C00h: Sync Manager Com Type 94

Object 1C12h: Sync Manager 2 PDO Assignment 95

Object 1C13h Sync Manager 3 PDO Assignment 96

Object 1C32h DC-Sync Manager 2 Receive Object 97

Object 1C33h DC-Sync Manager 3 Transmit Object 99

Manufacturer-Specific Profile 101

Object 2101h: Bit IO 102

Object 2201h: User Variable 103

Object 2202h: Set Position Origin 104

Object 2203h: Shift Position Origin 105

Object 2204h: Mappable 32-bit Variables 106

Object 2205h Negative Software Position Limit 107

Object 2206h Positive Software Position Limit 108

Object 2209h Encoder Follow Control 109

Start/Stop Capability 109

Object 220Ah MFMUL 110

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 73 of 197

Object Reference

Object 220Bh MFDIV 111

Object 220Ch MFA 112

Object 220Dh MFD 113

Object 2220h: 8-Bit Mappable Variables 114

Object 2221h: 16-Bit Mappable Variables 115

Object 2301h: RMS Current 116

Object 2302h: Internal Temperature 117

Object 2303h: Internal Clock 118

Object 2304h: Motor Status 119

Object 2307h: Sample Period 128

Object 2309h: GOSUB R2 129

Object 2400h: Interpolation Mode Status 130

Object 2401h: Buffer Control 131

Object 2402h: Buffer Setpoint 132

Object 2403h: Interpolation User Bits 133

Object 2500h: Encapsulated SmartMotor Command 134

Drive and Motion Control Profile 135

Object 6040h: Control Word 137

Object 6041h: Status Word 139

Object 605Ah: Quick Stop Option Code 140

Object 605Ch: Disable Operation Option Code 141

Object 605Dh: Halt Option Code 142

Object 605Eh: Fault Reaction Option Code 143

Object 6060h: Modes of Operation 144

Object 6061h: Modes of Operation Display 145

Object 6062h: Position Demand Value 146

Object 6063h: Position Actual Internal Value 147

Object 6064h: Position Actual Value 148

Object 6065h: Following Error Window 149

Object 606Bh: Velocity Demand Value 150

Object 606Ch: Velocity Actual Value 151

Object 6071h: Target Torque 152

Object 6074h: Torque Demand Value 153

Object 6077h: Torque Actual 154

Object 6079h: DC Link Circuit Voltage 155

Object 607Ah: Target Position 156

Object 607Ch: Home Offset 157

Object 6080h: Max Motor Speed 159

Object 6081h: Profile Velocity in PP Mode 160

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 74 of 197

Object Reference

Object 6083h: Profile Acceleration 161

Object 6084h: Profile Deceleration 162

Object 6085h: Quick Stop Deceleration 163

Object 6087h: Torque Slope 164

Object 608Fh: Position Encoder Resolution 165

Object 6098h: Homing Method 166

Object 6099h: Homing Speeds 169

Object 609Ah: Homing Acceleration 170

Object 60B8h: Touch Probe Function 171

Object 60B9h: Touch Probe Status 174

Object 60BAh: Touch Probe Position 1 Positive Value 176

Object 60BBh: Touch Probe Position 1 Negative Value 177

Object 60BCh: Touch Probe Position 2 Positive Value 178

Object 60BDh: Touch Probe Position 2 Negative Value 179

Object 60C0h: Interpolation Sub-Mode Select 180

Object 60C1h: Interpolation Data Record 181

Object 60C2h: Interpolation Time Period 182

Object 60C4h: Interpolation Data Configuration 184

Object 60D0h: Touch Probe Source 185

Object 60F4h: Following Error Actual Value 186

Object 60FBh: Position Control Parameter Set 187

Object 60FCh: Position Demand Internal Value 189

Object 60FDh: Digital Inputs 190

Object 60FEh: Digital Outputs 192

Object 60FFh: Target Velocity 193

Object 6502h: Supported Drive Modes 194

Object 67FFh: Single Device Type 195

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 75 of 197

Object Categories

Object Categories
The object descriptions are grouped by these categories:

l Communication Profile on page 77

This set of objects in the range 1000h to 1FFFh implement the 301 specification for general
EtherCAT communications. This configures EtherCAT services and PDO behavior.

l Manufacturer-Specific Profile on page 101

This set of objects in the range 2000h to 5FFFh implement manufacturer-specific objects,
which do not adhere to a common standard. They provide access to SmartMotor commands and
data.

l Drive and Motion Control Profile on page 135

This set of objects in the range 6000h to 67FFh implement the CiA 402 motion profile. This
provides access to common commands for controlling the motor.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 76 of 197

Communication Profile

Communication Profile
This section describes the objects in the Communication Profile. This set of objects in the range 1000h
to 1FFFh implement the 301 specification for general EtherCAT communications. This configures
EtherCAT services and PDO behavior.

Object 1000h: Device Type 78

Object 1001h: Error Register 79

Object 1008h: Manufacturer Device Name 80

Object 1009h: Manufacturer Hardware Version 81

Object 100Ah: Manufacturer Software Version 82

Object 1018h: Identity Object 83

Object 1600h: Receive PDO Mapping Parameter 1 84

Object 1601h: Receive PDO Mapping Parameter 2 85

Object 1602h: Receive PDO Mapping Parameter 3 86

Object 1603h: Receive PDO Mapping Parameter 4 87

Object 1604h: Receive PDO Mapping Parameter 5 88

Object 1A00h: Transmit PDO Mapping Parameter 1 89

Object 1A01h: Transmit PDO Mapping Parameter 2 90

Object 1A02h: Transmit PDO Mapping Parameter 3 91

Object 1A03h: Transmit PDO Mapping Parameter 4 92

Object 1A04h: Transmit PDO Mapping Parameter 5 93

Object 1C00h: Sync Manager Com Type 94

Object 1C12h: Sync Manager 2 PDO Assignment 95

Object 1C13h Sync Manager 3 PDO Assignment 96

Object 1C32h DC-Sync Manager 2 Receive Object 97

Object 1C33h DC-Sync Manager 3 Transmit Object 99

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 77 of 197

Object 1000h: Device Type

Object 1000h: Device Type

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1000h 000 Device Type 00000000h FFFFFFFFh 00020192h No Unsigned
32-bit

Read
Only

This object is required by EtherCAT to provide information about this device. The value of this object
does not change.

Bit Meaning
0–15 (16 bits) Device profile: 402 (192 hex)
16–23 (8 bits) Device type: 02 hex, to indicate a single instance of a servo drive
24–31 (8 bits) Device mode: 0 (manufacturer-specific / reserved)

Also, refer to Object 67FFh: Single Device Type on page 195.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 78 of 197

Object 1001h: Error Register

Object 1001h: Error Register

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1001h 000 Error Register 00h FFh No Unsigned
8-bit

Read
Only

The value read from this object contains a bit field that means:

Bit Function
0 General error

Includes any of these:

l motion fault
l drive not ready
l CAN communication errors
l program command error
l program checksum error
l serial communication error

1–7 Reserved

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 79 of 197

Object 1008h: Manufacturer Device Name

Object 1008h: Manufacturer Device Name

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1008h 000 Manufacturer Device Name SMClass6 No String Read
Only

This object contains the manufacturer device name. This value does not change and reports as:

Product Value (string)
Class 6D-Style SMClass6

Class 6M-Style SMClass6

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 80 of 197

Object 1009h: Manufacturer Hardware Version

Object 1009h: Manufacturer Hardware Version

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1009h 000 Manufacturer Hardware Ver-
sion 01.00 No String Read

Only

This object contains the device hardware version. This value does not change and reports as:

01.00

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 81 of 197

Object 100Ah: Manufacturer Software Version

Object 100Ah: Manufacturer Software Version

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

100Ah 000 Manufacturer Software Version No String Read
Only

This object contains the firmware version of the motor. It reports a string in the format:

Product Value (string) Length
Class 6D-Style 6.4.y.z 24
Class 6M-Style 6.0.y.z 24

The y and z positions represent the major and minor software release version, respectively.

Similar SmartMotor Commands: RFW, RSP (firmware) info

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 82 of 197

Object 1018h: Identity Object

Object 1018h: Identity Object

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1018h 000 Number of Entries 01h 04h 04h No Unsigned
8-bit

Read
Only

1018h 001 Vendor ID (EtherCAT) 00000000h FFFFFFFFh 00C0FFEEh No Unsigned
32-bit

Read
Only

1018h 002 Product Code 00000000h FFFFFFFFh 00000001h No Unsigned
32-bit

Read
Only

1018h 003 Revision Number 00000000h FFFFFFFFh Revision num-
ber No Unsigned

32-bit
Read
Only

1018h 004 Serial Number 00000000h FFFFFFFFh Motor serial
number No Unsigned

32-bit
Read
Only

This object contains general information about the device. These values are constant and do not
change.

l Subindex 1 contains the EtherCAT Vendor ID number assigned to Moog Animatics: 00C0FFEEh

l Subindex 2 contains the manufacturer-specific product code (varies by product):

Product Code (EtherCAT)
Class 6 D-Style 1
Class 6 M-Style 1

l Subindex 3 contains the revision number:
o Bit 31–16 is the major revision number
o Bit 15–0 is the minor revision number

l Subindex 4 contains the unique serial number of this SmartMotor. This number is the same as
the serial number printed on the SmartMotor label, except that the leading alpha character is
dropped. Only the 24-bit numeric digits are reported.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 83 of 197

Object 1600h: Receive PDO Mapping Parameter 1

Object 1600h: Receive PDO Mapping Parameter 1

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1600h 000 Number of Entries 00h 04h 01h No Unsigned
8-bit

Read
Write

1600h 001 Mapping Entry 1 00000000h FFFFFFFFh 60400010h No Unsigned
32-bit

Read
Write

1600h 002 Mapping Entry 2 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1600h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1600h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into receive PDO 1.

For these items, refer to Mapping Parameters Objects on page 58:
l Subindex 0: Number of valid subindex objects in this object. This is set according to the filled

mapping entries starting from subindex 1.
l Subindexes 1–4: These provide information about the object mapped in this PDO. They contain

the indexes, the subindexes and the lengths of the mapped object. Fill these starting from
subindex 1. The structure is:

Bit Meaning
Bits 16–31 (16 bit) Index of the object to

map
Bits 8–15 (8 bit) Subindex of the object

to map
Bits 0–7 (8 bit) Length of the object

(in bits)

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 84 of 197

Object 1601h: Receive PDO Mapping Parameter 2

Object 1601h: Receive PDO Mapping Parameter 2

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1601h 000 Number of Entries 00h 04h 01h No Unsigned
8-bit

Read
Write

1601h 001 Mapping Entry 1 00000000h FFFFFFFFh 60FF0020h No Unsigned
32-bit

Read
Write

1601h 002 Mapping Entry 2 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1601h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1601h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into receive PDO 2.

For these items, refer to Mapping Parameters Objects on page 58:
l Subindex 0: Number of valid subindex objects in this object. This is set according to the filled

mapping entries starting from subindex 1.
l Subindexes 1–4: These provide information about the object mapped in this PDO. They contain

the indexes, the subindexes and the lengths of the mapped object. Fill these starting from
subindex 1. The structure is:

Bit Meaning
Bits 16–31 (16 bit) Index of the object to

map
Bits 8–15 (8 bit) Subindex of the object

to map
Bits 0–7 (8 bit) Length of the object

(in bits)

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 85 of 197

Object 1602h: Receive PDO Mapping Parameter 3

Object 1602h: Receive PDO Mapping Parameter 3

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1602h 000 Number of Entries 00h 04h 01h No Unsigned
8-bit

Read
Write

1602h 001 Mapping Entry 1 00000000h FFFFFFFFh 607A0020h No Unsigned
32-bit

Read
Write

1602h 002 Mapping Entry 2 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1602h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1602h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into receive PDO 3.

For these items, refer to Mapping Parameters Objects on page 58:
l Subindex 0: Number of valid subindex objects in this object. This is set according to the filled

mapping entries starting from subindex 1.
l Subindexes 1–4: These provide information about the object mapped in this PDO. They contain

the indexes, the subindexes and the lengths of the mapped object. Fill these starting from
subindex 1. The structure is:

Bit Meaning
Bits 16–31 (16 bit) Index of the object to

map
Bits 8–15 (8 bit) Subindex of the object

to map
Bits 0–7 (8 bit) Length of the object

(in bits)

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 86 of 197

Object 1603h: Receive PDO Mapping Parameter 4

Object 1603h: Receive PDO Mapping Parameter 4

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1603h 000 Number of Entries 00h 04h 01h No Unsigned
8-bit

Read
Write

1603h 001 Mapping Entry 1 00000000h FFFFFFFFh 60710010h No Unsigned
32-bit

Read
Write

1603h 002 Mapping Entry 2 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1603h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1603h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into receive PDO 4.

For these items, refer to Mapping Parameters Objects on page 58:
l Subindex 0: Number of valid subindex objects in this object. This is set according to the filled

mapping entries starting from subindex 1.
l Subindexes 1–4: These provide information about the object mapped in this PDO. They contain

the indexes, the subindexes and the lengths of the mapped object. Fill these starting from
subindex 1. The structure is:

Bit Meaning
Bits 16–31 (16 bit) Index of the object to

map
Bits 8–15 (8 bit) Subindex of the object

to map
Bits 0–7 (8 bit) Length of the object

(in bits)

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 87 of 197

Object 1604h: Receive PDO Mapping Parameter 5

Object 1604h: Receive PDO Mapping Parameter 5

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1604h 000 Number of Entries 00h 04h 01h No Unsigned
8-bit

Read
Write

1604h 001 Mapping Entry 1 00000000h FFFFFFFFh 60600008h No Unsigned
32-bit

Read
Write

1604h 002 Mapping Entry 2 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1604h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1604h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into receive PDO 5.

For these items, refer to Mapping Parameters Objects on page 58:
l Subindex 0: Number of valid subindex objects in this object. This is set according to the filled

mapping entries starting from subindex 1.
l Subindexes 1–4: These provide information about the object mapped in this PDO. They contain

the indexes, the subindexes and the lengths of the mapped object. Fill these starting from
subindex 1. The structure is:

Bit Meaning
Bits 16–31 (16 bit) Index of the object to

map
Bits 8–15 (8 bit) Subindex of the object

to map
Bits 0–7 (8 bit) Length of the object

(in bits)

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 88 of 197

Object 1A00h: Transmit PDO Mapping Parameter 1

Object 1A00h: Transmit PDO Mapping Parameter 1

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1A00h 000 Number of Entries 00h 04h 01h No Unsigned
8-bit

Read
Write

1A00h 001 Mapping Entry 1 00000000h FFFFFFFFh 60410010h No Unsigned
32-bit

Read
Write

1A00h 002 Mapping Entry 2 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1A00h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1A00h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into transmit PDO 1.

For these items, refer to Mapping Parameters Objects on page 58:
l Subindex 0: Number of valid subindex objects in this object. This is set according to the filled

mapping entries starting from subindex 1.
l Subindexes 1–4: These provide information about the object mapped in this PDO. They contain

the indexes, the subindexes and the lengths of the mapped object. Fill these starting from
subindex 1. The structure is:

Bit Meaning
Bits 16–31 (16 bit) Index of the object to

map
Bits 8–15 (8 bit) Subindex of the object

to map
Bits 0–7 (8 bit) Length of the object

(in bits)

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 89 of 197

Object 1A01h: Transmit PDO Mapping Parameter 2

Object 1A01h: Transmit PDO Mapping Parameter 2

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1A01h 000 Number of Entries 00h 04h 01h No Unsigned
8-bit

Read
Write

1A01h 001 Mapping Entry 1 00000000h FFFFFFFFh 60640020h No Unsigned
32-bit

Read
Write

1A01h 002 Mapping Entry 2 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1A01h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1A01h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into transmit PDO 2.

For these items, refer to Mapping Parameters Objects on page 58:
l Subindex 0: Number of valid subindex objects in this object. This is set according to the filled

mapping entries starting from subindex 1.
l Subindexes 1–4: These provide information about the object mapped in this PDO. They contain

the indexes, the subindexes and the lengths of the mapped object. Fill these starting from
subindex 1. The structure is:

Bit Meaning
Bits 16–31 (16 bit) Index of the object to

map
Bits 8–15 (8 bit) Subindex of the object

to map
Bits 0–7 (8 bit) Length of the object

(in bits)

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 90 of 197

Object 1A02h: Transmit PDO Mapping Parameter 3

Object 1A02h: Transmit PDO Mapping Parameter 3

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1A02h 000 Number of Entries 00h 04h 01h No Unsigned
8-bit

Read
Write

1A02h 001 Mapping Entry 1 00000000h FFFFFFFFh 60F40020h No Unsigned
32-bit

Read
Write

1A02h 002 Mapping Entry 2 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1A02h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1A02h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into transmit PDO 3.

For these items, refer to Mapping Parameters Objects on page 58:
l Subindex 0: Number of valid subindex objects in this object. This is set according to the filled

mapping entries starting from subindex 1.
l Subindexes 1–4: These provide information about the object mapped in this PDO. They contain

the indexes, the subindexes and the lengths of the mapped object. Fill these starting from
subindex 1. The structure is:

Bit Meaning
Bits 16–31 (16 bit) Index of the object to

map
Bits 8–15 (8 bit) Subindex of the object

to map
Bits 0–7 (8 bit) Length of the object

(in bits)

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 91 of 197

Object 1A03h: Transmit PDO Mapping Parameter 4

Object 1A03h: Transmit PDO Mapping Parameter 4

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1A03h 000 Number of Entries 00h 04h 01h No Unsigned
8-bit

Read
Write

1A03h 001 Mapping Entry 1 00000000h FFFFFFFFh 60770010h No Unsigned
32-bit

Read
Write

1A03h 002 Mapping Entry 2 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1A03h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1A03h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into transmit PDO 4.

For these items, refer to Mapping Parameters Objects on page 58:
l Subindex 0: Number of valid subindex objects in this object. This is set according to the filled

mapping entries starting from subindex 1.
l Subindexes 1–4: These provide information about the object mapped in this PDO. They contain

the indexes, the subindexes and the lengths of the mapped object. Fill these starting from
subindex 1. The structure is:

Bit Meaning
Bits 16–31 (16 bit) Index of the object to

map
Bits 8–15 (8 bit) Subindex of the object

to map
Bits 0–7 (8 bit) Length of the object

(in bits)

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 92 of 197

Object 1A04h: Transmit PDO Mapping Parameter 5

Object 1A04h: Transmit PDO Mapping Parameter 5

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1A04h 000 Number of Entries 00h 04h 01h No Unsigned
8-bit

Read
Write

1A04h 001 Mapping Entry 1 00000000h FFFFFFFFh 60610008h No Unsigned
32-bit

Read
Write

1A04h 002 Mapping Entry 2 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1A04h 003 Mapping Entry 3 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

1A04h 004 Mapping Entry 4 00000000h FFFFFFFFh 00000000h No Unsigned
32-bit

Read
Write

This object controls which objects are mapped into transmit PDO 5.

For these items, refer to Mapping Parameters Objects on page 58:
l Subindex 0: Number of valid subindex objects in this object. This is set according to the filled

mapping entries starting from subindex 1.
l Subindexes 1–4: These provide information about the object mapped in this PDO. They contain

the indexes, the subindexes and the lengths of the mapped object. Fill these starting from
subindex 1. The structure is:

Bit Meaning
Bits 16–31 (16 bit) Index of the object to

map
Bits 8–15 (8 bit) Subindex of the object

to map
Bits 0–7 (8 bit) Length of the object

(in bits)

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 93 of 197

Object 1C00h: Sync Manager Com Type

Object 1C00h: Sync Manager Com Type

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1C00h 0 Number of used Sync Manager
channels 04 04 04 No Unsigned 8-

bit
Read
Only

1C00h 1 Communication Type Sync Man-
ager 0 00 04 01 No Unsigned 8-

bit
Read
Only

1C00h 2 Communication Type Sync Man-
ager 1 00 04 02 No Unsigned 8-

bit
Read
Only

1C00h 3 Communication Type Sync Man-
ager 2 00 04 03 No Unsigned 8-

bit
Read
Only

1C00h 4 Communication Type Sync Man-
ager 3 00 04 04 No Unsigned 8-

bit
Read
Only

This object is a description of the Sync managers available. These fields are read-only and cannot be
configured. The next table is a reference for Subindexes 1-4 Default column values in the previous
table:

Value 'Type' Meaning
0 Unused
1 Mailbox receive
2 Mailbox send
3 Process data output
4 Process data input

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 94 of 197

Object 1C12h: Sync Manager 2 PDO Assignment

Object 1C12h: Sync Manager 2 PDO Assignment

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1C12h 000 Number of Assignments 0h 05h 02h No Unsigned
8-bit

Read
Write

1C12h 001 Receive PDO Mapping Object -
Index of Assignment Object 1600h 1604h 1600h No Unsigned

16-bit
Read
Write

1C12h 002 Receive PDO Mapping Object -
Index of Assignment Object 1600h 1604h 1601h No Unsigned

16-bit
Read
Write

1C12h 003 Receive PDO Mapping Object -
Index of Assignment Object 1600h 1604h 0000h No Unsigned

16-bit
Read
Write

1C12h 004 Receive PDO Mapping Object -
Index of Assignment Object 1600h 1604h 0000h No Unsigned

16-bit
Read
Write

1C12h 005 Receive PDO Mapping Object -
Index of Assignment Object 1600h 1604h 0000h No Unsigned

16-bit
Read
Write

This object controls the behavior of Sync Manager 2 PDO assignments.

This object can be written to only during the Pre-Operational state.

To change subindexes 1–5, first write subindex 0 "Number of Assignments" to the value 0. After
updating and writing the information in subindexes 1–5 to the correct information (per the application
requirements), then write subindex 0 to the value corresponding to the desired Sync Manager Process
Data exchanges.

Many EtherCAT controller applications manage reading and writing Sync Manager PDO assignment
objects 1C12h and 1C13h from a graphical user interface (GUI) for easier configuration of the process
data. This object's semantics are therefore handled during EtherCAT network startup by the EtherCAT
Controller, which removes the burden from the application programmer in many cases.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 95 of 197

Object 1C13h Sync Manager 3 PDO Assignment

Object 1C13h Sync Manager 3 PDO Assignment

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1C13h 000 Number of Assignments 0h 05h 02h No Unsigned
8-bit

Read
Write

1C13h 001 Transmit PDO Mapping Object -
Index of Assignment Object 1A00h 1A04h 1A00h No Unsigned

16-bit
Read
Write

1C13h 002 Transmit PDO Mapping Object -
Index of Assignment Object 1A00h 1A04h 1A01h No Unsigned

16-bit
Read
Write

1C13h 003 Transmit PDO Mapping Object -
Index of Assignment Object 1A00h 1A04h 0000h No Unsigned

16-bit
Read
Write

1C13h 004 Transmit PDO Mapping Object -
Index of Assignment Object 1A00h 1A04h 0000h No Unsigned

16-bit
Read
Write

1C13h 005 Transmit PDO Mapping Object -
Index of Assignment Object 1A00h 1A04h 0000h No Unsigned

16-bit
Read
Write

This object controls the behavior of Sync Manager 3 PDO assignments.

This object can be written to only during the Pre-Operational state.

To change subindexes 1–5, first write subindex 0 "Number of Assignments" to the value 0. After
updating and writing the information in subindexes 1–5 to the correct information (per the application
requirements), then write subindex 0 to the value corresponding to the desired Sync Manager Process
Data exchanges.

Many EtherCAT controller applications manage reading and writing Sync Manager PDO assignment
objects 1C12h and 1C13h from a graphical user interface (GUI) for easier configuration of the process
data. This object's semantics are therefore handled during EtherCAT network startup by the EtherCAT
Controller, which removes the burden from the application programmer in many cases.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 96 of 197

Object 1C32h DC-Sync Manager 2 Receive Object

Object 1C32h DC-Sync Manager 2 Receive Object

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

1C32h 000 Number of Assignments - 20h 20h No Unsigned
8-bit

Read
Only

1C32h 001
Synchronization Type:
0h = free run
3h = DC-Sync with SYNC1

0h 3h 0h No Unsigned
16-bit

Read
Write

1C32h 002 Cycle Time in nanoseconds 0h FFFFFFFFh Calculateda No Unsigned
32-bit

Read
Write

1C32h 004 Synchronization Types Sup-
ported - - 0011h No Unsigned

16-bit
Read
Only

1C32h 005 Minimum Cycle Time in nano-
seconds 0h FFFFFFFFh Calculateda No Unsigned

32-bit
Read
Only

1C32h 006 Calc and Copy Time in nano-
seconds 0h FFFFFFFFh Calculateda No Unsigned

32-bit
Read
Only

1C32h 007 Minimum Delay Time in nano-
seconds 0h FFFFFFFFh 0h No Unsigned

32-bit
Read
Only

1C32h 008 Get Cycle Time (Command) 0h 1h 0h No Unsigned
16-bit

Read
Write

1C332 009 Delay Time in nanoseconds 0h FFFFFFFFh Calculateda No Unsigned
32-bit

Read
Only

1C32h 010 SYNC0 Cycle Time in nano-
seconds 0h FFFFFFFFh 0h No Unsigned

32-bit
Read
Only

1C32h 011 SM-Event Missed Counter 0h FFFFh 0h No Unsigned
16-bit

Read
Only

1C32h 012 Cycle Time to Small Counter 0h FFFFh 0h No Unsigned
16-bit

Read
Only

1C32h 032 Sync Error 0h FFh 0h No
BOOL

(Unsigned
8-bit)

Read
Only

a Calculated by operating system once DC-Sync is established; see subindex 8.

This object controls the DC-Sync behavior and provides the status of Sync Manager 2 synchronization.
The object is updated during the Pre-Operational state to reflect the settings produced by the
EtherCAT controller.

l Subindex 2 is updated during the Pre-Operational state if DC-Sync is used. It reflects the DC-
Sync timing and the expected SmartMotor update cycle for accepting PDO transfers.

l Subindex 5 needs to be queried from the SmartMotor during application development. If the
minimum cycle time produced by the motor does not meet the performance demands of the
application, contact Moog Animatics for possible improvement options.

l Subindex 6 is a measured time for PDO transfer within the SmartMotor. It varies with Receive
PDO byte size. This subindex reflects the minimum time for the SYNC1 synchronization signal
when setting up DC-Sync for the application.

NOTE: If subindex 5 and 6 appear to be static, then current measurements are better than
the previously-captured, worst-case value.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 97 of 197

Object 1C32h DC-Sync Manager 2 Receive Object

l Subindex 8 is used to start measurements of the DC-Sync timing parameters in the SmartMotor.
Setting this subindex to the value 1 initiates continuous measurements and updates subindexes
5 and 6 with the worst-case measurement. The measurements are based on system latencies and
PDO sizes. All measurements are cleared by setting this subindex to the value 0.

l Subindex 9 needs to be interrogated from the SmartMotor during application development. It
reports the hardware delay within the SmartMotor for completion of a PDO transfer from the
EtherCAT network. It varies with Receive PDO and Transmit PDO byte size.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 98 of 197

Object 1C33h DC-Sync Manager 3 Transmit Object

Object 1C33h DC-Sync Manager 3 Transmit Object

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map.
Data
type Access

1C33h 000 Number of Assignments - 20h 20h No Unsigned
8-bit

Read
Only

1C33h 001
Synchronization Type:
0h = free run
3h = DC-Sync with SYNC1

0h 3h 0h No Unsigned
16-bit

Read
Write

1C33h 002 Cycle Time in nanoseconds 0h FFFFFFFFh Calculateda No Unsigned
32-bit

Read
Write

1C33h 004 Synchronization Types Sup-
ported - - 0011h No Unsigned

16-bit
Read
Only

1C33h 005 Minimum Cycle Time in nano-
seconds 0h FFFFFFFFh Calculateda No Unsigned

32-bit
Read
Only

1C33h 006 Calc and Copy Time in nano-
seconds 0h FFFFFFFFh Calculateda No Unsigned

32-bit
Read
Only

1C33h 007 Minimum Delay Time in nano-
seconds 0h FFFFFFFFh 0h No Unsigned

32-bit
Read
Only

1C33h 008 Get Cycle Time (Command) 0h 1h 0h No Unsigned
16-bit

Read
Write

1C33h 009 Delay Time in nanoseconds 0h FFFFFFFFh Calculateda No Unsigned
32-bit

Read
Only

1C33h 010 SYNC0 Cycle Time in nano-
seconds 0h FFFFFFFFh 0h No Unsigned

32-bit
Read
Only

1C33h 011 SM-Event Missed Counter 0h FFFFh 0h No Unsigned
16-bit

Read
Only

1C33h 012 Cycle Time to Small Counter 0h FFFFh 0h No Unsigned
16-bit

Read
Only

1C33h 032 Sync Error 0h FFh 0h No
BOOL

(Unsigned
8-bit)

Read
Only

a Calculated by operating system once DC-Sync is established; see subindex 8.

This object controls the DC-Sync behavior and provides the status of Sync Manager 3 synchronization.
The object is updated during the Pre-Operational state to reflect the settings produced by the
EtherCAT controller.

l Subindex 2 is updated during the Pre-Operational state if DC-Sync is used. It reflects the DC-
Sync timing and the expected SmartMotor update cycle for accepting PDO transfers.

l Subindex 5 needs to be queried from the SmartMotor during application development. If the
minimum cycle time produced by the motor does not meet the performance demands of the
application, contact Moog Animatics for possible improvement options.

l Subindex 6 is a measured time for PDO transfer within the SmartMotor. It varies with Receive
PDO byte size. This subindex reflects the minimum time for the SYNC1 synchronization signal
when setting up DC-Sync for the application.

NOTE: If subindex 5 and 6 appear to be static, then current measurements are better than
the previously-captured, worst-case value.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 99 of 197

Object 1C33h DC-Sync Manager 3 Transmit Object

l Subindex 8 is used to start measurements of the DC-Sync timing parameters in the SmartMotor.
Setting this subindex to the value 1 initiates continuous measurements and updates subindexes
5 and 6 with the worst-case measurement. The measurements are based on system latencies and
PDO sizes. All measurements are cleared by setting this subindex to the value 0.

l Subindex 9 needs to be interrogated from the SmartMotor during application development. It
reports the hardware delay within the SmartMotor for completion of a PDO transfer from the
EtherCAT network. It varies with Receive PDO and Transmit PDO byte size.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 100 of 197

Manufacturer-Specific Profile

Manufacturer-Specific Profile
This section describes the objects in the Manufacturer-Specific Profile. This set of objects in the range
2000h to 5FFFh implement manufacturer-specific objects, which do not adhere to a common standard.
They provide access to SmartMotor commands and data.

Object 2101h: Bit IO 102

Object 2201h: User Variable 103

Object 2202h: Set Position Origin 104

Object 2203h: Shift Position Origin 105

Object 2204h: Mappable 32-bit Variables 106

Object 2205h Negative Software Position Limit 107

Object 2206h Positive Software Position Limit 108

Object 2209h Encoder Follow Control 109

Object 220Ah MFMUL 110

Object 220Bh MFDIV 111

Object 220Ch MFA 112

Object 220Dh MFD 113

Object 2220h: 8-Bit Mappable Variables 114

Object 2221h: 16-Bit Mappable Variables 115

Object 2301h: RMS Current 116

Object 2302h: Internal Temperature 117

Object 2303h: Internal Clock 118

Object 2304h: Motor Status 119

Object 2307h: Sample Period 128

Object 2309h: GOSUB R2 129

Object 2400h: Interpolation Mode Status 130

Object 2401h: Buffer Control 131

Object 2402h: Buffer Setpoint 132

Object 2403h: Interpolation User Bits 133

Object 2500h: Encapsulated SmartMotor Command 134

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 101 of 197

Object 2101h: Bit IO

Object 2101h: Bit IO

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2101h 000 Number of Entries 03h 03h 03h No Unsigned
8-bit

Read
Only

2101h 001 Set Output 0000h 7FFFh* 0000h Yes Unsigned
16-bit

Read
Write

2101h 002 Clear Output 0000h 7FFFh* 0000h Yes Unsigned
16-bit

Read
Write

2101h 003 Make Input 0000h 7FFFh* 0000h Yes Unsigned
16-bit

Read
Write

*Starting with firmware 6.0.2.41 or later, if given value is not a supported I/O number, then an error will be returned.

This object allows individual control of each I/O point. It is designed for SDO-type communications at
startup. It is not intended for cyclic PDO communications.

The value written is the identifier of the I/O port to be controlled. The action to take on that port is a
function of the specified subindex object:

l subindex 1: Drive the specified I/O high.

l subindex 2: The action depends on I/O type:
l For Class 6 D-Style Ports 4, 5: turn off the specified I/O

l For Class 6 D-Style Ports 8, 9; If configured for general-purpose: turn off the specified
I/O

l For Class 6 M-Style (MT) Ports 8, 9; If configured for general-purpose: turn off the
specified I/O

l For Class 6 M-Style (MT2) Ports 4, 5: turn off the specified I/O

l For Class 6 M-Style (MT2) Ports 8, 9; If configured for general-purpose: turn off the
specified I/O

l subindex 3: Turn off the specified I/O and disable certain special function such as a limit input.
The specified I/O point will simply become a generic input.

For example, to make I/O port 2 (formerly named port C) a generic input, write the value 2 to
subindex 3.

For more I/O details, see I/O on page 34.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 102 of 197

Object 2201h: User Variable

Object 2201h: User Variable

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2201h 000 Number of Entries 00h FFh 03h No Unsigned
8-bit

Read
Only

2201h 001 Index 0000h FFFFh 0000h No Unsigned
16-bit

Read
Write

2201h 002 Data Type 80h 7Fh 00h No Signed
8-bit

Read
Write

2201h 003 Value 80000000h 7FFFFFFFh 00000000h No Signed
32-bit

Read
Write

This object provides access to user variables through SDO commands. To do this:

1. Set the index (subindex 1) to the user variable that a value will be written to or read from. Refer
to the next table to determine the correct index.

2. Set subindex 2 according to the table for the desired variable-type access.

3. Read or write the data using subindex 3.

Only one variable is written at a time. If the data type is ab[] or aw[], a single byte or word is written,
respectively.

Data type
(subindex 2)

Index
(subindex 1)

Variable's
data type

Variables
accessed

0 0–25 long (32-bit) a–z
0 26–51 long (32-bit) aa–zz
0 52–77 long (32-bit) aaa–zzz
1 0–50 long (32-bit) al[Index]
2 0–101 word (16-bit) aw[Index]
3 0–203 byte (8-bit) ab[Index]

The variable arrays: al[index], aw[index] and ab[index] overlap the same physical memory of 204 bytes.
This allows different access to common memory based on data size. For instance, al[0] is the same
region as ab[0] through ab[3]. The byte order is little-endian, such that ab[0] is the lowest byte of al[0].

For more details, see User Variables on page 34.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 103 of 197

Object 2202h: Set Position Origin

Object 2202h: Set Position Origin

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2202h 000 Set Position Origin 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

The value written to this object becomes the new position value. Both the commanded position (RPC)
and actual position (RPA) are shifted by this value minus the current command value. The value read
from this object is the most recent value written to this object — it is not an indication of the motor's
current state.

Similar SmartMotor Commands: O=

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 104 of 197

Object 2203h: Shift Position Origin

Object 2203h: Shift Position Origin

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2203h 000 Shift Position Origin 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

This object shifts the absolute position (RPA) and the commanded position (RPC) by the specified
value. Each time this value is written, the position is shifted by that amount. The value read from this
object is the most recent value written to this object — it is not an indication of the motor's current
state.

Similar SmartMotor Commands: OSH=

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 105 of 197

Object 2204h: Mappable 32-bit Variables

Object 2204h: Mappable 32-bit Variables

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2204h 000 Number of Entries 04h 04h 04h No Unsigned
8-bit

Read
Only

2204h 001 aaa 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

2204h 002 bbb 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

2204h 003 ccc 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

2204h 004 ddd 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

This object provides direct read or write access to user variables aaa–ddd. This object is provided to fill
the need for PDO access to user variables. SDO access is also allowed.

For more details, see User Variables on page 34.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 106 of 197

Object 2205h Negative Software Position Limit

Object 2205h Negative Software Position Limit

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2205h 000 Negative Software Position
Limit 80000000h 7FFFFFFFh 80000000h Yes Signed

32-bit
Read
Write

This object defines the negative software position limit in units of encoder counts. If the software
position limits are enabled and the actual position is out of range, then a software-limit fault occurs.

The term "negative" does not imply the value must be negative. Positive values are permitted; however,
they should be a lower value than the positive software position limit.

Similar SmartMotor Commands: SLN=, RSLN

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 107 of 197

Object 2206h Positive Software Position Limit

Object 2206h Positive Software Position Limit

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2206h 000 Positive Software Position
Limit 80000000h 7FFFFFFFh 7FFFFFFFh Yes Signed

32-bit
Read
Write

This object defines the positive software position limit in units of encoder counts. If the software limits
are enabled and the actual position is out of range, then a software-limit fault occurs.

The term "positive" does not imply the value must be positive. Negative values are permitted; however,
they should be a higher value than the negative software position limit.

Similar SmartMotor Commands: SLP=, RSLP

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 108 of 197

Object 2209h Encoder Follow Control

Object 2209h Encoder Follow Control

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2209h 000 Encoder follow control 0 FFFFh 0000h Yes unsigned
16-bit

Read
Write

NOTE: This feature applies to firmware version 6.0.2.35 and later.

This object controls the behavior of Object 220Ch MFA and Object 220Dh MFD. Refer to the next
table.

Bit Meaning
Bit 0-1 Reserved. Write as 0.
Bit 2 Ramp-up command MFA controller or follower units. Object Object 220Ch MFA (not the

serial command MFA)
0: controller
1: follower

Bit 3 Ramp-down command MFD controller or follower units. Object Object 220Dh MFD (not
the serial command MFD)
0: controller
1: follower

Bit 4-15 Reserved. Write as 0.

Start/Stop Capability

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 109 of 197

Object 220Ah MFMUL

Object 220Ah MFMUL

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

220Ah 000 MFMUL (Mode Follow Mul-
tiplier) -32767 32767 1 No Signed

16-bit
Read
Write

NOTE: This feature applies to firmware version 6.0.2.35 and later.

This object specifies the multiplier for external encoder mode follow with ratio MFMUL/MFDIV.

Both MFMUL and MFDIV may be positive or negative; this controls the resulting direction of shaft
rotation.

For more details on MFMUL, see the SmartMotor Developer's Guide.

Similar SmartMotor Commands: MFMUL=, RMFMUL, MFDIV

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 110 of 197

Object 220Bh MFDIV

Object 220Bh MFDIV

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

220Bh 000 MFDIV (Mode Follow Divisor) -32767 * 32767 * 1 No Signed
16-bit

Read
Write

* The value 0 is not accepted because a divide by 0 is not possible.

NOTE: This feature applies to firmware version 6.0.2.35 and later.

This object specifies the divisor for external encoder mode follow with ratio MFMUL/MFDIV.

Both MFMUL and MFDIV may be positive or negative; this controls the resulting direction of shaft
rotation.

For more details on MFDIV, see the SmartMotor Developer's Guide.

Similar SmartMotor Commands: MFDIV=, RMFDIV, MFMUL

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 111 of 197

Object 220Ch MFA

Object 220Ch MFA

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

220Ch 000 MFA (Mode Follow Ascend) 0 7FFFFFFFh 0 (disabled) No Signed
32-bit

Read
Write

NOTE: This feature applies to firmware version 6.0.2.35 and later.

This object sets the ascend ramp to the specified sync ratio from a ratio of zero.

For more details on MFA, see the SmartMotor Developer's Guide.

Similar SmartMotor Commands: MFA, MFD

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 112 of 197

Object 220Dh MFD

Object 220Dh MFD

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

220Ch 000 MFA (Mode Follow Descend) 0 7FFFFFFFh 0 (disabled) No Signed
32-bit

Read
Write

NOTE: This feature applies to firmware version 6.0.2.35 and later.

This object sets the descend ramp from the specified sync ratio to a ratio of zero.

For more details on MFD, see the SmartMotor Developer's Guide.

Similar SmartMotor Commands: MFD, MFA

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 113 of 197

Object 2220h: 8-Bit Mappable Variables

Object 2220h: 8-Bit Mappable Variables

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2220h 000 Number of Entries 04h 04h 04h No Unsigned
8-bit

Read
Only

2220h 001 ab[0] 80h 7Fh 00h Yes Signed
8-bit

Read
Write

2220h 002 ab[1] 80h 7Fh 00h Yes Signed
8-bit

Read
Write

2220h 003 ab[2] 80h 7Fh 00h Yes Signed
8-bit

Read
Write

2220h 004 ab[3] 80h 7Fh 00h Yes Signed
8-bit

Read
Write

NOTE: This feature applies to firmware version 6.0.2.35 and later.

This object provides direct read or write access to user variables ab[0]–ab[3]. This object is provided to
fill the need for PDO access to user variables. SDO access is also allowed. Also, see Object 2221h: 16-
Bit Mappable Variables on page 115 and Object 2204h: Mappable 32-bit Variables on page 106.

For more details, see User Variables on page 34.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 114 of 197

Object 2221h: 16-Bit Mappable Variables

Object 2221h: 16-Bit Mappable Variables

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2221h 000 Number of Entries 04h 04h 04h No Unsigned
8-bit

Read
Only

2221h 001 aw[32] 8000h 7FFFh 0000h Yes Signed
16-bit

Read
Write

2221h 002 aw[33] 8000h 7FFFh 0000h Yes Signed
16-bit

Read
Write

2221h 003 aw[34] 8000h 7FFFh 0000h Yes Signed
16-bit

Read
Write

2221h 004 aw[35] 8000h 7FFFh 0000h Yes Signed
16-bit

Read
Write

NOTE: This feature applies to firmware version 6.0.2.35 and later.

This object provides direct read or write access to user variables aw[32]–aw[35]. This object is provided
to fill the need for PDO access to user variables. SDO access is also allowed. Also, see Object 2220h: 8-
Bit Mappable Variables on page 114 and Object 2204h: Mappable 32-bit Variables on page 106.

For more details, see User Variables on page 34.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 115 of 197

Object 2301h: RMS Current

Object 2301h: RMS Current

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2301h 000 RMS Current 0000h FFFFh Yes Unsigned
16-bit

Read
Only

This object reports the RMS current (in milliamperes) of the motor windings.

Similar SmartMotor Commands: RUIA

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 116 of 197

Object 2302h: Internal Temperature

Object 2302h: Internal Temperature

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2302h 000 Internal Temperature 00h FFh Yes Unsigned
8-bit

Read
Only

This object reports the SmartMotor's internal temperature in degrees C; the resolution is ±1 degree C.

Similar SmartMotor Commands: RTEMP

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 117 of 197

Object 2303h: Internal Clock

Object 2303h: Internal Clock

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2303h 000 Internal Clock 00000000h FFFFFFFFh 00000000h Yes Unsigned
32-bit

Read
Write

This object represents the SmartMotor's internal clock in milliseconds. The value can be set as desired.
This object is equivalent to the RCLK, =CLK, or CLK= commands (read or write), and it uses the same
internal clock.

Similar SmartMotor Commands: CLK=, RCLK

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 118 of 197

Object 2304h: Motor Status

Object 2304h: Motor Status

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2304h 000 Number of Entries 00h FFh 12h
(18 dec) No Unsigned

8-bit
Read
Only

2304h 001 Status Word 0 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 002 Status Word 1 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 003 Status Word 2 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 004 Status Word 3 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 005 Status Word 4 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 006 Status Word 5 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 007 Status Word 6 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 008 Status Word 7 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 009 Status Word 8 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 010 Status Word 9 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 011 Status Word 10 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 012 Status Word 11 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 013 Status Word 12 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 014 Status Word 13 0000h FFFFh Yes Unsigned
16-bit

Read
Write

2304h 015 Status Word 14 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 016 Status Word 15 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 017 Status Word 16 0000h FFFFh Yes Unsigned
16-bit

Read
Only

2304h 018 Status Word 17 0000h FFFFh Yes Unsigned
16-bit

Read
Only

This object reports the SmartMotor status words, which are equivalent to the RW(index) command.
There is a special case where user status bits in status word 13 are writable through this object. This
allows a host to cause user interrupts in a motor.

l Subindex 0 reports the number of status words (18)

l Subindex 1 reports SmartMotor status word 0

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 119 of 197

Object 2304h: Motor Status

l Subindex 2 reports SmartMotor status word 1

l Subindex 3 reports SmartMotor status word 2

l Subindex 4 reports SmartMotor status word 3

l Subindex 5 reports SmartMotor status word 4

l Subindex 6 reports SmartMotor status word 5

l Subindex 7 reports SmartMotor status word 6

l Subindex 8 reports SmartMotor status word 7

l Subindex 9 reports SmartMotor status word 8

l Subindex 10 reports SmartMotor status word 9

l Subindex 11 reports SmartMotor status word 10

l Subindex 12 reserved

l Subindex 13 reports SmartMotor status word 12

l Subindex 14 reports SmartMotor status word 13

l Subindexes 15–16 reserved

l Subindex 17 reports SmartMotor status word 16

l Subindex 18 reports SmartMotor status word 17

Status Word 0 Motion and motor health
0 Drive ready
1 Motor is off
2 Trajectory in progress
3 Bus voltage fault
4 Overcurrent occurred
5 Excessive temperature fault
6 Excessive position error fault
7 Velocity limit fault
8 Real-time temperature limit
9 Position error derivative fault
10 Right (+) limit enabled
11 Left (–) limit enabled
12 Historical right (+) limit
13 Historical left (–) limit
14 Right (+) limit asserted
15 Left (–) limit asserted

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 120 of 197

Object 2304h: Motor Status

Status Word 1 Index registration and soft limits
0 Arming bit for rise capture of encoder 0
1 Arming bit for fall capture of encoder 0
2 Rising edge captured on encoder 0
3 Falling edge captured on encoder 0
4 Arming bit for rise capture of encoder 1
5 Arming bit for fall capture of encoder 1
6 Rising edge captured on encoder 1
7 Falling edge captured on encoder 1
8 Capture input state 0
9 Capture input state 1
10 Soft limits enabled
11 Soft limits behavior mode
12 Historical right soft limit
13 Historical left soft limit
14 Right soft limit
15 Left soft limit

Status Word 2 Communication state and program state
0 Com 0 error
1 Com 1 error
2 USB error
3 Reserved
4 CAN error
5 Reserved
6 Ethernet error
7 IIC communications active
8 Watchdog event
9 Datablock checksum is bad (fault)
10 User program is running
11 Trace in progress
12 User EEPROM write buffer overflow
13 User EEPROM busy
14 Command error
15 Program checksum error

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 121 of 197

Object 2304h: Motor Status

Status Word 3 PID, brake, move generation
0 Reserved
1 Torque saturation
2 Voltage saturation
3 Wraparound occurred
4 KG enabled
5 Shaft direction
6 Torque direction
7 IO fault latch
8 Trajectory 1 relative position move
9 Reserved
10 Peak current saturation
11 Modulo counter rollover
12 Brake asserted
13 Brake OK
14 Go on external input
15 Velocity reached or target ratio reached

Status Word 4 Timer status
0 Timer 0 running
1 Timer 1 running
2 Timer 2 running
3 Timer 3 running
4 Reserved
5 Reserved
6 Reserved
7 Reserved
8 Time 8 event occurred
9 CDFH Drive enabled
10 CDFH Command request timeout
11 CDFH Enabled indication
12 CDFH Group fault
13 CDFH Group ready
14 CDFH Remote fault

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 122 of 197

Object 2304h: Motor Status

Status Word 4 Timer status
15 CDFH Timeout event

CDFH = Combitronic Distributed Fault Handling

Status Word 5 Interrupt enable status
0 Event 0 enabled
1 Event 1 enabled
2 Event 2 enabled
3 Event 3 enabled
4 Event 4 enabled
5 Event 5 enabled
6 Event 6 enabled
7 Event 7 enabled
8 Reserved
9 Reserved
10 Reserved
11 Reserved
12 Reserved
13 Reserved
14 Reserved
15 Events enabled

Status Word 6 Commutation status
0 MDT Trapezoidal commutation (Hall sensors)
1 MDE Enhanced trapezoidal commutation (encoder)
2 MDS Sinusoidal commutation
3 MDC Current vector FOC mode commutation
4 Reserved
5 Feedback fault
6 MDH mode active
7 Drive enable input fault
8 Electrical angle valid
9 TOB enabled (Torque overrun braking)
10 Invert direction enabled
11 MTB active

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 123 of 197

Object 2304h: Motor Status

Status Word 6 Commutation status
12 Encoder battery fault
13 Low bus voltage
14 High bus voltage
15 Reserved

Status Word 7 Multiple Trajectories
0 TG1 in progress
1 TG1 Accel/Ascend
2 TG1 Slewing
3 TG1 Decel/Descend
4 TG1 Reserved/Dwell
5 Reserved
6 Reserved
7 Reserved
8 TG2 in progress
9 TG2 Accel/Ascend
10 TG2 Slewing
11 TG2 Decel/Descend
12 TG2 Dwell (higher)
13 TG2 Traverse state
14 TG2 Lower dwell
15 TS Wait

Status Word 8 Cam/IP Mode user segment bits
0 Cam user bit 0
1 Cam user bit 1
2 Cam user bit 2
3 Cam user bit 3
4 Cam user bit 4
5 Cam user bit 5
6 Cam mode 0
7 Cam mode 1
8 IP user bit 0
9 IP user bit 1

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 124 of 197

Object 2304h: Motor Status

Status Word 8 Cam/IP Mode user segment bits
10 IP user bit 2
11 IP user bit 3
12 IP user bit 4
13 IP user bit 5
14 IP mode 0
15 IP mode 1

Status Word 9 SD Card and DMX Information (Class 6 Only)
0 SD card present
1 SD card busy
2 SD card error
3 SD card valid SMX file
4 SD card valid parameters
5 SD card valid SMXE
6 DMX comm active
7 DMX data received
8 DMX sync event
9 Reserved
10 Reserved
11 Reserved
12 Reserved
13 Reserved
14 Reserved
15 Reserved

Status Word 10 RxPDO Arrival Notification

0 Controller enabled
1 Rx PDO 1 arrived
2 Rx PDO 2 arrived
3 Rx PDO 3 arrived
4 Rx PDO 4 arrived
5 Rx PDO 5 arrived
6 Reserved
7 Reserved

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 125 of 197

Object 2304h: Motor Status

Status Word 10 RxPDO Arrival Notification

8 Reserved
9 Reserved
10 Reserved
11 Reserved
12 Reserved
13 Reserved
14 Reserved
15 Reserved

The user program should clear these status bits with a Z(10,bit) command, where bit
is values 1–5, after the event handler part of the user program is executed. Bit 0
cannot be cleared—it is an indication of the controller status, see Network Control
Commands on page 1.

NOTE: The ZS command will have no effect on these bits.

Status Word 11 Reserved

Status Word 12 User-settable status bits
(Read-only from this object)

0 User-settable bit 0
1 User-settable bit 1
2 User-settable bit 2
3 User-settable bit 3
4 User-settable bit 4
5 User-settable bit 5
6 User-settable bit 6
7 User-settable bit 7
8 User-settable bit 8
9 User-settable bit 9
10 User-settable bit 10
11 User-settable bit 11
12 User-settable bit 12
13 User-settable bit 13
14 User-settable bit 14
15 User-settable bit 15

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 126 of 197

Object 2304h: Motor Status

Status Word 13 User-settable status bits
(Writable from this object)

0 User-settable bit 16
1 User-settable bit 17
2 User-settable bit 18
3 User-settable bit 19
4 User-settable bit 20
5 User-settable bit 21
6 User-settable bit 22
7 User-settable bit 23
8 User-settable bit 24
9 User-settable bit 25
10 User-settable bit 26
11 User-settable bit 27
12 User-settable bit 28
13 User-settable bit 29
14 User-settable bit 30
15 User-settable bit 31

Status Words 14
and 15

Reserved

Status Word 16 I/O: Class 6D-style: 0-9

I/O: Class 6M-style: 0-9

Status Word 17 I/O: Class 6D-style: I/O: Reserved expansion

I/O: Class 6M-style: I/O: Reserved expansion

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 127 of 197

Object 2307h: Sample Period

Object 2307h: Sample Period

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2307h 000 Sample Period 0000h FFFFh 12500 Yes Unsigned
16-bit

Read
Only

This object reports the SmartMotor sample period in microseconds*100. This is the time period for the
PID cycle and trajectory update.

PID
mode

Reported from
object 2307

Time
(microseconds)

1 6250 62.5
2 12500 125.0
4 25000 250.0
8 50000 500.0

Similar SmartMotor Commands: RSP (PID rate info), RSAMP

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 128 of 197

Object 2309h: GOSUB R2

Object 2309h: GOSUB R2

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2309h 000 GOSUB R2 –9 +999 –1 Yes Signed
16-bit

Read
Write

This version of GOSUB will only take action when the value written is different from previous values
written to this object.

This GOSUB will not nest subroutine calls through this object (other sources of GOSUB may still nest) If
there is already an active subroutine that was called through this object, further calls are ignored
without buffering.

The next table describes the possible values:

Value Description

0–999 Corresponds to GOSUB(0) through GOSUB(999). An SDO error is issued if a previous
GOSUB called from this object is still busy.

–1 Do nothing. This is useful as a null value since a transition must be made for a new
GOSUB call.

–2 END
–3 RUN
–4 EILP
–5 EILN
–6 SLE
–7 SLD
–8 SLM(0)
–9 SLM(1)

–10 Freewheel when the drive is turned off. However, the configured fault reaction will be
in effect and will take priority if a fault is present.

Similar SmartMotor Commands: GOSUB, END, RUN, EILP, EILN, SLE, SLD, SLM()

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 129 of 197

Object 2400h: Interpolation Mode Status

Object 2400h: Interpolation Mode Status

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2400h 000 Interpolation Mode Status 0000h FFFFh Yes Unsigned
16-bit

Read
Only

This object provides additional information relevant to Interpolation mode.

Bit Function
0–5 Number of free record buffer locations
6 Position error tolerance exceeded
7 Reserved
8 IP mode pending
9 IP mode ready
10 Invalid time units error
11 Invalid position increment error
12 Drive ready
13 FIFO overflow
14 FIFO underflow
15 IP mode running

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 130 of 197

Object 2401h: Buffer Control

Object 2401h: Buffer Control

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2401h 000 Buffer Control 0000h FFFFh 0000h Yes Unsigned
16-bit

Read
Write

This object provides a special way of controlling the interpolation buffer level when the host cannot
monitor the buffer level and/or time synchronization is not possible. The value written is a proportional
response to how far the interpolation is from the target buffer level. That level is set using the Buffer
Setpoint object (2402h). For details, see Object 2402h: Buffer Setpoint on page 132.

As the buffer empties, the interpolation rate slightly decreases; as the buffer fills, the interpolation
rate slightly increases. A typical value to write is 10000.

Note that this is not an ideal way to control the buffer level for these reasons:
l The buffers of different motors will not perfectly align, so the motion will not be perfectly

synchronized.
l The host must send the data to the motor at an even time spacing. However, some hosts may fill

the buffer in bursts of activity — that will not work with the SmartMotor.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 131 of 197

Object 2402h: Buffer Setpoint

Object 2402h: Buffer Setpoint

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2402h 000 Buffer Setpoint 00h FFh 14h No Unsigned
8-bit

Read
Write

This object specifies the target buffer level. It is used in conjunction with the Buffer Control object
(2401h) to maintain the buffer at that level. For details, see Object 2401h: Buffer Control on page 131.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 132 of 197

Object 2403h: Interpolation User Bits

Object 2403h: Interpolation User Bits

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2403h 000 Interpolation User Bits 00h 3Fh 00h Yes Unsigned
8-bit

Read
Write

These bits are captured from this register when a new interpolation record is written. When the
interpolation data is consumed by Interpolation mode, these bits will be reported in the status word
(object 2304h, subindex 9) along with the corresponding data record. Those user bits will be displayed
in the segment between the previous point and the current point.

In the next example, the user bit will be visible in the status word (object 2304h, subindex 9) between
points 3000 and 4000.

1. Set the Interpolation User Bits object (2403h) to the value 0.

2. Put data in the buffer by writing these values to subindex 1 of the Interpolation Data Record
object (60C1h):

a. 2000

b. 3000

3. Set the Interpolation User Bits object (2403h) to the value 1.

4. Put data in buffer by writing the value 4000 to subindex 1 of the Interpolation Data Record
object (60C1h).

5. Set the Interpolation User Bits object (2403h) to the value 0.

6. Put data in the buffer by writing these values to subindex 1 of the Interpolation Data Record
object (60C1h):

a. Write the value 5000 to object 60C1h, subindex 1.

b. Write the value 6000 to object 60C1h, subindex 1.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 133 of 197

Object 2500h: Encapsulated SmartMotor Command

Object 2500h: Encapsulated SmartMotor Command

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

2500h 000 Number of Entries 03h 03h 03h No Unsigned
8-bit

Read
Only

2500h 001 Command String No String: 32
bytes

Read
Write

2500h 002 Command Response No String: 32
bytes

Read
Only

2500h 003 Command Status 00h FFh 00h No Unsigned
8-bit

Read
Only

2500h 004 Program Output (6.0.2.31 or
later) No Octet String:

64 bytes
Read
Only

This object provides an interface to the SmartMotor command language. There is a 32-character limit
for the command string and for the response string. For details, see Command Interface (Object 2500h)
on page 36.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 134 of 197

Drive and Motion Control Profile

Drive and Motion Control Profile
This section describes the objects in the Drive and Motion Control Profile. This set of objects in the
range 6000h to 67FFh implement the CiA 402 motion profile. This provides access to common
commands for controlling the motor.

Object 6040h: Control Word 137

Object 6041h: Status Word 139

Object 605Ah: Quick Stop Option Code 140

Object 605Ch: Disable Operation Option Code 141

Object 605Dh: Halt Option Code 142

Object 605Eh: Fault Reaction Option Code 143

Object 6060h: Modes of Operation 144

Object 6061h: Modes of Operation Display 145

Object 6062h: Position Demand Value 146

Object 6063h: Position Actual Internal Value 147

Object 6064h: Position Actual Value 148

Object 6065h: Following Error Window 149

Object 606Bh: Velocity Demand Value 150

Object 606Ch: Velocity Actual Value 151

Object 6071h: Target Torque 152

Object 6074h: Torque Demand Value 153

Object 6077h: Torque Actual 154

Object 6079h: DC Link Circuit Voltage 155

Object 607Ah: Target Position 156

Object 607Ch: Home Offset 157

Object 6080h: Max Motor Speed 159

Object 6081h: Profile Velocity in PP Mode 160

Object 6083h: Profile Acceleration 161

Object 6084h: Profile Deceleration 162

Object 6085h: Quick Stop Deceleration 163

Object 6087h: Torque Slope 164

Object 608Fh: Position Encoder Resolution 165

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 135 of 197

Drive and Motion Control Profile

Object 6098h: Homing Method 166

Object 6099h: Homing Speeds 169

Object 609Ah: Homing Acceleration 170

Object 60B8h: Touch Probe Function 171

Object 60B9h: Touch Probe Status 174

Object 60BAh: Touch Probe Position 1 Positive Value 176

Object 60BBh: Touch Probe Position 1 Negative Value 177

Object 60BCh: Touch Probe Position 2 Positive Value 178

Object 60BDh: Touch Probe Position 2 Negative Value 179

Object 60C0h: Interpolation Sub-Mode Select 180

Object 60C1h: Interpolation Data Record 181

Object 60C2h: Interpolation Time Period 182

Object 60C4h: Interpolation Data Configuration 184

Object 60D0h: Touch Probe Source 185

Object 60F4h: Following Error Actual Value 186

Object 60FBh: Position Control Parameter Set 187

Object 60FCh: Position Demand Internal Value 189

Object 60FDh: Digital Inputs 190

Object 60FEh: Digital Outputs 192

Object 60FFh: Target Velocity 193

Object 6502h: Supported Drive Modes 194

Object 67FFh: Single Device Type 195

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 136 of 197

Object 6040h: Control Word

Object 6040h: Control Word

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6040h 000 Control Word 0000h FFFFh 0000h Yes Unsigned
16-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the ETHCTL(13,0) command.

The control word is the primary method of commanding motion in the SmartMotor. The object provides
access to these features:

l Enable or disable the motor drive

l Quick stop function

l Halt function

l New position setpoint in Profile Position mode (PP)

l Start motion: Profile Position (PP), Profile Velocity (PV), Torque (TQ), Interpolation (IP), and
Homing (HM)

For more details, see Control Words, Status Words and the Drive State Machine on page 41.

The SmartMotor =ETH and RETH commands can be used to assign/report the value of the NMT state,
control word (object 6040h) and status word (object 6041h). For details, see EtherCAT Error Reporting
Commands on page 63.

The next table provides a listing of the available bits, their names and descriptions.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 137 of 197

Object 6040h: Control Word

Bit Name Description
0 Switch on These bits control the CiA 402 profile drive state machine. For more

details, see CiA 402 Profile Motion State Machine on page 41.1 Enable voltage
2 Quick stop
3 Enable operation
4 Operation mode

specific: "New set-
point"

Used by PP, HM, and IP modes. In PP mode: all positions must be set with
a rising transition of this bit. In IP mode: rising edge of this bit is used to
initially start operation but not required at each data point.

5 Operation mode
specific: "Change
set immediately"

Used in PP mode; other modes can leave as 0.

6 Operation mode
specific: "Relative"

In PP mode, this sets a position relative target (PRT=) instead of a pos-
ition target (PT=) type of move.

7 Fault reset Rising transition resets fault in all modes of operation. If the fault con-
dition still exists (status word object 6041h), then the cause has not
been cleared.

8 Halt If this bit is set, then the motor will stop from any mode of operation.
The action taken is set in advance by the halt option code.

9 Operation mode
specific

Used in PP mode; other modes can leave as 0.

10 Reserved Reserved by the CiA 402 specification.
11 Manufacturer-spe-

cific: Reserved for
user application

Reserved for the user's application. This bit is visible in a program
through RCAN(2).

12 Manufacturer-spe-
cific

Do not use; leave at 0.

13 Manufacturer-spe-
cific

Do not use; leave at 0.

14 Manufacturer-spe-
cific

Do not use; leave at 0.

15 Manufacturer-spe-
cific: Reset inter-
polation buffer

Used to reset the IP mode buffer.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 138 of 197

Object 6041h: Status Word

Object 6041h: Status Word

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6041h 000 Status Word 0000h FFFFh Yes Unsigned
16-bit

Read
Only

This object indicates the current state of the drive. For more details, see Control Words, Status Words
and the Drive State Machine on page 41. The SmartMotor =ETH and RETH commands can be used to
assign/report the value of the NMT state, control word (object 6040h) and status word (object 6041h).
For details, see EtherCAT Error Reporting Commands on page 63.

Bit Name Description
0 Ready to switch on The bits 0–3, 5 and 6 represent the state of the CiA 402 profile

drive state machine. For more details, see Control Words, Status
Words and the Drive State Machine on page 41.

1 Switched on
2 Operation enabled

3 Fault
4 Voltage enabled Sufficient voltage is present to operate the motor.
5 Quick stop The bits 0–3, 5 and 6 represent the state of the CiA 402 profile

drive state machine. For more details, see Control Words, Status
Words and the Drive State Machine on page 41.6 Switch on disabled

7 Warning Not used (reports as 0).
8 Manufacturer-specific Used by the GOSUB R2 object (2309h) to indicate the subroutine is

busy.
9 Remote Controlled through ETHCTL(13,x). This bit indicates if the motor is

accepting commands from the EtherCAT network. Default is 1,
which indicates the motor is accepting commands.

10 Target reached "Target reached" — this is operation-mode specific. It indicates the
speed, position, or torque profile was achieved.

In Homing (HM) mode, the motor has come to rest after finding the
home position. However, the motor is not specifically at the home
position because a deceleration distance was required after finding
the position.

11 Internal limit active "Limit" — set if a position limit is currently showing a fault.
12 Operation mode spe-

cific
"Setpoint acknowledgment" — this is operation-mode specific to
PP, IP and PV modes. It indicates a new setpoint was received.

In Homing (HM) mode, the homing process has found the home
position, and the "position actual" has been adjusted to the new
home position and home offset.

13 Operation mode spe-
cific

"Move error" — set if a position error occurred.

14 Manufacturer-specific User-controlled bit through ETHCTL(12,x).
15 Manufacturer-specific Not used (reports as 0).

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 139 of 197

Object 605Ah: Quick Stop Option Code

Object 605Ah: Quick Stop Option Code

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

605Ah 000 Quick Stop Option Code –1 2 2 No Signed
16-bit

Read
Write

This object determines what action should be taken if the quick stop function is active. That function is
activated by bit 2 of the Control Word object (6040h). For details, see Object 6040h: Control Word on
page 137.

In Profile Torque (TQ) mode, quick stop option code values 1 and 2 will reduce the torque according to
the torque slope rate because this is not a servo mode that can follow the deceleration or quick-stop
deceleration rates.

Value Function
–1 MTB (drive turned off, resists rotation)
0 Disable drive (drive turned off, free to rotate)
1 Decelerate on the profile deceleration ramp (see Object

6084h: Profile Deceleration on page 162); drive will
automatically leave the quick stop state.

2 Decelerate on the quick stop ramp (see Object 6085h: Quick
Stop Deceleration on page 163); drive will automatically leave
the quick stop state

3–8 Not supported
9–32767 Reserved

If using Follow or Cam mode, be aware that these decelerations are not applied. The AniBasic MFD()
command controls the deceleration in those cases. For details on that command, see the SmartMotor™
Developer's Guide.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 140 of 197

Object 605Ch: Disable Operation Option Code

Object 605Ch: Disable Operation Option Code

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

605Ch 000 Disable Operation Option Code –1 1 1 No Signed
16-bit

Read
Write

This object determines what action should be taken if the Enable Operation bit is cleared in the Control
Word object (6040h) while in the operation (enabled drive) state. For details, see Object 6040h: Control
Word on page 137.

In Profile Torque (TQ) mode, disable operation option code values 1 will reduce the torque according to
the torque slope rate because this is not a servo mode that can follow the deceleration or quick-stop
deceleration rates.

Value Function
–1 MTB (drive turned off, resists rotation)
0 Disable drive (drive turned off, free to rotate)
1 Decelerate on the profile deceleration ramp (see Object

6084h: Profile Deceleration on page 162)
2–32767 Reserved

If using Follow or Cam mode, be aware that these decelerations are not applied. The AniBasic MFD()
command controls the deceleration in those cases. For details on that command, see the SmartMotor™
Developer's Guide.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 141 of 197

Object 605Dh: Halt Option Code

Object 605Dh: Halt Option Code

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

605Dh 000 Halt Option Code 1 2 1 No Signed
16-bit

Read
Write

This object determines what action should be taken if the halt bit (bit 8) is set in Control Word object
(6040h). For details, see Object 6040h: Control Word on page 137.

In Profile Torque (TQ) mode, halt option code values 1 and 2 will reduce the torque according to the
torque slope rate because this is not a servo mode that can follow the deceleration or quick-stop
deceleration rates.

Value Function
0 Reserved
1 (Default) Decelerate on the profile deceleration ramp (see

Object 6084h: Profile Deceleration on page 162)
2 Slow down on quick-stop ramp

3–4 Not supported
5–32767 Reserved

If using Follow or Cam mode, be aware that these decelerations are not applied. The AniBasic MFD()
command controls the deceleration in those cases. For details on that command, see the SmartMotor™
Developer's Guide.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 142 of 197

Object 605Eh: Fault Reaction Option Code

Object 605Eh: Fault Reaction Option Code

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

605Eh 000 Fault Reaction Option Code –1 3* -1 Yes Signed
16-bit

Read
Write

* Value 2 is not allowed and will return an error in firmware version 6.0.2.41 or later. Value 3 supported in firmware 6.0.2.15 or
later.

This object determines what action should be taken if a fault occurs in the motor. Causes of a fault
include: limit switches, software limits, overtemperature, excessive position error, etc.

In Profile Torque (TQ) mode, fault reaction option code value 1 will reduce the torque according to the
torque slope rate because this is not a servo mode that can follow the deceleration rate.

Value Function
–1 (Default) MTB (drive turned off, resists rotation)
0 Disable drive (drive turned off, free to rotate)
1 Decelerate on the profile deceleration ramp (see Object

6084h: Profile Deceleration on page 162)
2 Not supported
3 Decelerate on current limit
4 Not supported

5–32767 Reserved

If using Follow or Cam mode, be aware that these decelerations are not applied. The AniBasic MFD()
command controls the deceleration in those cases. For details on that command, see the SmartMotor™
Developer's Guide.

Similar SmartMotor Commands: FSA()

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 143 of 197

Object 6060h: Modes of Operation

Object 6060h: Modes of Operation

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6060h 000 Modes of Operation -3** 10** 0 Yes Signed
8-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the ETHCTL(13,0) command.

**The value 0 is allowed and will not return error (but is does not enter a mode of motion). In firmware version 6.0.2.41 or later,
error codes will be returned for unsupported modes: -1, 2, 5; also, previous versions inappropriately allowed a wider range than
shown.

The type of motion control is selected by setting this object to one of the values shown in the next
table. The new setting will take effect immediately. When transitioning to Interpolated Position (IP)
mode or Profile Position (PP) mode, the motor will stop, there must be a rising transition on bit 4 of the
control word and then motion will begin in the new mode.

The value read back from this object does not indicate the current mode of operation; it is only an
indication of what was written previously and not an indication of the motor's current state. Use the
Modes of Operation Display object (6061h) to see the currently active mode. For details, see Object
6061h: Modes of Operation Display on page 145.

Value Motion Control Mode
–3 Step and direction input
–2 Follow quadrature encoder input
–1 Reserved / not supported
0 Null (not an error, but not a mode of motion either.)
1 Profile Position (PP) mode
2 Reserved / not supported
3 Profile Velocity (PV) mode
4 Torque Profile (TQ) mode
5 Reserved / not supported
6 Homing (HM) mode
7 Interpolated Position (IP) mode1

8 Cyclic Sync Position (CSP) mode
9 Cyclic Sync Velocity (CSV) mode
10 Cyclic Sync Torque (CST) mode

11 to 127 Reserved / not supported
1. This mode is not supported in the standard release; consult Moog Animatics for
further information.

Similar SmartMotor Commands: MV, MP, MT, MFR, MSR

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 144 of 197

Object 6061h: Modes of Operation Display

Object 6061h: Modes of Operation Display

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6061h 000 Modes of Operation Display 80h 7Fh 00h Yes Signed
8-bit

Read
Only

Displays the current mode of motion control; refer to Object 6060h: Modes of Operation on page 144.

Similar SmartMotor Commands: RMODE

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 145 of 197

Object 6062h: Position Demand Value

Object 6062h: Position Demand Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6062h 000 Position Demand Value 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Only

This object reports the position calculated by the motion profile; it takes into account the acceleration
and velocity targets. Because user units are not supported, the value is in units of encoder counts,
which are the same units as those for object 60FCh. For details, see Object 60FCh: Position Demand
Internal Value on page 189.

When the motor drive is inactive or in torque mode, the value reported is simply the current position.

Similar SmartMotor Commands: RPC

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 146 of 197

Object 6063h: Position Actual Internal Value

Object 6063h: Position Actual Internal Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6063h 000 Position Actual Internal Value 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Only

This object reports the current position of the motor shaft in units of encoder counts.

Similar SmartMotor Commands: RPA

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 147 of 197

Object 6064h: Position Actual Value

Object 6064h: Position Actual Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6064h 000 Position Actual Value 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Only

This object reports the current position of the motor shaft in units of encoder counts. Because user
units are not supported, the value is in units of encoder counts, which are the same units as those for
object 6063h. For details, see Object 6063h: Position Actual Internal Value on page 147.

Similar SmartMotor Commands: RPA

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 148 of 197

Object 6065h: Following Error Window

Object 6065h: Following Error Window

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6065h 000 Following Error Window 00000000h 0003FFFFh* 000003E8h Yes Unsigned
32-bit

Read
Write

*The value -1 is allowed in firmware version 6.0.2.41 or later; also, previous versions inappropriately allowed a wider range than
shown.

This object defines the range of tolerated deviation for the actual position relative to the calculated
demand position. If the actual position is out of range, a following-error fault occurs and the drive will
react according to the fault reaction. The units of this object are in encoder counts.

Similar SmartMotor Commands: EL=, REL

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 149 of 197

Object 606Bh: Velocity Demand Value

Object 606Bh: Velocity Demand Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

606Bh 000 Velocity Demand Value 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Only

This object reports the velocity calculated by the motion profile; it takes into account acceleration and
velocity targets. The units are: (encoder counts per sample period) * 65536.

Similar SmartMotor Commands: RVC

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 150 of 197

Object 606Ch: Velocity Actual Value

Object 606Ch: Velocity Actual Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

606Ch 000 Velocity Actual Value 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Only

This object reports the actual velocity of the motor shaft. The units are: (encoder counts per sample
period) * 65536.

Similar SmartMotor Commands: RVA

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 151 of 197

Object 6071h: Target Torque

Object 6071h: Target Torque

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6071h 000 Target Torque -1000 1000 0000h Yes Signed
16-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the ETHCTL(13,0) command.

This object is the target value for the motor when operating in Profile Torque (TQ) mode. The value
written will be reached at a rate specified by the Torque Slope object (6087h). When the Control Word
object (6040h) has enabled motion, the value written here will be accepted immediately. The units of
this value are per thousand of the motor's rated torque.

A value of 1000 in this object is equivalent to T=32767 in the corresponding SmartMotor command. In
other words, DS402 considers 1000 to be full-scale torque, whereas 32767 is considered to be full-
scale torque for the SmartMotor serial commands.

Similar SmartMotor Commands: T=, RT

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 152 of 197

Object 6074h: Torque Demand Value

Object 6074h: Torque Demand Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6074h 000 Torque Demand Value 8000h 7FFFh 0000h Yes Signed
16-bit

Read
Only

This object provides the motor's demand torque from the PID when in Position (PP), Velocity (PV) or
interpolation (IP) mode, or the torque profile when in Torque (TQ) mode. The units of this value are per
thousand of the motor's rated torque.

NOTE: This object represents the requested value from the Torque profile (in TQ mode) or the PID
(in all other closed-loop servo modes). However, due to current limits, torque profile, etc., the motor
may not be able to deliver the requested torque.

A value of 1000 in this object is equivalent to T=32767 in the corresponding SmartMotor command. In
other words, DS402 considers 1000 to be full-scale torque, whereas 32767 is considered to be full-
scale torque for the SmartMotor serial commands.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 153 of 197

Object 6077h: Torque Actual

Object 6077h: Torque Actual

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6077h 000 Torque Actual 8000h 7FFFh 0000h Yes Signed
16-bit

Read
Only

This object reports the actual torque based on measured current. The value is reported in units per
thousand of rated torque.

NOTE: This object's intent is to report the actual measured torque based on the current in the motor
windings. However, not all SmartMotor modes of commutation can successfully measure current-
producing torque. Therefore, this command doesn't provide actual measurements of torque on the
Class 5 D-Style SmartMotor. On the SmartMotors that do support it (Class 5 M-Style, Class 6 M-
Style and D-Style), it is only valid while in MDC or MDS commutation mode. MDT or MDE mode
operation will produce an undefined result for this value. Class 5 D-Style report the same data as
object 6074h. For details, see Object 6074h: Torque Demand Value on page 153.

A value of 1000 in this object is equivalent to T=32767 in the corresponding SmartMotor command. In
other words, DS402 considers 1000 to be full-scale torque, whereas 32767 is considered to be full-
scale torque for the SmartMotor serial commands.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 154 of 197

Object 6079h: DC Link Circuit Voltage

Object 6079h: DC Link Circuit Voltage

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6079h 000 DC Link Circuit Voltage 00000000h FFFFFFFFh Yes Unsigned
32-bit

Read
Only

This object describes the supplied voltage, in millivolts, measured at the motor's power inverter.

Similar SmartMotor Commands: RUJA

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 155 of 197

Object 607Ah: Target Position

Object 607Ah: Target Position

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

607Ah 000 Target Position 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

This object specifies the target position that the motor should move to in Profile Position (PP) mode.
The units of this object are in encoder counts. When the "relative" bit (bit 6) of the Control Word object
(6040h) is set, the value written is added to the position currently demanded.

The target position will be approached according to the Profile Acceleration object (6083h), Profile
Deceleration object (6084h), and Profile Velocity object (6081h).

This object is not immediately accepted when written. It is only accepted when the "New setpoint" bit
(bit 4) of the Control Word object (6040h) has a rising transition.

Similar SmartMotor Commands: PT=, PRT=, RPT, RPRT

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 156 of 197

Object 607Ch: Home Offset

Object 607Ch: Home Offset

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

607Ch 000 Home Offset 80000000h 7FFFFFFFh 0 Yes Signed
32-bit

Read
Write

This object shifts the origin of the actual position when the Homing (HM) mode is executed. When HM
mode is commanded to begin, the home position is first discovered. The home position is the physical
location of the switch or index per the specific homing method. Once found, that physical location is
assigned the negative of the home offset value:

Home position = –Home offset

The home position is assigned with –home offset. See the next example.

6
0

6
4

h
=

0
S

ta
rt

in
g

 p
o

si
ti

o
n

P
hy

si
ca

l s
to

p
 −

P
hy

si
ca

l s
to

p
 +

Positive limit switch = 1

6
0

6
4

h
=

0

P
o

si
ti

o
n

af
te

r
ho

m
in

g

Positive limit switch = 1

6
0

6
4

h
=

1
2

0
0

6
0

6
4

h
=

1
1

5
4

H
o

m
e

 p
o

si
ti

o
n

Homing method = 18
Incremental encoder (powers up at value = 0)

Condition: Initial power up

Condition: Find home

(Fast speed)

(slow
speed)

Homing offset object 607Ch = +600

Green: machine physical position

Red: Home Position — where the sensors say it is

Blue: Zero Position — after homing completes, where the machine reports 6064h = 0

P
hy

si
ca

l s
to

p
 −

P
hy

si
ca

l s
to

p
 +

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 157 of 197

Object 607Ch: Home Offset

6
0

6
4

h
=

−6
0

0

Positive limit switch = 1

R
e

st
in

g
 P

o
si

ti
o

n

H
o

m
e

 p
o

si
ti

o
n

CiA 402 and ETG guidelines state: “Zero position = home position + home offset”
0 = Home position + home offset
Home position = −home offset

Z
e

ro
 p

o
si

ti
o

n
6

0
6

4
h

=
0

6
0

6
4

h
=

−6
4

6
Condition: Apply home offset

6
0

6
4

h
=

0

Positive limit switch = 1

R
e

st
in

g
 P

o
si

ti
o

n

H
o

m
e

 p
o

si
ti

o
n

Condition: Set home position to 0

6
0

6
4

h
=

−4
6P

hy
si

ca
l s

to
p

 −

P
hy

si
ca

l s
to

p
 +

P
hy

si
ca

l s
to

p
 −

P
hy

si
ca

l s
to

p
 +

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 158 of 197

Object 6080h: Max Motor Speed

Object 6080h: Max Motor Speed

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6080h 000 Max Motor Speed 00000000h FFFFFFFFh
Set according
to factory set-

tings
Yes Unsigned

32-bit
Read
Write

This object specifies the speed limit for the motor in either direction. The units are in revolutions per
minute (rpm). If this value is exceeded, the motor will enter a fault condition.

The value is specific to each SmartMotor model. For details, see the Moog Animatics Product Catalog,
which is available on the Moog Animatics website.

Similar SmartMotor Commands: VL=, RVL

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 159 of 197

Object 6081h: Profile Velocity in PP Mode

Object 6081h: Profile Velocity in PP Mode

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6081h 000 Profile Velocity in PP Mode 00000000h 7FFFFFFFh 00000000h Yes Unsigned
32-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the ETHCTL(13,0) command.

This object only applies to Profile Position (PP) mode. The position profile will accelerate to this speed
and remain at this speed until deceleration begins for approach of the position target. The units are:
(encoder counts per sample period) * 65536.

Also, refer to Object 60FFh: Target Velocity on page 193.

Similar SmartMotor Commands: VT= (NOTE: The value written to 6081h does not appear when reading
back VT.)

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 160 of 197

Object 6083h: Profile Acceleration

Object 6083h: Profile Acceleration

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6083h 000 Profile Acceleration 00000000h 7FFFFFFFh 00000004h Yes Unsigned
32-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the ETHCTL(13,0) command.

This object is the acceleration in the Profile Velocity (PV) mode and the Profile Position (PP) mode. The
units are: (encoder counts per (sample2)) * 65536.

Similar SmartMotor Commands: AT=, ADT=, RAT

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 161 of 197

Object 6084h: Profile Deceleration

Object 6084h: Profile Deceleration

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6084h 000 Profile Deceleration 00000000h 7FFFFFFFh 00000004h Yes Unsigned
32-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the ETHCTL(13,0) command.

This object is the deceleration in the Profile Velocity (PV) mode and the Profile Position (PP) mode. The
units are: (encoder counts per (sample2)) * 65536.

Similar SmartMotor Commands: DT=, ADT=, RDT

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 162 of 197

Object 6085h: Quick Stop Deceleration

Object 6085h: Quick Stop Deceleration

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6085h 000 Quick Stop Deceleration 00000000h 7FFFFFFFh 7FFFFFFFh Yes Unsigned
32-bit

Read
Write

This object is used to stop the drive with the quick stop function, which is commanded from bit 2 of the
Control Word object (6040h). The value is the deceleration used to stop the motor if the quick stop
command is given and the Quick Stop Option Code object (605Ah) is set to 2. The units are: (encoder
counts per (sample2)) * 65536.

For additional details, see Object 6040h: Control Word on page 137 and Object 605Ah: Quick Stop
Option Code on page 140.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 163 of 197

Object 6087h: Torque Slope

Object 6087h: Torque Slope

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6087h 000 Torque Slope 00000000h FFFFFFFFh 007A12F4h Yes Unsigned
32-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the ETHCTL(13,0) command.

This object is the torque mode acceleration/deceleration slope. The units are in torque units per
second. To put this into context, a value of 1000 in this object can ramp the SmartMotor to full torque
in one second.

In SmartMotor commands, the corresponding command is TS=, where the units are different. In the TS=
command, the units are: ("T=" per sample)*65536. Therefore, a value of 1000 in this object is equivalent
to TS=268427, assuming the default PID rate of 8000 Hz.

For related information, see Object 6071h: Target Torque on page 152.

Similar SmartMotor Commands: TS=, RTS

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 164 of 197

Object 608Fh: Position Encoder Resolution

Object 608Fh: Position Encoder Resolution

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

608Fh 000 Number of Entries 02h 02h 02h No Unsigned
8-bit

Read
Only

608Fh 001 Encoder Counts 00000000h FFFFFFFFh Encoder res-
olution. Yes Unsigned

32-bit
Read
Only

608Fh 002 Motor Revolutions 00000000h FFFFFFFFh 00000001h Yes Unsigned
32-bit

Read
Only

This object defines the resolution of the encoder. There are two subindex objects that describe the
encoder resolution — subindex 001: Encoder Counts and subindex 002: Motor Revolutions. To
determine the encoder resolution (number of encoder counts per motor revolution), divide the value of
subindex 1 by the value of subindex 2. The units are in encoder counts.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 165 of 197

Object 6098h: Homing Method

Object 6098h: Homing Method

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6098h 000 Homing Method 80h 7Fh 0 Yes Signed
8-bit

Read
Write

This object selects the method used in Homing (HM) mode. This must be set before starting a homing
process, and it should not be changed while HM mode is actively seeking home.

NOTE: The homing input is I/O 6. For more details on I/O, consult the SmartMotor™ Installation and
Startup Guide for your SmartMotor, and the SmartMotor™ Developer's Guide.

Homing
Method
Value

Description

1, 2 Home position is the first index in the positive direction from the negative limit switch
(1), or in the negative direction from the positive limit switch (2)
(requires that limit switches are enabled).

3, 4 Refer to the first figure after this table. Home position is the first index to the left (3)
or right (4) from where the home switch changes state in the positive direction.

5, 6 Home position is the first index to the right (5) or left (6) from where the home switch
changes state in the negative direction.

7–14 Refer to the second figure after this table. The home switch is active only during part
of the travel, similar to a momentary switch. Initial direction for values 7–10 is to the
right; initial direction for values 11–14 is to the left. However, if the home switch is
active when motion begins, the initial direction depends on the desired signal edge
(rising edge or falling edge). The home position will be at the index pulse located on
either side of the rising or falling edge as described below:

l 7 and 8 will be on the left and right, respectively, of the rising edge in the pos-
itive direction;

l 9 and 10 will be on the left and right, respectively, of the falling edge in the pos-
itive direction;

l 11 and 12 will be on the left and right, respectively, of the rising edge in the neg-
ative direction;

l 13 and 14 will be on the left and right, respectively, of the falling edge in the
negative direction;

If the initial direction moves the drive away from the home switch, the direction will
reverse when the drive reaches the limit switch (requires that limit switches are
enabled).

17–30 The homing methods used for these values are similar to those used for values 1–14,
except that there is no index pulse used in the process. In other words, each homing
method makes use of the home switch and limit switch transitions (requires that limit
switches are enabled).

33, 34 Home position is the location of the first index in the negative direction (33) or pos-
itive direction (34) from the current position.

35 Accept the current position as the home position.
(current position = –home offset)

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 166 of 197

Object 6098h: Homing Method

NOTE: Methods 1-14, 33 and 34 make use of the index of the internal encoder, which provides a
precise location (switches may have some position uncertainty). The construction of the machine
should consider the proximity of the index mark to the switch threshold. The index location should
be at 180 degrees rotation of the encoder (RRES/2) from the switch threshold. This will ensure that
the index mark does not fall within the uncertainty of the switch transition.

NOTE: Methods 1-30 make use of the limit switches. Limit switches must be enabled and physically
wired to the motor. Under these methods, the homing process will not start if the relevant limit has
been disabled.

The next figures illustrate the differences between the methods that use an index pulse and those that
do not. For example, methods 3 and 4 use an index pulse signal, while methods 19 and 20 do not.

Home Switch
Signal

Method 3

Method 4
Method 4

Method 3

-LS +LS

Home Switch
Signal

Method 19

Method 20
Method 20

Method 19

-LS +LS

Index Pulse
Signal

Methods 3 & 4 - Index Pulse Used Methods 19 & 20 - No Index Pulse

The next figures illustrate homing methods 7-14. Note that:
l the number in the hexagon is the selected homing mode

l the solid circle is the location of the motor when homing mode started, each possibility is shown

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 167 of 197

Object 6098h: Homing Method

Home Switch
Signal

Index Pulse
Signal

Methods 7-10: Positive Initial Motion

7

8

9

10

9

107

8

7

8

9

10

Positive Limit
Switch

Home Switch
Signal

Index Pulse
Signal

Methods 11-14: Negative Initial Motion

Negative Limit
Switch

1214

1114

12

1113

13

13

14 12

11

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 168 of 197

Object 6099h: Homing Speeds

Object 6099h: Homing Speeds

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6099h 000 Number of Entries 02h 02h 02h No Unsigned
8-bit

Read
Only

6099h 001 Speed during search for switch 00000000h 7FFFFFFFh 00000000h Yes Unsigned
32-bit

Read
Write

6099h 002 Speed during search for zero 00000000h 7FFFFFFFh 00000000h Yes Unsigned
32-bit

Read
Write

This object only applies to Homing (HM) mode. The homing profile will accelerate to these speeds
depending on the segment of the homing routine that is in use.

In general, the "speed during search for switch" segment is expected to be faster than the "speed
during search for zero" segment. The "speed during search for zero" segment is selected when the
homing mode expects to find the home position with the move it is currently starting. If the homing
mode expects an intermediate switch event before the home position, then the "speed during search
for switch" segment is selected (for example, a limit switch is tripped before changing direction to find
the home index).

The units are: (encoder counts per sample period) * 65536.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 169 of 197

Object 609Ah: Homing Acceleration

Object 609Ah: Homing Acceleration

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

609Ah 000 Homing Acceleration 00000000h 7FFFFFFFh 00000004h Yes Unsigned
32-bit

Read
Write

This object is the acceleration and deceleration in Homing (HM) mode. The units are: (encoder counts
per (sample2)) * 65536.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 170 of 197

Object 60B8h: Touch Probe Function

Object 60B8h: Touch Probe Function

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60B8h 000 Touch Probe Function 0 65535 0 Yes Unsigned
16-bit

Read
Write

NOTE: This feature applies to firmware version 6.0.1.9 and later.

The touch probe function allows the motor's position to be captured on a specific event. This feature is
commonly used for homing, registration applications or other cases where the motor position must be
recorded at a specific point in time. This value can be read back later, in a less time-critical manner,
from the capture register.

Object 60B8h is a bit field that can be written to for the purpose of configuring and setting the event
trigger(s).

There are two independent touch probes—each has the ability to capture a rising and falling edge. Each
of these four possible captures is recorded independently in its own register. For more details, see
objects 60BAh, 60BBh, 60BCh, 60BDh.

NOTE: Touch probe 1 always records the value of the internal encoder RCTR(0); touch probe 2
always records the external encoder RCTR(1).

NOTE: When the touch probe is enabled, no changes should be made to the input source selection
until the touch probe is disabled.

Also, see Object 60B9h: Touch Probe Status on page 174.

Bit Touch
Probe Value Definition

0 TP1 0 Switch off touch probe 1. Also, clears the corresponding captured status
bit for any touch probe 1 event.

1 Enable touch probe 1
1 TP1 0 Trigger on first event

1 Continuously trigger
3,2 TP1 00 Trigger with touch probe 1's external input—for the Class 6 M-Style or

Class 6 D-Style motor, this is general purpose input 5
01 Trigger with internal encoder's index

NOTE: Only the positive edge is supported.
10 Touch probe source defined by object 60D0:1
11 Reserved; do not use this state

4 TP1 0 Disable sampling of positive edge of touch probe 1; clears the
corresponding captured status bit for this event

1 Enable sampling of positive edge of touch probe 1
5 TP1 0 Disable sampling of negative edge of touch probe 1;

clears the corresponding captured status bit for this event
1 Enable sampling of negative edge of touch probe 1

6 N/A 0 Reserved; set bit to 0
7 N/A 0 Reserved; set bit to 0

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 171 of 197

Object 60B8h: Touch Probe Function

Bit Touch
Probe Value Definition

8 TP2 0 Disable touch probe 2; clears the corresponding captured status bit for
any touch probe 2 event

1 Enable touch probe 2
9 TP2 0 Trigger on first event

1 Continuously trigger
11,10 TP2 00 Trigger with touch probe 2's external input—for the Class 6 M-Style or

Class 6 D-Style motor, this is general purpose input 4
01 Trigger with differential input (using RS-485 port)

Class 6 M-Style: (COM 0 differential pair with COM port 0 closed)

Class 6 D-Style: (COM 1 differential pair with COM port 1 closed)
10 Touch probe source defined by object 60D0:2
11 Reserved; do not use this state

12 TP2 0 Disable sampling of positive edge of touch probe 2;
clears the corresponding captured status bit for this event

1 Enable sampling of positive edge of touch probe 2
13 TP2 0 Disable sampling of negative edge of touch probe 2;

clears the corresponding captured status bit for this event
1 Enable sampling of negative edge of touch probe 2

14 N/A 0 Reserved: set bit to 0
15 N/A 0 Reserved: set bit to 0

To arm a capture, the general enable (bit 0 for touch probe 1) and the rising and/or falling enable must
be set (bits 4 and/or 5 for touch probe 1). For example, to capture a single, rising edge of the internal
encoder on touch probe 1, follow this sequence:

1. Write value 0 to object 60B8h. This disables both touch probe 1 and touch probe 2 from any
events. Any recorded events in the status register (60B9h) will also be cleared. The status
register will report 0.

2. Write 21 decimal (15 hex) to object 60B8h. This will arm touch probe 1 to capture the rising
edge of the internal encoder's index.

3. Read object 60B9h (touch probe status). If bit 1 is true (1), then the event has occurred. If bit 1
is false (0), then the event has not yet occurred. Therefore, repeat this step.

4. Read object 60BAh (which has become valid with the indication in the status word.) This is the
value of position of RCTR(0) when the index event occurred.

5. Write the value 0 to object 60B8h to disable the touch probe feature.

There are two event-capture modes: a single-event mode and a continuous-trigger mode.
l The single-event mode captures the first event (the bit is set when the first capture occurs). It

then disarms itself from capturing further events. The data remains valid as long as the
corresponding status bit is true. To capture another event, the enable bit(s) must be cleared then
reset.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 172 of 197

Object 60B8h: Touch Probe Function

l The continuous-trigger mode continuously captures the events (in other words, it captures each
time the index or designated input has an event). The bit will not set until at least one event has
occurred. However, there is no further indication as additional events occur. The value read will
simply be the most recent position recorded. This mode is disabled by clearing the associated
enable bit (e.g., positive edge enable of TP1).

CAUTION: The SmartMotor ZS command can clear the armed touch probe events.
Therefore, use caution when operating the touch probes along with the ZS
command or other fault-clearing events such as those in object 6040h or 2309h.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 173 of 197

Object 60B9h: Touch Probe Status

Object 60B9h: Touch Probe Status

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60B9h 000 Touch Probe Status 0 65535 0 Yes Unsigned
16-bit

Read
Only

NOTE: This feature applies to firmware version 6.0.1.9 and later.

This object is used to report when there is valid data in any of the four capture registers. If the bit is
set, then the corresponding position register can be read as shown in the next table.

There are two event-capture modes: a single-event mode and a continuous-trigger mode.
l The single-event mode captures the first event (the bit is set when the first capture occurs). It

then disarms itself from capturing further events. The data remains valid as long as the
corresponding status bit is true. To capture another event, the enable bit(s) must be cleared then
reset.

l The continuous-trigger mode continuously captures the events (in other words, it captures each
time the index or designated input has an event). The bit will not set until at least one event has
occurred. However, there is no further indication as additional events occur. The value read will
simply be the most recent position recorded. This mode is disabled by clearing the associated
enable bit (e.g., positive edge enable of TP1).

NOTE: For either mode, capture registers should not be read until the corresponding bit indicates
that data is valid. Refer to the next table.

Bit Touch
Probe Value Definition

0 TP1 0 Touch probe 1 is switched off, or no rising or falling events are enabled
1 Touch probe 1 is enabled (at least one rising or falling edge is enabled and

the main enable for touch probe 1 is set)
1 TP1 0 No positive edge yet for touch probe 1

1 Positive edge position stored for touch probe 1 in object 60BAh
2 TP1 0 No negative edge yet for touch probe 1

1 Negative edge position stored for touch probe 1 in object 60BBh
3 N/A 0 Reserved
4 N/A 0 Reserved
5 N/A 0 Reserved
6 N/A 0 Reserved
7 N/A 0 Reserved
8 TP2 0 Touch probe 2 is switched off, or no rising or falling events are enabled

1 Touch probe 2 is enabled (at least one rising or falling edge is enabled and
the main enable for touch probe 2 is set)

9 TP2 0 No positive edge yet for touch probe 2
1 Positive edge position stored for touch probe 2 in object 60BCh

10 TP2 0 No negative edge yet for touch probe 2
1 Negative edge position stored for touch probe 2 in object 60BDh

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 174 of 197

Object 60B9h: Touch Probe Status

Bit Touch
Probe Value Definition

11 N/A 0 Reserved
12 N/A 0 Reserved
13 N/A 0 Reserved
14 N/A 0 Reserved
15 N/A 0 Reserved

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 175 of 197

Object 60BAh: Touch Probe Position 1 Positive Value

Object 60BAh: Touch Probe Position 1 Positive Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60BAh 000 Touch probe position 1
positive value 80000000h 7FFFFFFFh 0 Yes Signed

32-bit
Read
Only

NOTE: This feature applies to firmware version 6.0.1.9 and later.

This object is the captured value of RCTR(0) when the positive edge event of touch probe 1 occurs. The
capture event is configured in object 60B8h (see Object 60B8h: Touch Probe Function on page 171).
This data is only valid if object 60B9h, bit 1 is true (see Object 60B9h: Touch Probe Status on page
174).

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 176 of 197

Object 60BBh: Touch Probe Position 1 Negative Value

Object 60BBh: Touch Probe Position 1 Negative Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60BBh 000 Touch probe position 1
negative value 80000000h 7FFFFFFFh 0 Yes Signed

32-bit
Read
Only

NOTE: This feature applies to firmware version 6.0.1.9 and later.

This object is the captured value of RCTR(0) when the negative edge event of touch probe 1 occurs. The
capture event is configured in object 60B8h (see Object 60B8h: Touch Probe Function on page 171).
This data is only valid if object 60B9h, bit 2 is true (see Object 60B8h: Touch Probe Function on page
171).

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 177 of 197

Object 60BCh: Touch Probe Position 2 Positive Value

Object 60BCh: Touch Probe Position 2 Positive Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60BCh 000 Touch probe position 2
positive value 80000000h 7FFFFFFFh 0 Yes Signed

32-bit
Read
Only

NOTE: This feature applies to firmware version 6.0.1.9 and later.

This object is the captured value of RCTR(0) when the positive edge event of touch probe 2 occurs. The
capture event is configured in object 60B8h (see Object 60B8h: Touch Probe Function on page 171).
This data is only valid if object 60B9h, bit 9 is true (see Object 60B9h: Touch Probe Status on page
174).

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 178 of 197

Object 60BDh: Touch Probe Position 2 Negative Value

Object 60BDh: Touch Probe Position 2 Negative Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60BDh 000 Touch probe position 2
negative value 80000000h 7FFFFFFFh 0 Yes Signed

32-bit
Read
Only

NOTE: This feature applies to firmware version 6.0.1.9 and later.

This object is the captured value of RCTR(0) when the negative edge event of touch probe 2 occurs. The
capture event is configured in object 60B8h (see Object 60B8h: Touch Probe Function on page 171).
This data is only valid if object 60B9h, bit 10 is true (see Object 60B9h: Touch Probe Status on page
174).

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 179 of 197

Object 60C0h: Interpolation Sub-Mode Select

Object 60C0h: Interpolation Sub-Mode Select

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60C0h 000 Interpolation Sub-Mode Select 8000h 0000h 0000h Yes Signed
16-bit

Read
Write

Interpolation (IP) mode uses the position data object (60C1h) and the interpolation time period object
(60C2h) in one of these ways:

l Linear interpolation (default): generates a path of linear set of positions in the times between
the data points. The velocity during each segment between points is constant. The disadvantage
is that the velocity changes abruptly at the data points; the advantage is that the actual path
taken between points is very predictable.

l Spline interpolation: uses the current point, the next point, and the previous point to generate
curvature of the path over time. This results in a more continuous velocity. Also, following of
curved shapes is typically more accurate between points. However, the disadvantage can be
certain cases where a position overshoot can occur. While this is generally avoided in the
algorithm, extreme cases will overshoot.

The next table shows the possible sub-mode functions. The sub-mode data is read from the buffer
along with the associated data point; the sub-mode applies to the segment between that point and the
previous point.

Value Function
–3 Spline Interpolation
0 Linear Interpolation

1–32767 Reserved

In the next example, the sub-mode will use Spline Interpolation between points 3000 and 4000.

1. Set the Interpolation Sub-Mode Select object (60C0h) to the value 0.

2. Put data in the buffer by writing these values to subindex 1 of the Interpolation Data Record
object (60C1h):

a. 2000

b. 3000

3. Set the Interpolation Sub-Mode Select object (60C0h) to the value –3.

4. Put data in buffer by writing the value 4000 to subindex 1 of the Interpolation Data Record
object (60C1h).

5. Set the Interpolation Sub-Mode Select object (60C0h) to the value 0.

6. Put data in the buffer by writing these values to subindex 1 of the Interpolation Data Record
object (60C1h):

a. 5000

b. 6000

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 180 of 197

Object 60C1h: Interpolation Data Record

Object 60C1h: Interpolation Data Record

Object subindex Description Low
Limit

High
Limit Default PDO

Map
Data
type Access

60C1h 000 Number of Entries 01h 02h 01h No Unsigned
8-bit

Read
Only

60C1h 001 Data Record 1 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write

This object is used to enter the position data required in Interpolation (IP) mode. Only subindex 1 is
used; subindex 2 is not used.

When data is written to subindex 1, it is entered into the buffer. Also, the current values of the
Interpolation User Bits object (2403h), Interpolation Sub-Mode object (60C0h) and the Interpolation
Time object (60C2h) are captured and entered into the buffer with the same record as the position
data.

The value read from this object is the most recent value written to this object — it is not an indication
of the motor's current state.

NOTE: Object 60C1h, subindex 1, "Data Record 1" can only be written if the "buffer clear" property
(object 60C4h, subindex 6) is set to a 1. By default, writing to a data record will produce an error
until this action is taken.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 181 of 197

Object 60C2h: Interpolation Time Period

Object 60C2h: Interpolation Time Period

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60C2h 000 Number of Elements 00h FFh 02h No Unsigned
8-bit

Read
Only

60C2h 001 Interpolation time units 00h FFh 01h Yes Unsigned
8-bit

Read
Write

60C2h 002 Interpolation time index 80h 3Fh FDh (-3) Yes Signed
8-bit

Read
Write

This object is used for Interpolated Position (IP) mode. The time written is captured when a data record
is written using subindex 1 of the Interpolation Data Record object (60C1h). The time data is read from
the buffer along with the associated data point. The time period applies to the segment between that
point and the previous point. After it is started, the interpolation process reads data points out of the
interpolation buffer once per the time period.

The default time index is –3, which gives the time units in milliseconds.

Interpolation
Time Index Value

–128 to –4 Not allowed (returns SDO error)
–3 0.001 seconds (default)
–2 0.01 seconds
–1 0.1 seconds
 0 1 second

1 to 127 Not recommended

The representation of the time is a combination of a value (time units) and a decimal shift (time index):

Time = (time units) * 10(time index) seconds

Desired time range Resolution Suggested Time
Index

Suggested
Time Units

1 to 255 milliseconds 0.001 seconds –3 1 to 255
10 milliseconds to 2.55 seconds 0.010 seconds –2 1 to 255
100 milliseconds to 4 seconds 0.100 seconds –1 1 to 40
1 second to 4 seconds 1.000 seconds 0 1 to 4

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 182 of 197

Object 60C2h: Interpolation Time Period

In the next example, the time segment will be the longer time of 2 seconds between point 3000 and
point 4000.

1. Set subindex 1 of the Interpolation Time Period object (60C2h) to the value 1.

2. Set subindex 2 of the Interpolation Time Period object (60C2h) to the value 0, which represents
seconds.

3. Put data in the buffer by writing these values to subindex 1 of the Interpolation Data Record
object (60C1h):

a. 2000

b. 3000

4. Set subindex 1 of the Interpolation Time Period object (60C2h) to the value 2.

5. Put data in buffer by writing the value 4000 to subindex 1 of the Interpolation Data Record
object (60C1h).

6. Set subindex 1 of the Interpolation Time Period object (60C2h) to the value 1.

7. Put data in the buffer by writing these values to subindex 1 of the Interpolation Data Record
object (60C1h):

a. 5000

b. 6000

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 183 of 197

Object 60C4h: Interpolation Data Configuration

Object 60C4h: Interpolation Data Configuration

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60C4h 000 Number of Entries 00h FFh 06h No Unsigned
8-bit

Read
Only

60C4h 001 Maximum buffer size 00000000h FFFFFFFFh 0000002dh Yes Unsigned
32-bit

Read
Only

60C4h 002 Actual buffer size 00000000h FFFFFFFFh 0000002dh Yes Unsigned
32-bit

Read
Only

60C4h 003 Buffer organization 00h FFh 00h Yes Unsigned
8-bit

Read
Only

60C4h 004 Buffer position 0000h FFFFh 0000h Yes Unsigned
16-bit

Read
Only

60C4h 005 Size of data record 04h 04h 04h Yes Unsigned
8-bit

Read
Only

60C4h 006 Buffer clear 00h 01h 00h Yes Unsigned
8-bit

Write
Only

This object controls some miscellaneous aspects of the Interpolation mode buffer.

The subindex objects have these functions:
l Subindex 1: Cannot be changed because the SmartMotor buffer cannot be resized. This object

can be ignored.
l Subindex 2: Cannot be changed because the buffer cannot be resized. The value is 2Dh or 45

(decimal); this is the number of data records that can be held in the buffer. Each record contains
information about the position, time, user bits and Interpolation mode for that segment.

l Subindex 3: Cannot be set. It reports the value 0, which indicates that the buffer is a FIFO type
— data records are written into one end of the buffer and the motor firmware reads data out of
the other end.

l Subindex 4: Reports the number of occupied buffer slots.

l Subindex 5: Not implemented.

l Subindex 6: Cannot be read. To control buffer access, write one of the values from the next
table.

Subindex 6 Function
0 Clear input buffer, access disabled (will not accept writes to object

60C1h), clear all IP data records
1 Enable write access to the buffer (object 60C1h)

2–255 Reserved

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 184 of 197

Object 60D0h: Touch Probe Source

Object 60D0h: Touch Probe Source

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60D0h 000 Number of Entries 2 2 2 No Unsigned
8-bit

Read
Only

60D0h 001 Touch Probe 1 Source 1 6 5 Yes Signed
16-bit

Read
Write

60D0h 002 Touch Probe 2 Source 1 6 3 Yes Signed
16-bit

Read
Write

NOTE: This feature applies to firmware version 6.0.1.9 and later.

This object is used to select the external input that is applied to the specified touch probe. The
selected input becomes the trigger source for initiating the capture of encoder data to the specific
touch probe.

NOTE: The input source must be chosen before enabling the corresponding touch probe. After the
touch probe is enabled, do not change the input-source selection until the touch probe is disabled.

Touch Probe 1: 60D0h, subindex 1

Value Definition (Class 6 M-Style and Class 6 D-Style motor type)
1 Use single-ended input, general-purpose input 5
2 Not supported
3 Not supported
4 Not supported
5 Use internal encoder's index (support for rising edge only)
6 Not supported

Touch Probe 2: 60D0h, subindex 2

Value Definition (Class 6 M-Style and Class 6 D-Style motor type)
1 Use single-ended input, general-purpose input 5
2 Use single-ended input, general-purpose input 4
3 Use differential input (using RS-485 port)

Class 6 M-Style: (Uses COM0 pins, requires closing the COM 0 RS-485 port)

Class 6 D-Style: (Uses COM1 pins, requires closing the COM 1 RS-485 port)
4 Not supported
5 Not supported
6 Not supported

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 185 of 197

Object 60F4h: Following Error Actual Value

Object 60F4h: Following Error Actual Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60F4h 000 Following Error Actual Value 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Only

This object reports the actual value of the following (position) error. This is the difference between the
demand position and the actual position:

Following Error Actual Value object (60F4h) = Position Demand Value object (6062h) –
Position Actual Value object (6064h)

Similar SmartMotor Commands: REA

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 186 of 197

Object 60FBh: Position Control Parameter Set

Object 60FBh: Position Control Parameter Set

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60FBh 000 Number of Entries 00h FFh 0Ah (10) No Unsigned
8-bit

Read
Only

60FBh 001 KP, Proportional Gain 0000h FFFFh From
EEPROM Yes Unsigned

16-bit
Read
Write*

60FBh 002 KI, Integral Gain 0000h 7FFFh From
EEPROM Yes Unsigned

16-bit
Read
Write*

60FBh 003 KL, Integral Limit 0000h 7FFFh From
EEPROM Yes Unsigned

16-bit
Read
Write*

60FBh 004 KD, Derivative Gain 0000h FFFFh From
EEPROM Yes Unsigned

16-bit
Read
Write*

60FBh 005 KS, Derivative Damping Sample
Rate 00h 03h 01h Yes Unsigned

8-bit
Read
Write*

60FBh 006 KV, Velocity Feedforward Gain 0000h FFFFh From
EEPROM Yes Unsigned

16-bit
Read
Write*

60FBh 007 KA, Acceleration Feedforward
Gain 0000h FFFFh From

EEPROM Yes Unsigned
16-bit

Read
Write*

60FBh 008 KG, Gravitational Offset FF000000h 00FFFFFFh From
EEPROM Yes Signed

32-bit
Read
Write*

60FBh 009 N/A 0000h FFFFh 0000h No Unsigned
16-bit

Read
Only

60FBh 010 Position Loop Control 00h FFh 00h Yes Unsigned
8-bit

Write
Only*

*Write access is restricted when the remote bit is cleared with the ETHCTL(13,0) command.

This object contains manufacturer-specific parameters for the drive controller. For the SmartMotor,
this is primarily used to set the PID parameters (see the next table).

NOTE: The PID parameters do not take effect until subindex 10 is written.

For more details on these PID parameters, see the SmartMotor™ Developer's Guide.

Similar SmartMotor Commands: KP=, RKP, KI=, RKI, KL=, RKL, KD=, RKD, KS=, RKS, KV=, RKV, KA=, RKA,
KG=, RKG, F

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 187 of 197

Object 60FBh: Position Control Parameter Set

Sub-
index

SMI
Command

PID
Parameter Function

1 RKP, KP= KP Proportional coefficient
2 RKI, KI= KI Integral coefficient
3 RKL, KL= KL Integral limit
4 RKD, KD= KD Derivative coefficient
5 RKS, KS= KS Velocity filter option for KD (value is 0, 1, 2

or 3; larger numbers specify longer filter
times)

6 RKV, KV= KV Velocity feed-forward gain
7 RKA, KA= KA Acceleration feed-forward gain
8 RKG, KG= KG Gravitational offset
9 Reserved

10 F (no equal
sign)

Position loop control (set bit 0 to the value
1 to make the PID parameters take effect)

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 188 of 197

Object 60FCh: Position Demand Internal Value

Object 60FCh: Position Demand Internal Value

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60FCh 000 Position Demand Internal Value 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Only

This object reports the position calculated by the motion profile; it takes into account the acceleration
and velocity targets. The value is in units of encoder counts.

When the motor is inactive or in torque mode, the value reported is simply the current position.

Similar SmartMotor Commands: RPC

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 189 of 197

Object 60FDh: Digital Inputs

Object 60FDh: Digital Inputs

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60FDh 000 Digital Inputs 00000000h FFFFFFFFh Yes Unsigned
32-bit

Read
Only

This object reports the current state of the digital input signals from the I/O connector(s).

Class 6 D-Style motor
Bit Function
0 Negative limit (if enabled)
1 Positive limit (if enabled)
2 Not supported
3 Not supported

4–15 Reserved
16 General purpose input 0
17 General purpose input 1
18 General purpose input 2 (vendor-specific positive limit)
19 General purpose input 3 (vendor-specific negative limit)
20 General purpose input* 4
21 General purpose input* 5 (SYNC-encoder capture input)
22 General purpose input 6
23 Vendor Specific Drive Enable State (input 7)
24 Brake output function by default / input* 8
25 Not faulted function by default / input* 9

26-31 Reserved

*These inputs: 4, 5, 8, 9, have output drivers, also. The input functionality is always available and
reports based on voltage at the pin. Therefore, when outputs are active, the input effectively provides
feedback information about the output driver state.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 190 of 197

Object 60FDh: Digital Inputs

Class 6M-Style motor
Bit Function
0 Negative limit (if enabled)
1 Positive limit (if enabled)
2 Not supported
3 Not supported

4–15 Reserved
16 General purpose input 0
17 General purpose input 1
18 General purpose input 2 (vendor-specific positive limit)
19 General purpose input 3 (vendor-specific negative limit)
20 General purpose input 4
21 General purpose input 5 (SYNC-encoder capture input)
22 General purpose input 6
23 Vendor Specific Drive Enable State (input 7)
24 Brake (reports intended state of output 8)
25 Not faulted (reports intended state of output 9)

26-31 Reserved

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 191 of 197

Object 60FEh: Digital Outputs

Object 60FEh: Digital Outputs

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60FEh 000 Number of Entries 01h 02h 01h No Unsigned
8-bit

Read
Only

60FEh 001 Physical Outputs 00000000h FFFFFFFFh Yes Unsigned
32-bit

Read
Write

This object allows the digital outputs to the I/O connector(s) to be set or cleared.

NOTE: There is no support for subindex 2.

Class 6 M-style motor
Bit Function
0 Brake Set - Not Supported

1-15 Reserved
16-19 Reserved

20 Output 4 (MT2 models only, not supported in MT)
21 Output 5 (MT2 models only, not supported in MT)

22-23 Reserved
24 Output 8. See EOBK command to enable this general purpose

output. This output is controlled by brake function by default.
25 Output 9. See EOFT command to enable this general purpose

output. This output is controlled by notFault status by
default.

26-31 Reserved

Class 6D-Style motor
Bit Function
0 Brake Set - Not Supported

1-15 Reserved
16-19 Reserved

20 Output 4
21 Output 5

22-23 Reserved
24 Output 8. See EOBK command to enable this general purpose

output. This output is controlled by brake function by default.
25 Output 9. See EOFT command to enable this general purpose

output. This output is controlled by notFault status by
default.

26-31 Reserved

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 192 of 197

Object 60FFh: Target Velocity

Object 60FFh: Target Velocity

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

60FFh 000 Target Velocity 80000000h 7FFFFFFFh 00000000h Yes Signed
32-bit

Read
Write*

*Write access is restricted when the remote bit is cleared with the ETHCTL(13,0) command.

This object only applies to Profile Velocity (PV) mode. The velocity profile will accelerate to the
specified speed and remain at that speed until a stop is commanded or a new speed is specified.

Writing this value takes effect immediately in PV mode, assuming the motor is already in the operation
enabled state through Control Word object (6040h). The units are: (encoder counts per sample period) *
65536.

Also, refer to Object 6081h: Profile Velocity in PP Mode on page 160.

Similar SmartMotor Commands: VT=, RVT

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 193 of 197

Object 6502h: Supported Drive Modes

Object 6502h: Supported Drive Modes

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

6502h 000 Supported Drive Modes 00000000h FFFFFFFFh
Varies by

motor class
and version

No Unsigned
32-bit

Read
Only

This object reports a value that corresponds to a bit field indicating the operational modes supported
by the drive. The value reports as the default value listed above and does not change.

Bit Mode
0 Profile Position (PP)
1 Velocity (VL)
2 Profile Velocity (PV)
3 Torque (TQ)
4 Reserved
5 Homing (HM)
6 Interpolation (IP)
7 Cyclic Synchronous Profile (CSP)
8 Cyclic Synchronous Torque (CSV)
9 Cyclic Synchronous Torque (CST)

10–15 Reserved
16–31 Manufacturer specific

Bit value 0: Not supported
Bit value 1: Supported

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 194 of 197

Object 67FFh: Single Device Type

Object 67FFh: Single Device Type

Object Sub-
Index Description Low

Limit
High
Limit Default PDO

Map
Data
type Access

67FFh 000 Single Device Type 00000000h FFFFFFFFh 00020192h No Unsigned
32-bit

Read
Only

This object specifies the type of device (profile) for objects in the range 6000h to 67FFh. Refer to the
next table the possible values and their corresponding functions.

Bit Value Function
0–15 0192h (402 decimal) DS402 device
16–23 02h (2 decimal) Servo drive
24–31 0 Reserved (manufacturer specific)

Also, refer to Object 1000h: Device Type on page 78.

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 195 of 197

Reference Documents

Reference Documents
These CiA documents were referenced for this guide:

l CiA 402 CANopen - Drives and motion control device profile:

This specification is now comprised of these IEC specifications:
l IEC 61800-7-1 (An abstracted view of motion control over a variety of protocols)

l IEC 61800-7-201 (Describes the implementation of the 402 specification)

l IEC 61800-7-301 (Describes the default settings of certain objects in the 402
specification)

l CiA 301 CANopen - Application layer and communication profile

The CiA documents are maintained by CAN in Automation (CiA):

http://www.can-cia.org/

The IEC documents are maintained by the International Electrotechnical Commission (IEC):

http://www.iec.ch/

These EtherCAT Technology Group (ETG) documents were referenced for this guide:
l ETG.1020 S (R) V1.0.0 - EtherCAT Protocol Enhancements

l ETG.1300 S (R) V1.1.0 - EtherCAT Indicator and Labeling

l ETG.6010 D (R) V1.0.0 - EtherCAT Implementation Directive for CiA402 Drive Profile

l EtherCAT Communication - Communication Principles

The EtherCAT documents are maintained by the EtherCAT Technology Group (ETG):

http://www.ethercat.org/

Moog Animatics Class 6 EtherCAT Guide Rev. K

Page 196 of 197

http://www.cancia.org/
http://www.iec.ch/
http://www.ethercat.org/

www.animatics.com

For Animatics product information, visit
For more information or to find the office nearest you, email animatics_sales@moog.com

Moog is a registered trademark of Moog Inc. and its subsidiaries.
All trademarks as indicated herein are the property of Moog Inc. and its subsidiaries.

TAKE A CLOSER LOOK

Americas - West Americas - East Europe Asia
Moog Animatics Moog Animatics Moog GmbH Moog Animatics
2581 Leghorn Street 1995 NC Hwy 141 Memmingen Branch

Allgaeustr. 8a
 Kichijoji Nagatani City Plaza 405

Mountain View, CA 94043 Murphy, NC 28906
87766 Memmingerberg

 1-20-1, Kichijojihoncho
United States United States

Germany
 Musashino-city, Tokyo 180-0004

 Japan

Tel: +1 650-960-4215 Tel: +49 8331 98 480-0 Tel: +81 (0)422 201251
Email: animatics_sales@moog.com Email: info.mm@moog.com Email: mcg.japan@moog.com

www.animatics.com

Moog Animatics, a sub-brand of Moog Inc. since 2011, is a global leader in integrated automation solutions. With over 30
years of experience in the motion control industry, the company has U.S. operations and international offices in Germany and
Japan as well as a network of Automation Solution Providers worldwide.

©2014-2022 Moog Inc. All rights reserved. All changes are reserved.

Moog Animatics Class 6 SmartMotor™ EtherCAT Guide, Rev. K
SC80100002-001

	Introduction
	Purpose
	Combitronic Technology

	Abbreviations
	Safety Information
	Safety Symbols
	Other Safety Considerations
	Motor Sizing
	Environmental Considerations
	Machine Safety
	Documentation and Training
	Additional Equipment and Considerations

	Safety Information Resources

	Additional Documents
	Related Guides
	Other Documents

	Additional Resources
	CANopen Resources
	EtherCAT Resources

	EtherCAT Overview
	SmartMotor EtherCAT Overview
	CANopen over EtherCAT (CoE) Description
	Object Dictionary

	PDO and SDO Communication
	SDO
	PDO

	EtherCAT State Machine (ESM)
	AL-Control Register
	AL-Status Codes
	ESM Transition Diagram

	PDO Communications over EtherCAT
	Receive PDO Example
	Transmit PDO Example
	Synchronized PDO Communications

	Other Communications with the Motor

	Supported Features
	Supported CoE Features
	CiA 402 Motion Modes
	Dynamic PDO Mapping
	Configurable Sync Manager 2 and 3 Assignment
	DC-Sync Subordinate Mode with SYNC0 and SYNC1
	DC-Sync Follower
	Selectable Homing Modes
	Selectable Interpolation Modes
	Touch Probe Function

	Status LEDs
	Status LEDs - Class 6 M-Style
	Status LEDs - Class 6 D-Style

	Manufacturer‑Specific Objects
	I/O
	User Variables
	Calling Subroutines
	Command Interface (Object 2500h)
	Command Interface
	Program Upload/Download
	Upload from Motor
	Download to Motor (SMX file)
	Download to Motor (SMXE encrypted file)

	CiA 402 Drive and Motion Control Profile
	CiA 402 Profile Motion State Machine
	Control Words, Status Words and the Drive State Machine
	Status Word (Object 6041h)
	Control Word (Object 6040h)

	Motion Profiles
	Position Mode
	Absolute Position Mode Summary
	Absolute Position Mode Example
	Relative Position Example

	Velocity Mode
	Velocity Mode Summary
	Velocity Mode Example

	Torque Mode
	Torque Mode Summary
	Torque Mode Example

	Cyclic Synchronous Position (CSP) Mode
	CSP Control and Status Word
	CSP Mode Example

	Cyclic Synchronous Velocity (CSV) Mode
	CSV Control and Status Word
	CSV Mode Example

	Cyclic Synchronous Torque (CST) Mode
	CST Control and Status Word
	CST Mode Example

	Dynamic PDO Mapping Using CoE
	Overview
	Mapping and Communication Parameters Objects
	Mapping Parameters Objects

	Mapping Entries
	Sync Manager Assignment Parameters
	Dynamic PDO Assignment and Mapping Procedure

	EtherCAT Synchronization Overview
	Free Run Mode
	DC Synchronization — Subordinate Mode

	EtherCAT User Program Commands
	EtherCAT Error Reporting Commands
	=ETH, RETH

	EtherCAT Network Control Commands
	ETHCTL(action, value)

	Troubleshooting
	SDO Response Error Codes

	Object Reference
	Object Categories
	Communication Profile
	Object 1000h: Device Type
	Object 1001h: Error Register
	Object 1008h: Manufacturer Device Name
	Object 1009h: Manufacturer Hardware Version
	Object 100Ah: Manufacturer Software Version
	Object 1018h: Identity Object
	Object 1600h: Receive PDO Mapping Parameter 1
	Object 1601h: Receive PDO Mapping Parameter 2
	Object 1602h: Receive PDO Mapping Parameter 3
	Object 1603h: Receive PDO Mapping Parameter 4
	Object 1604h: Receive PDO Mapping Parameter 5
	Object 1A00h: Transmit PDO Mapping Parameter 1
	Object 1A01h: Transmit PDO Mapping Parameter 2
	Object 1A02h: Transmit PDO Mapping Parameter 3
	Object 1A03h: Transmit PDO Mapping Parameter 4
	Object 1A04h: Transmit PDO Mapping Parameter 5
	Object 1C00h: Sync Manager Com Type
	Object 1C12h: Sync Manager 2 PDO Assignment
	Object 1C13h Sync Manager 3 PDO Assignment
	Object 1C32h DC-Sync Manager 2 Receive Object
	Object 1C33h DC-Sync Manager 3 Transmit Object

	Manufacturer-Specific Profile
	Object 2101h: Bit IO
	Object 2201h: User Variable
	Object 2202h: Set Position Origin
	Object 2203h: Shift Position Origin
	Object 2204h: Mappable 32-bit Variables
	Object 2205h Negative Software Position Limit
	Object 2206h Positive Software Position Limit
	Object 2209h Encoder Follow Control
	Start/Stop Capability

	Object 220Ah MFMUL
	Object 220Bh MFDIV
	Object 220Ch MFA
	Object 220Dh MFD
	Object 2220h: 8-Bit Mappable Variables
	Object 2221h: 16-Bit Mappable Variables
	Object 2301h: RMS Current
	Object 2302h: Internal Temperature
	Object 2303h: Internal Clock
	Object 2304h: Motor Status
	Object 2307h: Sample Period
	Object 2309h: GOSUB R2
	Object 2400h: Interpolation Mode Status
	Object 2401h: Buffer Control
	Object 2402h: Buffer Setpoint
	Object 2403h: Interpolation User Bits
	Object 2500h: Encapsulated SmartMotor Command

	Drive and Motion Control Profile
	Object 6040h: Control Word
	Object 6041h: Status Word
	Object 605Ah: Quick Stop Option Code
	Object 605Ch: Disable Operation Option Code
	Object 605Dh: Halt Option Code
	Object 605Eh: Fault Reaction Option Code
	Object 6060h: Modes of Operation
	Object 6061h: Modes of Operation Display
	Object 6062h: Position Demand Value
	Object 6063h: Position Actual Internal Value
	Object 6064h: Position Actual Value
	Object 6065h: Following Error Window
	Object 606Bh: Velocity Demand Value
	Object 606Ch: Velocity Actual Value
	Object 6071h: Target Torque
	Object 6074h: Torque Demand Value
	Object 6077h: Torque Actual
	Object 6079h: DC Link Circuit Voltage
	Object 607Ah: Target Position
	Object 607Ch: Home Offset
	Object 6080h: Max Motor Speed
	Object 6081h: Profile Velocity in PP Mode
	Object 6083h: Profile Acceleration
	Object 6084h: Profile Deceleration
	Object 6085h: Quick Stop Deceleration
	Object 6087h: Torque Slope
	Object 608Fh: Position Encoder Resolution
	Object 6098h: Homing Method
	Object 6099h: Homing Speeds
	Object 609Ah: Homing Acceleration
	Object 60B8h: Touch Probe Function
	Object 60B9h: Touch Probe Status
	Object 60BAh: Touch Probe Position 1 Positive Value
	Object 60BBh: Touch Probe Position 1 Negative Value
	Object 60BCh: Touch Probe Position 2 Positive Value
	Object 60BDh: Touch Probe Position 2 Negative Value
	Object 60C0h: Interpolation Sub-Mode Select
	Object 60C1h: Interpolation Data Record
	Object 60C2h: Interpolation Time Period
	Object 60C4h: Interpolation Data Configuration
	Object 60D0h: Touch Probe Source
	Object 60F4h: Following Error Actual Value
	Object 60FBh: Position Control Parameter Set
	Object 60FCh: Position Demand Internal Value
	Object 60FDh: Digital Inputs
	Object 60FEh: Digital Outputs
	Object 60FFh: Target Velocity
	Object 6502h: Supported Drive Modes
	Object 67FFh: Single Device Type

	Reference Documents

