
 1

IDEA™ Drive
Software User Manual

www.haydonkerk.com

All Rights Reserved

4-2013

http://www.haydonkerk.com/

 2

Table of Contents

Revision History ... 4

Introduction ... 5

Part Numbers .. 5
IDEA DRIVE and Software Basics ... 6

Realtime Mode .. 6

Program Mode... 7

Startup... 9
Installing the Application ... 9
Getting Started .. 10

Drive Startup ... 11

Features and Concepts .. 12

Unit conversion .. 12

Communications Modes .. 12

Maximum Speed ... 13
Ramping ... 13

Saving Programs to the Drive .. 15

Removing Programs ... 15

Table of Contents ... 15

Startup Program ... 16

Saving/Loading/Combining Programs ... 16

Autosave... 16

Over Current Protection ... 17
Accel/Decel Current Boost .. 17

Password Protection ... 19

Inputs and Outputs .. 19

Simulating Inputs ... 20
Debugger .. 21

Encoder... 22
Subroutines ... 24
Interrupts .. 25

Errors... 26
View Command String .. 28

Explanation of Commands .. 30
Extend ... 30

Retract ... 32

Move To .. 34

Go At Speed... 36

Stop .. 38
E-Stop .. 39

Jump N Times ... 40

Goto ... 41

Goto If .. 42
Return .. 43

Return To .. 44

 3

Goto Sub... 45

Wait .. 46

Wait For Move ... 47

Int on Pos ... 48

Int on Input ... 49
Encoder... 51

Set Outputs .. 52

Set Position ... 53
Reset .. 54

Abort .. 54
Comment .. 55

Programming Examples ... 56
Example One ... 56

Example Two ... 60
Example Three .. 62
Example Four .. 66

Example Five ... 69

Example Six ... 74

The IDEA Drive Menu Items... 78

File .. 78

Edit ... 78

Mode .. 78
Drive Commands .. 79

Communications Mode... 79
Programs on Drive ... 79

Help .. 80

Glossary ... 81

 4

Revision History

Date Description

January 2010 Initial version

February 2010 Save debug output

Goto if updated for outputs

Interrupt and encoder configuration update

January 2011 Added detail to the behavior of interrupts

Added detail to the IO wiring diagram

Stand alone IO wiring diagram

RS-485 wiring

Communications features

May 2011 Added RS-485 Pin descriptions

Added minimum time between resets

July 2011 Removed model specific information

August 2011 Added information about command strings

September

2011

Updated for 2.0 firmware and software changes

Added introduction and part number information

December 2011 Clarified Goto if explanation Updated

March 2013 Clarified part number entry

 5

Introduction
This manual is intended to provide information on using the IDEA family of
products from Haydon Kerk Motion Solutions. For information pertaining to
a specific product, see the appropriate hardware manual, available at idea-
drive.com

Part Numbers
This manual covers the following part numbers; where (S) is a place holder

for stack length and step angle options, (X) is a place holder for resolution

options, (V) is a place holder for coil voltage options, and (XXX) is a place

holder for custom configuration options. When entering a part number into

the software, the motor part number needs to be entered as the software

automatically recognizes what type of drive is connected.

Motors with integrated drives:

 43(S)G(X)-(V)-(XXX)

 57(S)G(X)-(V) -(XXX)

 43(S)J(X)-(V)-(XXX)

Examples Part Numbers:

 43MJC-2.33 Size 17, double stack with a C resolution and coil voltage of 2.33V

 28F41-5 Size 117, single stack with a 1 resolution and coil voltage of 5V

 57K4B-12 Size 17, double stack with a B resolution and coil voltage of 12V

 6

IDEA Drive Software Basics

 The Haydon Kerk Motion Solutions IDEA drive and associated

software are a complete package for the easy control of stepper motor

based linear actuators. This solution provides advanced features for both

immediate execution as well as user written programs in an extremely user

friendly way. All basic commands are used through intuitively named

buttons, and each button and input field is further clarified through tooltips.

Realtime Mode

Below is a screenshot of the User interface in the Realtime mode. This

mode is only available when a drive is connected and communicating.

In the Realtime mode, each command executed from the “Commands for

immediate execution” section elicits an immediate action from the drive.

The program area can display any program currently on the drive. These

programs can be run or aborted using the “Run Control” section.

 7

The I/O and position section provides constant feedback from the drive

pertaining to the current state of the drive. This area can also be used to

control the state of the outputs, as well as the inputs if in simulation mode.

The IDEA software provides a powerful debugging feature, which allows

the user to enter debug mode, which causes every command in the

program to be displayed in the “Debug Output” section as is it executed.

This debugger can be run in two ways, manually telling the drive to execute

one command at a time (“Single-stepping”), or executing multiple

commands in a row until reaching one of the user programmed labels

(“Run to Label”). Through this feature the ease of debugging complex

programs is greatly increased.

Program Mode

Below is a screenshot of the user interface in Program Mode. This mode is

available even without a drive attached.

 8

The I/O and position section provides constant feedback from the drive

pertaining to the current state of the drive. This area can also be used to

control the state of the outputs, as well as the inputs if in simulation mode.

The “Run Control” area can be used to execute or stop any program on the

drive.

The “Program Edit” area contains buttons used to edit the program as well

as gather information about individual commands. The download button is

also in this area.

The “Program Area” contains the command that make up the program

currently being viewed or edited. Commands in the program are executed

sequentially, starting at action 1 and moving onto action 2 and so on,

unless a branching command is used, which would send execution instead

to a specified label. The different commands available are covered in depth

below.

The size of the current program is displayed in both bytes and pages in the

“Program Length” area. Each page is 1024 bytes long, and the number of

pages used is always rounded up.

 9

Startup

Installing the Application: (This is a one time activity): The IDEA

drive has a CD ROM disk that is to be installed into your PC. Please

perform the following instructions: (Note, this is to be performed without

the actuator being attached via the USB cable)

 Insert the disk into the CD ROM drive.

 “Welcome to the IDEA Software setup wizard” will appear on screen.

If this does not appear, go to “My Computer” and double click on the

cd-rom drive. Click “next”

 “Select installation folder” will appear on screen. You may change

the location of the installation if you wish. Click next.

 “Confirm installation” will appear on screen. Click next.

 “Installing IDEA Software” will appear on screen. This may take a few

moments.

 “Installation complete” will appear on screen. A black function

window will also appear behind the “Installation complete” dialogue

box. This is normal. Do not close this window, it will close

automatically. After a few moments the “Installation complete”

dialogue box will show a “close” button. Click close.

 Installation is now complete and the IDEA Icon resides on your

desktop and in your start menu under All Programs > Haydon Kerk.

 10

Getting Started: Let us assume that the GUI software and drivers have

been loaded into your PC and the drive is connected and powered up.

Please proceed as follows:

 Start your PC.

 Double-Click the IDEA Icon on your desktop. This brings you to the

initial screen. Screen shot is below:

 Enter part number of the actuator.

Note: this entry is not case sensitive.

 Select inches, mm or steps. Click OK.

1. After clicking OK many parameters have been placed into

memory for this particular actuator.

 Select the Communication mode

 11

1. This will most likely be “Single”. The communications options

are explained in the “Communications Modes” section of

“Features and Concepts”.

Note: The com number will most likely be different from that shown above.

 The “Realtime” display now appears. This mode allows the program

execute immediate actions such as extend, retract, go at speed, etc.

If the drive is not connected, or not turned on, you will not be able to select

a drive, and when the program is entered, you will be forced into the

program mode. If this happens when the drive is connected and powered

up, try disconnecting and reconnecting the usb cable.

Drive Startup

When the drive first starts up, either by turning the power on, or using the

“Reset” command on a drive that was already powered, the following

occurs:

1. Input simulation is turned off.

2. All outputs are set low.

3. The position counter is set to zero.

4. The hold current is set to zero.

5. All interrupts are disabled

6. The encoder is disabled.

7. If a startup program is selected, that program is now begun.

When a program is started, the following occurs:

1. All outputs are set low.

2. The position counter is set to zero.

3. All interrupts are disabled

 12

Features and Concepts

Unit conversion

When starting the program, a part number and measurement unit must be

selected. From this information, the number of steps for each command is

calculated. This allows the user to write programs in their preferred units

instead of having to calculate the number of steps. As with any conversion,

some rounding error may be present. With a motor that was a .01” per step

resolution, you cannot move .015” forward in full step mode. The user

interface rounds this value down to the nearest microstep in the given step

resolution. So if you wish to move .015” forward with a step resolution of

.01”, a step mode of ½ or finer must be selected. The program area will

reflect the rounded value.

Note: In the case that the motor has been moved to a position between

steps, if a new extend or retract is done from the position in a coarser step

mode, the extend or retract will end on a position that is valid for the new

step mode, and the distance traveled may not exactly match the desired

distance. For example: If the motor has a resolution of .01” per step, and is

moved to .015” using the half step mode, then a new extend of .02” is used

in full step mode, the motor will extend .015” to the .03” position, which is a

full step position.

Communications Modes

There are four different modes that the user interface can be in for

communications between it and any attached drives, these being offline,

single, addressed and broadcast. You can change from one of these modes

to any other, assuming the correct bus configuration is present, through

the “Comm Mode” menu item in either the “Realtime” or “Program”

screens.

 13

 Offline: In this mode, no communication is present, so the

“Realtime” screen is unavailable, as well as the drive commands and

ability to program.

 Single: This is the simplest communication mode. In this mode, only

1 drive should be attached per USB port. All functions are available.

 Addressed: This mode is available for the command of one drive on

a bus with multiple additional IDEA drives. This mode will behave the

same as single mode, but can be used with multiple drives on a

single bus, so long as each drive has a different identifier. Addresses

can be set through the “Set Drive Address” menu item in the “Drive

Commands” menu.

 Broadcast: In this mode, many drives can be on the same bus,

regardless of their identifiers. This mode is more limited than single

or addresses, as commands will be sent to the drives, but no

messages will be received from the drives. All drives will execute any

commands sent.

Maximum Speed

The maximum speed of the drive is 25000 full steps per second. This limit

is due to the amount of time it takes the processor to calculate the time to

the next step while ramping. When microstepping, the time between each

step is even less, so to allow for microstepping and a maximum speed of

25000 steps per second, the drive will change step modes while

accelerating. So if a top speed of 10000 steps per second is entered, as

well as 1/64th step mode, the move will start and end in 64th step mode, but

will switch to coarser step modes as the speed increase, and switch back

to finer step modes while decelerating.

Ramping

The IDEA Drive provides easy to use acceleration and deceleration ramps.

A trapezoidal move profile can be created by entering a speed, start speed,

 14

end speed, acceleration rate and deceleration rate. The drive automatically

calculates a move profile to approximate the desired parameters. For a

picture of what the calculated ramp will look like, use the plot function on

any “Extend”, “Retract”, “Move To”, or “Go At Speed” command.

 15

Saving Programs to the Drive

After a program has been written, saving the program to the drive is

simple. The program needs to be named, using the Program Name textbox.

The program name may be up to 10 characters long, and cannot contain

the “,” character. Any spaces at the end of the program name will not be

saved, so “Program1” is the same as “Program1 ”. No two programs may

have the same name, so attempting to download a program with the same

name as an existing program will result in a warning, and continuing will

cause the existing program to be overwritten.

When the download button is pressed, the user interface automatically

finds the first area on the drive that can fit the program. If there is no place

on the drive where the program can fit, the user is responsible for either

moving or removing some programs. In order to move a program to free up

larger blocks of free space, simply save the program to the drive again

under the same name, and the program will be moved to the first page

where it can be fit.

Removing Programs

Programs can be removed from the IDEA drive in one of two ways. Either

use the “Display Table of Contents” option under “Drive Commands”, then

select the program to be removed in the list, then press “Remove” in the

bottom left corner; or use the “Delete Program From Drive” option under

“Drive Commands”, then select the program to be removed in the drop

down menu and press “Ok”.

Table of Contents

The IDEA Drive user interface provides a list of all programs on the drive,

the pages being used by said programs, and a graphical representation of

the contents and free space of the drive. This feature is accessed through

the “Display Table of Contents” option under “Drive Commands”. This

 16

feature can be helpful in freeing up space for additional programs, or

seeing which programs could be moved to decrease fragmenting free

space.

Startup Program

In real world applications, the controller will need to start execution once

power is applied, as opposed to being started through the user interface. In

order to set a program to start on power up, the “set Startup Program”

option under “Drive Commands” is used. In the associated window, the

current startup program is displayed in bold, and a new startup program

can be selected using the drop down menu of all programs currently on the

drive. If it is desired to not have a startup program, “No Startup Program”

should be selected.

Saving/Loading/Combining Programs

The IDEA user interface allows for programs to be saved to your computer

or other drives. To do this, once the program is complete, go to “Save” in

the “File” menu. This will open a save file dialog box. It is recommended

that programs be backed up using the save function, to protect your work

incase the program on the drive is overwritten.

To open a saved file, go to “Open” in the “File” menu. This will open an

open file dialog box.

The IDEA user interface also provides the ability to combine two or more

different programs. With a program open, go to “Add File” in the “File”

menu. This will open an open file dialog. The file you select will be added to

the end of the current program. This can be done multiple times to combine

multiple programs.

Autosave

The IDEA user interface provides an autosave feature to protect against

losing all of your work. Once every minute, if the program is non-empty, the

 17

user interface automatically saves the file. If the program crashes, or is

accidentally erased, the program can be recovered through the “Recover

Autosave” option under the “File” menu. This will restore the most recently

autosaved program.

Note: If you lose a program and wish to recover it through this feature, be

sure not to open any other programs first. If this is done, the autosave

feature may overwrite the file you wish to recover.

Over Current Protection

The IDEA drive and user interface provide protection against overdriving

the current in the actuator. When the user interface is opened, the part

number entered for the motor provides the necessary information to

calculate the maximum current of the motor. The user interface uses this to

prevent the user from entering values that would be damaging to the

motor.

When the user interface is started with a drive attached, the drive informs

the user interface of the maximum current of the drive. The user interface

then prevents the user from entering values that would be damaging to the

drive.

The drive also has internal protections, so that if a program that was

written for a larger drive is downloaded to a drive that cannot handle the

current values in the program, and that program is run, the drive will abort

the program and raise a drive current limit error.

Accel/Decel Current Boost

The IDEA Drive provides the ability to boost the current for the acceleration

ramp and deceleration ramp independently. If the acceleration current

boost option is set to yes, then the current per phase will be 30% greater

than the set run current during the acceleration ramp, if the ramp is 300ms

or less in duration. For longer ramps, the current per phase will be

increased for the first 300ms, and will be the set run current for the

 18

remainder of the ramp. The same is true for the deceleration ramp if the

deceleration current boost is chosen, except that in the case of a ramp over

300ms, it will be the last 300ms of the ramp to be boosted.

Note: It is important for the user to ensure that the current boost feature is

not over used. Repeated long ramp without rest can damage the motor if

the boosted current is above the rated current of the motor.

 19

Password Protection

The IDEA drive has a password protection feature. When enabled, this

feature prevents any program from being read back without the correct

password. Passwords can be up to 10 characters in length and cannot

contain the “,” character. Spaces at the end of the password are ignored,

so “Password1” is the same as “Password1 ”.

Password protection does not prevent programs from being erased from or

written to the drive. This feature is only meant to ensure that programs on

password protected drives can not be copied by a third party.

Note: If a drive has been password protected and the password has been

lost, there are two options. The first is to send the drive back to Haydon

Kerk Motion Solutions, where the password can be recovered for a fee. The

second option is to use the “Restore Factory Defaults” option under the

“Drive Commands” menu. This will remove the password protection, but all

programs on the drive will also be lost.

Inputs and Outputs

The IDEA drive has four optically isolated inputs and four optically isolated

open-collector outputs. The voltage range for these is 5-24VDC. As the

outputs are open-collector, they will need a pull-up resistor tied to the

Opto-supply. The outputs are capable of sinking up to 200mA each.

Note: When an input is not connected to anything, it is seen as logic high.

This allows connecting two IDEA drives without the use of pull-up

resistors.

Note: The inputs can be used in two ways. They can be connected to logic

levels that swing between opto ground and opto supply, or they can be

attached to a switch connected to opto ground. In the second

configuration, when the switch is open, the drive will see this as a logic

 20

high, when the switch is closed, and the input is connected to opto ground,

the drive will see this as a logic low.

Note: When an input is connected to a mechanical switch or relay, a

phenomenon called “bounce” can occur. When the switch contact is

almost closed, several electrical arcs can form. If an input is being used as

an interrupt, each arc will be seen as a rising and falling edge, causing

several false interrupts to trigger. Any input being used as an interrupt

source should only be attached to solid state devices or a switch with

debounce circuitry.

In many cases, it is desirable to test a program that uses the inputs and

outputs without actually connecting the hardware. In the bottom right hand

corner of the user interface, there are eight circles, each representing one

of the I/O. These show the current state of all the inputs and outputs, with a

green filled circle representing logic high, and an empty circle representing

logic low. While a program is not running, or while a program is being used

in the debug mode, these output circles can be clicked to toggle the state

of the outputs.

Simulating Inputs

Since the inputs are controlled externally, under normal circumstances, the

user does not control them through the user interface. If it is desired to

control the inputs through the user interface, the “simulate Inputs” feature

can be accessed through the “Drive Commands” menu. When this feature

is turned on, the actual states of the inputs are ignored and the user

interface tells the drive what state to consider the inputs to be.

Note: The simulate inputs feature cannot be turned on or off while a

program is running.

 21

Debugger

The IDEA user interface has a debugger to help in troubleshooting

programs. The debugger is available in the Realtime mode. Once in the

Realtime mode, the program to be debugged is selected either by the

“Program to Run” drop down or through the “Programs on Drive” menu.

Once the program is selected, the debug feature is started by pressing the

“Start Debug” button. So long as the drive is in debug mode, each program

line executed by the drive is displayed in the debug window. This window

can be cleared at any time by using the “Clear Debug” button. The most

recently executed command is also highlighted in the program area. Debug

mode is exited by either pressing the red “Stop” button, or when the

program ends.

There are two ways of advancing through programs in debug mode, single

step and running to a label. Each time the “Single Step” button is pressed,

the drive executes one command. If the button is pressed multiple times

while the drive is on a “Wait” or “Wait For Move” command, the drive will

not execute multiple commands after the completion of the wait.

When the “Run To Label” button is pressed, the drive begins to execute the

program normally, until the label in the textbox to the right of the “Run To

Label” button is reached. If this label does not exist in the program,

execution will continue until the red “Stop” button is pressed or execution

ends on its own.

Note: When the drive is executing many commands in a row without any

“Wait” or “Wait For Move” commands, the user interface may be slowed

due to the constant communication between the computer and the drive.

In order to aide in readability, as well as documentation, the debug output

can be saved as a text file using the “Save Debug” button.

 22

Encoder

Some versions of the IDEA drive come with an integrated encoder, or can

be interfaced with an external encoder. The IDEA drive offers several

features related to the use of the encoder.

When the encoder feature is in use, the current position in the bottom right

hand corner of the User interface is based upon the encoder, not the

theoretical position based upon the number of steps taken.

The encoder has two modes of operation, “Stall Compensation” and

“Position Verification”. The “Stall Compensation” feature works by keeping

track of how many steps the drive has taken in any given move, and

comparing that with the actual travel based on the encoder feedback. If the

encoder feedback shows that the rotor of the motor is four full steps

behind the theoretical position, the move will be stopped and restarted.

This allows the drive to recover from a stall and complete the assigned

move. Under this option the number of attempts must be entered. For any

given move, the drive keeps track of how many times it has stopped and

retried after a stall condition. The drive will only stop and retry a move as

many times as are specified in the “Correction Attempts” textbox. The user

can choose to have an interrupt trigger if the number of correction

attempts is exhausted and the drive detects another stall. Interrupts are

explained on page 24.

The second mode of operation with the encoder is “Position Verification”.

With this feature, the user specifies some distance called a “Dead Band”.

When this feature is enabled, whenever the motor is at a standstill, the

drive checks to see if the rotor is in within the dead band distance from the

desired position. If within this distance, no action is taken, if outside this

distance, the drive automatically moves to correct the error. This feature is

constantly active, so if the drive has stopped, and something hits the

product, causing it to move out of position, this feature will automatically

correct for the movement.

 23

The minimum size of the dead band equates to +/- 1/8th of a full step. This is

because it is impractical to attempt to accurately position the motor more

precisely than this. What tends to happen with very small dead band

settings is the motor cannot be posited to a position exactly enough to

satisfy the dead band setting, causing a constant vibration in the motor as

the drive tries to seek the correct position. In some applications, 1/8th of a

step may be too precise and result in vibration; in these applications the

dead band will need to be increased.

Both encoder features can be active at once, the stall compensation feature

being used during moves, and the position verification be used at

standstill.

 24

Subroutines

A subroutine is a sequence of commands that can be used from anywhere

in the program. When a subroutine is called, the address of the next

command that was going to be executed is stored on what is called a stack.

When the subroutine is exited using the “Return” command, execution of

the program resumes at the address that was stored on the stack. A

maximum of 10 addresses can be held in the stack. If there are 10

addresses on the stack, and another subroutine is called without a

subroutine completing, a “Stack Overflow” error will be asserted and

program execution will abort. It is up to the user to ensure that stack

overflows do not occur.

Subroutines are exited using one of two commands, “Return” or “Return

to”. When “Return” is used, program execution resumes at the address

stored on the stack. When “Return To” is used, a destination address is

specified. Execution now resumes at the label specified, and the stack is

emptied. The use of “Return to” exits all subroutines at once.

If a “Return” or “Return To” command is used when the stack is empty, a

“Stack Underflow” error will be asserted and execution of the program will

halt. It is the responsibility of the user to ensure that stack underflows do

not occur.

There are two ways in which a subroutine can be called; the simplest is the

“Goto Sub” command. A “Goto Sub” command is used to call a subroutine

from within the program, usually to complete a sequence of commands

which is used repeatedly in the program. The address stored on the stack

when a “Goto Sub” command is used is the address immediately after the

“Goto Sub”.

 25

The second way to call a subroutine is through interrupts. Interrupts can

occur at any time, and are explained in the interrupts section, page 24.

When a subroutine is called by an interrupt, the address stored in the stack

is the address of the command which would have next been executed. If

the interrupt is triggered during a “Wait” or “Wait For Move” command, the

address of the “Wait” or “Wait For Move” command is stored, and if the

subroutine is exited by the “Return” command, the wait is resumed until

it’s completion. Note: If a “Wait” command is interrupted, the time spent

executing the interrupt or interrupts counts toward the “Wait” command’s

delay time.

Interrupts

The IDEA drive has three different types of interrupts, input triggered,

position triggered and encoder triggered. All three operate in the same

fashion, the difference being only how they are triggered.

When an interrupt is triggered, it branches to a subroutine with a specific

priority. All interrupts need two parameters, the label of the subroutine to

be run when triggered and the priority. For more information on

subroutines, see Subroutines, page 22.

The priority of the interrupt determines the order in which any pending

interrupts are serviced. If an interrupt is triggered while a lower priority

interrupt is being serviced, the program immediately begins servicing the

new interrupt. If an interrupt is triggered while an interrupt or equal or

higher priority is being serviced, the new interrupt is put into a queue of

pending interrupts and will be serviced when all higher priority interrupts

have been serviced and any interrupts of the same priority which were

triggered first have been serviced.

 26

There are 5 interrupt queues, one for each priority level, each being 10

interrupts long at most. If there are 10 interrupts in one queue, and another

interrupt of that priority is triggered, the new interrupt will be ignored and

an “Interrupt queue full” error will be asserted.

If an interrupt is reconfigured to trigger a new subroutine when there is an

instance of that interrupt in a queue, the interrupt in the queue will still

execute, but will execute the new subroutine, not the subroutine that the

interrupt was originally configured to jump to. Care should be taken when

programming ensure this does not occur.

Input Triggered: Each input can be configured to trigger an interrupt

through the “Int on Input” button. The “INT” radio button should be

selected for any input which is to be used as an interrupt source.

The trigger type should also be selected. The types are:

Rising edge: Occurs when the input level goes from low to high.

Falling edge: Occurs when the input level goes from high to low.

Both edges: Occurs anytime the input changes state.

Position triggered: Using the “Int On Position” command in a program, an

interrupt can be set to trigger when the motor reaches a specific position.

Encoder triggered: When the “Stall Detection” encoder feature is used, an

interrupt can be triggered when the number of “Correction attempts” has

been exceeded.

Errors

During operation, the user interface may report an error, below is an

explanation of each of these errors.

 27

IO Error: An error occurred when attempting to update the IO: This error

occurs when communications between the drive and user interface is

interrupted. This may happen on occasion when the drive is busy with a

task and temporarily does not respond to the user interface. Press “Retry”.

If the message continues to appear, check all connections.

Stack Underflow: This error occurs when a running program runs to a

“Return” command while not within a subroutine. Check the running

program for ways that the program could get to a “Return” without having

used a “Goto Sub” or an interrupt.

Stack Overflow: This error occurs when 10 or more subroutines are called

without returning. Check the running program to ensure that all

subroutines end with either a “Return” or “Return To”, and that you are not

nesting too many subroutines.

Driver Overtemp: This error occurs when the internal temperature of the

drive exceeds a safe level. Consider moving the drive to a cooler location,

reducing the hold and/or run currents, adding additional heat sinking, or

adding active cooling.

Encoder Error: This error occurs when the encoder encounters a problem,

or when the encoder feature is used without an encoder attached. If you do

not have a unit with an encoder, do not turn on the encoder features. If you

do have a unit with an encoder, and this error continues to occur, contact

Haydon Kerk.

Interrupt Queue Full: This error occurs when a running program

encounters more than 10 interrupts of the same priority without having

serviced any. This could occur due to an interrupt source causing multiple

extraneous interrupts, or by one interrupt subroutine not returning, thus

 28

preventing execution of any other interrupts. Check your interrupt sources,

and ensure that all interrupt subroutines end in a “Return” or “Return To”

command.

Loop Overflow: This error occurs when a running program is in more than

10 “Jump N Times” commands at once. Ensure that the running program

does not nest more than 10 “Jump N Times” commands.

Drive Current Limit: This error occurs when the drive is given a command

with a current setting higher than its capability. Check that when you

entered the user interface you set the correct part number for the motor,

and that the drive you are using is appropriate for that motor.

Bad Checksum, update aborted: This error is most likely caused by

communications being interrupted during a firmware update. Hit “OK” and

attempt to update the firmware again. If the problem persists, contact

Haydon Kerk.

Unknown Error: If you ever receive this error, make a note of what you were

doing at the time, and contact Haydon Kerk.

View Command String

 The IDEA drive can be used without the GUI, by sending serial commands

to it directly from your own programs or devices. In order to help in the

development of these applications, a feature has been created that will

show you the string that will be sent for a given command.

To access this feature, select the “File” menu, then the “Preferences” item,

then “Enable Command Strings”. Once this is enabled, when you are

editing parameters for commands, the string that would be sent to the drive

will appear near the bottom of the window.

 29

For some commands, such as “Goto” and “Goto Sub”, there will be values

that cannot be displayed, because the location of the program on the drive

is not yet known. These values will appear as [Address] and will need to be

calculated based upon where in the final program the destination will

reside, as well as the start page of the program.

 30

Explanation of Commands

Extend/Index CW

The extend command moves the actuator shaft a specified distance

forwards from its current location. When using a rotary motor, this

command rotates the motor clockwise, as viewed from the output shaft.

Parameters

Distance: This is the distance that the actuator will extend.

Speed: This is the top speed at which the actuator will extend.

Run Current: This is the unboosted RMS current per phase that will be

applied to the windings while the actuator extends.

Hold Current: This is the RMS current per phase that will be applied to the

windings when the actuator finishes extending.

Delay Time: This is the time in between when the actuator reaches the last

step in the extend, and when the current is changed to the hold current.

Step Mode: This is the step resolution to be used for this extend.

 31

Accel Rate: This is the rate at which the actuator will be ramped from the

start speed to the run speed. If this is set to 0, then the extend will start at

the run speed.

Decel Rate: This is the rate at which the actuator will be ramped from the

run speed to the end speed. If this is set to 0, then the extend will end at the

run speed.

Start Speed: This is the speed at which the move will start, if an

acceleration ramp is used.

End Speed: This is the speed at which the move will end, if a deceleration

ramp is used.

Accel Boost: If set to yes, during acceleration, the current per phase

applied to the windings will be 30% higher than the set run current, for a

maximum of 300ms.

Decel Boost: If set to yes, during deceleration, the current per phase

applied to the windings will be 30% higher than the set run current, for a

maximum of 300ms.

The following program extends the actuator 1”, and waits for the move to

complete before executing any commands which may follow:

This command is used in example 1.

 32

Retract/Index CCW

The retract command moves the actuator shaft a specified distance

backwards from its current location. When using a rotary motor, this

command rotates the motor counter-clockwise, as viewed from the output

shaft.

Parameters

Distance: This is the distance that the actuator will retract.

Speed: This is the top speed at which the actuator will retract.

Run Current: This is the unboosted RMS current per phase that will be

applied to the windings while the actuator retracts.

Hold Current: This is the RMS current per phase that will be applied to the

windings when the actuator finishes retracting.

Delay Time: This is the time in between when the actuator reaches the last

step in the retract, and when the current is changed to the hold current.

Step Mode: This is the step resolution to be used for this retract.

 33

Accel Rate: This is the rate at which the actuator will be ramped from the

start speed to the run speed. If this is set to 0, then the retract will start at

the run speed.

Decel Rate: This is the rate at which the actuator will be ramped from the

run speed to the end speed. If this is set to 0, then the retract will end at the

run speed.

Start Speed: This is the speed at which the move will start, if an

acceleration ramp is used.

End Speed: This is the speed at which the move will end, if a deceleration

ramp is used.

Accel Boost: If set to yes, during acceleration, the current per phase

applied to the windings will be 30% higher than the set run current, for a

maximum of 300ms.

Decel Boost: If set to yes, during deceleration, the current per phase

applied to the windings will be 30% higher than the set run current, for a

maximum of 300ms.

The following program retracts the actuator 1”, and waits for the move to

complete before executing any commands which may follow:

This command is used in examples 1, 2, 3, 4, 5 and 6.

 34

Move To

The move to command moves the actuator shaft to a specific location,

based upon the internal position counter or encoder.

Parameters

Position: This is the position to which the actuator will move.

Speed: This is the top speed at which the actuator will move.

Run Current: This is the unboosted RMS current per phase that will be

applied to the windings while the actuator moves.

Hold Current: This is the RMS current per phase that will be applied to the

windings when the actuator finishes moving.

Delay Time: This is the time in between when the actuator reaches the last

step in the move, and when the current is changed to the hold current.

Step Mode: This is the step resolution to be used for this move.

Accel Rate: This is the rate at which the actuator will be ramped from the

start speed to the run speed. If this is set to 0, then the move will start at

the run speed.

 35

Decel Rate: This is the rate at which the actuator will be ramped from the

run speed to the end speed. If this is set to 0, then the move will end at the

run speed.

Start Speed: This is the speed at which the move will start, if an

acceleration ramp is used.

End Speed: This is the speed at which the move will end, if a deceleration

ramp is used.

Accel Boost: If set to yes, during acceleration, the current per phase

applied to the windings will be 30% higher than the set run current, for a

maximum of 300ms.

Decel Boost: If set to yes, during deceleration, the current per phase

applied to the windings will be 30% higher than the set run current, for a

maximum of 300ms.

The following program moves the actuator to a point 1” forward from where

the motor was at the beginning of the program, and waits for the move to

complete before executing any commands which may follow:

This command is used in examples 4, 5, and 6.

 36

Go At Speed

The Go At Speed command moves the actuator shaft in a specified

direction at a specified speed.

Parameters

Direction: This is the direction in which the actuator will move.

Speed: This is the top speed at which the actuator will move.

Run Current: This is the unboosted RMS current per phase that will be

applied to the windings while the actuator moves.

Hold Current: This is the RMS current per phase that will be applied to the

windings when the actuator finishes moving.

Delay Time: This is the time in between when the actuator reaches the last

step in the move, and when the current is changed to the hold current.

Step Mode: This is the step resolution to be used for this move.

Accel Rate: This is the rate at which the actuator will be ramped from the

start speed to the run speed. If this is set to 0, then the move will start at

the run speed.

 37

Decel Rate: This is the rate at which the actuator will be ramped from the

run speed to the end speed. If this is set to 0, then the move will end at the

run speed.

Start Speed: This is the speed at which the move will start, if an

acceleration ramp is used.

End Speed: This is the speed at which the move will end, if a deceleration

ramp is used.

Accel Boost: If set to yes, during acceleration, the current per phase

applied to the windings will be 30% higher than the set run current, for a

maximum of 300ms.

Decel Boost: If set to yes, during deceleration, the current per phase

applied to the windings will be 30% higher than the set run current, for a

maximum of 300ms.

The following program moves the actuator for 1 second.

This command is used in example 6.

 38

Stop

The Stop command brings the actuator to a stop with an optional

deceleration ramp. This does not halt program execution.

Parameters

End Speed: This is the speed at which the move will end, if a deceleration

ramp is used.

Decel Rate: This is the rate at which the actuator will be ramped from the

run speed to the end speed. If this is set to 0, then the move will end at the

run speed.

Delay Time: This is the time in between when the actuator reaches the last

step in the move, and when the current is changed to the hold current.

Decel Current: This is the unboosted RMS current per phase that will be

applied to the windings while the actuator stops.

Hold Current: This is the RMS current per phase that will be applied to the

windings when the actuator finishes moving.

Step Mode: This is the step resolution to be used for this move.

Decel Boost: If set to yes, during deceleration, the current per phase

applied to the windings will be 30% higher than the set decel current, for a

maximum of 300ms.

 39

The following program starts a move at 1” per second, waits 0.5 seconds,

and the stops the actuator.

This command is used in example 5.

E-Stop

The E-Stop command brings the actuator to an immediate stop. This does

not halt program execution.

Parameters

Decel Current: This is the unboosted RMS current per phase that will be

applied to the windings while the actuator stops.

Hold Current: This is the RMS current per phase that will be applied to the

windings when the actuator finishes moving.

Delay Time: This is the time in between when the actuator reaches the last

step in the move, and when the current is changed to the hold current.

The following program starts a move at 1” per second, waits 0.5 seconds,

and the stops the actuator.

 40

Jump N Times

The Jump N Times command goes to a specified label a specified number

of times. Once the number of jumps has been completed, execution

continues at the next line in the program, if any exist.

Parameters

Destination: This is the label of the command that should be jumped to.

Number of Jumps: This is how many times the command should jump.

The following program extends .25”, waits for the move to stop, then

repeats 3 times.

Note: Because the command goes to the extend command 3 times from the

jump n times command, the extend is performed a total of 4 times.

This command is used in example 2.

 41

Goto

The Goto command goes to a specified label.

Parameters

Destination: This is the label of the command to which the program will go.

The following program extends .25”, waits for the move to stop, then

repeats until the program is aborted.

This command is used in examples 1, 5 and 6.

 42

Goto If

The Goto If command goes to a specified label if the current states of the

inputs match the specified conditions, and goes to the mext line in the

program otherwise.

Parameters

Destination: This is the label of the command that should be jumped to.

Inputs/Outputs: Each I/O can be specified as High, Low, or not tested. Any

I/O set to "Not Tested" will be ignored; the state of the I/O when the

command is executed must match all settings of high or low in order to go

to the specified label, otherwise, the next line of the program is executed.

The following program extends .25”, waits for the move to stop, then

repeats so long as input 1 is high and input 2 is low.

This command is used in example 5.

 43

Return

The return command ends a subroutine and returns execution to the

location from which the subroutine was called. For further explanation of

subroutines, see Subroutines, page 22.

Parameters

This command has no parameters.

The following program runs a subroutine starting at label extend, which

extends the actuator 0.25”, waits for the move to complete, then returns,

then repeats.

This command is used in example 3.

 44

Return To

The return to command ends a subroutine, clears the stack, clears any

pending interrupts, clears any “Jump N Times” commands, and goes to a

specified label. For further explanation of subroutines, see Subroutines,

page 22.

Parameters

Destination: The label of the command that should be executed next.

The following program runs a subroutine starting at label extend, which

extends the actuator 0.25”, waits for the move to complete, then exits the

subroutine, goes to the abort command, and aborts the program.

This command is used in example 6.

 45

Goto Sub

The Goto Sub command goes to a subroutine starting with the specified

label. For further explanation of subroutines, see Subroutines, page 22.

Parameters

Destination: This is the label of the command that is the start of the

subroutine.

The following program runs a subroutine starting at label extend, which

extends the actuator 0.25”, waits for the move to complete, then returns,

then repeats.

This command is used in example 3.

 46

Wait

The wait command delays execution of the next command in the program

for a specified time.

Parameters

Delay Time: The amount of time that the program should wait.

The following program begins moving the actuator at 1” per second, waits

0.5 seconds, then stops the actuator.

This command is used in examples 1, 3, and 4.

 47

Wait For Move

The Wait For Move command delays execution of the next command in the

program until a move has completed. This command is automatically

added after every Extend, Retract, and Move To, but can be removed if

necessary.

Parameters

This command has no parameters.

The following program extends the actuator 1”, and waits for the move to

complete before executing any commands which may follow:

This command is used in examples 1, 2, 3, 4, 5, and 6.

 48

Int on Pos

The int on pos command sets an interrupt to be triggered when the

actuator reaches a specified position. For further explanation of interrupts,

see Interrupts, page 24.

Parameters

Position: The position, based upon the position counter of the drive, at

which the interrupt should be triggered.

Destination: The label of the subroutine that should be executed when the

position is reached.

Priority: The priority of the interrupts.

Note: If an interrupt is set for a position, and the position counter is

adjusted through the use of the “Set Position” command, the interrupt will

still occur at the same point.

Example: The drive is turned on, and an interrupt is set on position 0.5”.

The “set Position” command is then used, changing what was the 0”

position to the 1” position. The interrupt will now trigger when the drive’s

position counter reaches 1.5”.

 49

The following program sets an interrupt at position 1”, and then begins

extending. When the actuator reaches the 1” position, the interrupt is

triggered and the program aborts.

This command is used in example 6.

Int on Input

The Interrupt on Input command allows an interrupt to be triggered when

any of the inputs are changed. For further explanation of interrupts, see

Interrupts, page 24.

 50

Parameters

Each input has the same parameters.

Disabled/Enabled: Select “Enabled” if the input should cause an interrupt,

select “Disabled” otherwise.

Destination: This is the label for the subroutine associated with the

interrupt.

Trigger Type: If “Falling Edge” is selected, the interrupt will be triggered

when the input goes from a logic high to a logic low. If “Rising Edge” is

selected, the interrupt will trigger when the input goes from logic low to

logic high. If “Both Edges” is selected, the interrupt will trigger any time

the state of the input changes.

The following program sets an interrupt for the rising edge of input 1, and

then loops continuously. When input one changes to logic high, output 1is

set to high.

 51

Encoder

The Encoder command sets the encoder configuration. For more

information on the encoder feature, see Encoder, page 21.

Parameters

Encoder Enabled: If any of the encoder features are to be used, this must

be selected.

Encoder Resolution: This is the resolution of the encoder to be used, in

pulses per channel per revolution, which is equivalent to optical lines when

using an optical encoder.

Stall Compensation: If this is selected, any time the motor stall during a

move, the drive will stop and the move and try again, up to the number of

times specified in Correction attempts.

Correction Attempts: The number of times the drive should attempt any

given move.

 52

Interrupt: Select this if you want an interrupt to be triggered when the drive

has exhausted the correction attempts.

Destination Label This is the label of the subroutine that should be called

when the correction attempts are exhausted.

Priority: This is the priority of the interrupt

Position verification: This should be selected if the position verification

feature is to be used.

Maximum Error: This is the allowable distance from the desired position. If

the drive is farther from the desired position, it will move to correct.

The following program configures the encoder and then extends.

Set Outputs

The Set Outputs command sets the logic state of the outputs.

Parameters

Outputs: Each output is individually set as either high, which will bring the

outputs to the opto-supply voltage, low, which brings the output to the

opto-ground voltage, or no change, which will leave the output in its

current state.

 53

The following program sets output 1 high, waits 0.5 seconds, and then sets

output 1 low. During this outputs 2 3 and 4 are unchanged.

This command is used in example 3.

Set Position

The Set Position command sets the position counter of the drive to the

specified value.

Parameters

Position: The value to which the current position of the drive should be set.

The following program retracts the actuator 1”, sets the position to 0”, and

then moves to the 0.5” position, which causes a 0.5” extend.

This command is used in examples 4, 5, and 6.

 54

Reset

The Reset command restarts the drive, similar to turning the drive off and

on. If used in a program, this command will not be executed less than 1/10th

of a second after the drive has seen a reset, in order to prevent an

uninterruptible cycle of resets.

Parameters

This command has no parameters.

The following program resets the drive.

Abort

The abort command immediately stops any moves without deceleration,

applies the last specified holding current and halts execution of any

running program.

Parameters

This command has no parameters.

The following program aborts the program

 55

This command is used in examples 3 and 6.

Comment

The comment command performs no action. This command is used to add

extra information into a program for better documentation. Each comment

line affords an additional 30 characters of comments. This command can

also be used to add breaks between sections of code, making it more

readable.

Parameters

This command has no parameters.

The following program performs no actions.

 56

Programming Examples

Because of the variety of actuators that this product can be used with,

examples for every product, or a general example for all products cannot

be achieved. All of the following examples assume the use of a Haydon

Kerk 43MGC-2.33 double-stack captive linear actuator with 1 inch stroke.

Speeds, distances and other parameters will need to be changed for your

particular actuator.

Note: For simplicity, most examples assume the actuator starts in the full

retract position.

Example One: Extend the actuator 0.4 inches, wait one second, retract

the actuator 0.2 inches, wait one second, extend the actuator 0.6 inches,

wait 1 second, retract the actuator 0.8 inches, wait 1 second, and repeat

from the first extend indefinitely. Let the linear speed for each move be 1

inch per second.

We first want to extend 0.4 inches.

 Click the “Extend” button.

 Input the distance as 0.4 inches.

 Input the speed as 1 inch per second.

 All other parameters can be left as the defaults.

 Enter “Start” as the label.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

Note: You will notice that when the extend command populates in

the program field on the screen, that it is followed by a second

command that states “Wait For Move“. This is also true when using

the Retract and Move To commands. This is a command to allow the

move to finish before execution of the next command.

 57

We now want to wait 1 second before moving again.

 Click the “Wait” button.

 Input the delay time as 1 second. No label or comment is necessary.

 Click “Add At End”. This places this command into the program.

We now want to retract 0.2 inches.

 Click the “Retract” button.

 Input the distance as 0.2 inches

 Input the speed as 1 inch per second

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

We now want to wait another second.

 Click the “Wait” button.

 The delay time will be 1 second, as previously entered. No label or

comment is necessary.

 Click “Add At End”. This places this command into the program.

We now want to extend 0.6 inches.

 Click the “Extend” button. As before, many items are already

populated. This time the distance and speed are also populated.

 Input the distance as 0.6 inches

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

We now want to wait one second.

 Click the “Wait” button.

 58

 The delay time will be 1 second as previously entered. No label or

comment is necessary.

 Click “Add At End”. This places this command into the program.

We now want to make the final move of retracting 0.8 inches.

 Click the “Retract” button.

 Input the distance as 0.8 inches

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

We now want to wait one second.

 Click the “Wait” button.

 The delay time will be 1 second as previously entered. No label or

comment is necessary.

 Click “Add At End”. This places this command into the program.

We now want to repeat.

 Click the “Goto” button.

 Enter the destination as “Start”.

 Click “Add At End”. This places this command into the program.

The completed program looks as follows:

 59

 60

Example Two: This example will extend the actuator .5”, retract the

actuator .5”, then repeat those two moves 4 more times. Once the

repetitions are complete, the actuator will extend 1”. Let the linear speed

for each move be 1 inch per second.

We first want to extend 0.5”.

 Click the “Extend” button.

 Input the distance as 0.5 inches.

 Input the speed as 1 inch per second.

 All other parameters can be left as the defaults.

 Enter “Start” as the label.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

Note: You will notice that when the extend command populates in the

program field on the screen, that it is followed by a second command that

states “Wait For Move“. This is also true when using the Retract and Move

To commands. This is a command to allow the move to finish before

execution of the next command.

We now want to retract 0.5”.

 Click the “Retract” button.

 Input the distance as 0.5 inches

 Input the speed as 1 inch per second

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

We now want to repeat the first two moves four times.

 61

 Click the “Jump N Times” button.

 Enter the destination as “Start”

 Enter the number of jumps as 4.

 Click “Add At End”. This places this command into the program.

We now want to extend 1”.

 Click the “Extend” button.

 Input the distance as 1”.

 Input the speed as 1 inch per second.

 All other parameters can be left as the defaults.

 No Label is required

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

The completed program looks as follows:

 62

Example Three: This example will extend the actuator .5”, turn all four

outputs high, wait .5 seconds, turn all outputs low, retract the actuator .5”,

turn all four outputs high, wait .5 seconds, turn all outputs low, then end

the program. We will accomplish this by using a subroutine.

We first want to extend 0.5”.

 Click the “Extend” button.

 Input the distance as 0.5 inches.

 Input the speed as 1 inch per second.

 All other parameters can be left as the defaults.

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

 63

Note: You will notice that when the extend command populates in the

program field on the screen, that it is followed by a second command that

states “Wait For Move“. This is also true when using the Retract and Move

To commands. This is a command to allow the move to finish before

execution of the next command.

We now want to use a subroutine to toggle the outputs on and off.

 Click the “Goto Sub” button.

 Enter the destination as “Toggle”

 No label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

We now want to retract 0.5”.

 Click the “Retract” button.

 Input the distance as 0.5 inches

 Input the speed as 1 inch per second

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

We now want to use a subroutine to toggle the outputs on and off.

 Click the “Goto Sub” button.

 Enter the destination as “Toggle”

 No label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

We now want to stop the program.

 Click the “Abort” button.

 64

 Input the distance as 1”.

 Input the speed as 1 inch per second.

 All other parameters can be left as the defaults.

 No Label is required

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

Now we have the main body of the program, but we still need the “Toggle”

subroutine.

 Click the “Set Outputs” button.

 Select “High” for each of the four outputs.

 Enter “Toggle” as the label

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

Now we need to wait 0.1 seconds.

 Click the “Wait” button.

 Enter 0.5 seconds as the delay time

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

Now we need to set the outputs low.

 Click the “Set Outputs” button.

 Select “Low” for each of the four outputs.

 No label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

 65

Now we need to return to the main body of the program. To go back to

where the subroutine was called from, we use a “Return” command.

 Click the “Return” button.

 No label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

The completed program looks as follows:

 66

Example Four: This example is different in that the actuator does not

need to start in the fully retracted position. We will perform a homing

routine, to find the fully retracted position, and then move to 0.5” from that

point, wait 1 second, and then return to the fully retracted position.

We first want to retract the full stroke of the actuator.

 Click the “Retract” button.

 Input the distance as 1 inch.

 Input the speed as 0.5 inch per second.

 Select “1/4” as the step mode.

 All other parameters can be left as the defaults.

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

Note: You will notice that when the retract command populates in the

program field on the screen, that it is followed by a second command that

states “Wait For Move“. This is also true when using the Extend and Move

To commands. This is a command to allow the move to finish before

execution of the next command.

We are now at the fully retracted position; to keep track of this we will use

the “Set Position” command.

 Click the “Set Position” button.

 Enter a position of 0”.

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click “Add At End”. This places this command into the program.

 67

We now want to move to the 0.5” position.

 Click the “Move To” button.

 Enter a position of 0.5”.

 Enter a speed of 1” per second.

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

We now want to wait 1 second.

 Click the “Wait” button.

 Enter a delay time of 1 second.

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click “Add At End”. This places this command into the program.

We now want to move back to the 0” position.

 Click the “Move To” button.

 Enter a position of 0”.

 All other parameters are populated.

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

The completed program looks as follows:

 68

 69

Example Five: In this example, we will first find the fully retracted

position of the actuator, then the actuator will move to the 0” position if

input 1 is high and input 2 is low, move to the 1” position if input 1 is low

and input 2 is high, or stop if inputs 1 and 2 are both high, or both low.

We first want to retract the full stroke of the actuator.

 Click the “Retract” button.

 Input the distance as 1".

 Input the speed as 0.5 inch per second.

 Select “1/4” as the step mode.

 All other parameters can be left as the defaults.

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

Note: You will notice that when the retract command populates in the

program field on the screen, that it is followed by a second command that

states “Wait For Move“. This is also true when using the Extend and Move

To commands. This is a command to allow the move to finish before

execution of the next command.

We are now at the fully retracted position; to keep track of this we will use

the “Set Position” command.

 Click the “Set Position” button.

 Enter a position of 0”.

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click “Add At End”. This places this command into the program.

We now move based on the input status. Set up the first “Goto If”

 70

 Click the “Goto If” button.

 Enter “Retract” as the destination.

 Set Input 1 is “High”

 Set Input 2 as “Low”

 Set Inputs 3 and 4 as “Not Tested”

 Enter “Test” as the label.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

Set up the second “Goto If”

 Click the “Goto If” button.

 Enter “Extend” as the destination.

 Set Input 1 is “Low”

 Set Input 2 as “High”

 Set Inputs 3 and 4 as “Not Tested”

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

If we reach this line, then either both inputs are high, or both inputs are

low. So we want to stop the actuator.

 Click the “Stop” button.

 All parameters can be left at the defaults.

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

We now want to check if the input conditions have changed, so we go back

to the Goto Ifs.

 Click the “Goto” button.

 71

 Enter “Test” as the destination.

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in

program.

We now need the commands that will be used to move the actuator. We will

start with the “Retract” move.

 Click the “Move To” button.

 Enter a position of 0”.

 Enter “Retract” as the label.

 You can add a comment in the comment line if you wish.

 Click “Add At End”. This places this command into the program.

We now want to check if the input conditions have changed, so we go back

to the Goto Ifs. We don’t want the move to finish before we check the

inputs again, so we will remove the “Wait For Move” command.

 Click the line that holds the “Wait For Move” command

 Click the “Remove” button

 Click “Yes” to confirm the removal of the command.

 Click the “Goto” button.

 Enter “Test” as the destination.

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in

program.

We will next add the “Extend” move.

 Click the “Move To” button.

 72

 Enter a position of 1”.

 Enter “Extend” as the label.

 You can add a comment in the comment line if you wish.

 Click “Add At End”. This places this command into the program.

We now want to check if the input conditions have changed, so we go back

to the Goto Ifs. We don’t want the move to finish before we check the

inputs again, so we will remove the “Wait For Move” command.

 Click the line that holds the “Wait For Move” command

 Click the “Remove” button

 Click “Yes” to confirm the removal of the command.

 Click the “Goto” button.

 Enter “Test” as the destination.

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

The completed program looks as follows:

 73

 74

Example Six: In this example, we will first find the fully retracted position

of the actuator. The actuator will continuously move in the extend

direction, until getting 0.9” from the fully retracted position. When the 0.9”

position is reached, the actuator will retract back to the 0” position, and

resume the extend. If at any time during the program, input 1 changes

state, the program will abort.

We first need to set up the interrupt triggered by the input.

 Click the “Int on Input” Button.

 Select “Enabled” for Input 1 Interrupt

 Enter “Abort” as the destination.

 Select “Both Edges” as the trigger type.

 Select “0-Highest” as the priority.

 Click the “Add At End” button. This places the command in

program.

We now want to retract the full stroke of the actuator.

 Click the “Retract” button.

 Input the distance as 1".

 Input the speed as 0.5 inch per second.

 Select “1/4” as the step mode.

 All other parameters can be left as the defaults.

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

Note: You will notice that when the retract command populates in the

program field on the screen, that it is followed by a second command that

states “Wait For Move“. This is also true when using the Extend and Move

 75

To commands. This is a command to allow the move to finish before

execution of the next command.

We are now at the fully retracted position; to keep track of this we will use

the “Set Position” command.

 Click the “Set Position” button.

 Enter a position of 0”.

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click “Add At End”. This places this command into the program.

In order to force the actuator to go back to the 0” position when the 0.9”

position is reached, we will use an interrupt based on position.

 Click the “Int On Pos” button.

 Enter a position of 0.9”.

 Enter “Retract” as the destination.

 Select “1” as priority.

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click “Add At End”. This places this command into the program.

We now want to begin moving.

 Click the “Go at Speed” button.

 Select “Extend” as the direction

 Enter 1” per second as the speed.

 Enter “Extend” as the label.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

We now want to continuously loop onto the “Go At Speed” command.

 76

 Click the “Goto” button.

 Enter “Extend” as the destination.

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

We now need the interrupt subroutines. We will start with the interrupt

subroutine for the interrupt based on position.

 Click the “Move To” button.

 Enter a position of 0”.

 Enter a speed of 1” per second.

 Enter “Retract” as the label.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in program.

We now need to exit the subroutine.

 Click the “Return To” button.

 Enter “Extend” as the destination.

 No Label is required.

 You can add a comment in the comment line if you wish.

 Click the “Add At End” button. This places the command in

program.

We now need a subroutine for the interrupt based on the input.

 Click the “Abort” button.

 Enter “Abort” as the label.

 You can add a comment in the comment line if you wish.

 Click “Add At End”. This places this command into the program.

The completed program looks as follows:

 77

 78

The IDEA Drive Menu Items:

 File: This menu gives access to functions for manipulation of

program files and the User interface itself.

1. New: Clears the current program so a new program can be

written.

2. Open: Opens a previously saved program file.

3. Save: Saves the current program to a file.

4. Add File: Adds a previously saved program file to the end of the

current program.

5. Recover Autosave: Opens the most recently autosaved file.

6. Print: Prints the current program

7. Preferences: Contains options for GUI behavior.

8. Restart: Exits the user interface and opens a new user interface.

9. Exit: Closes the user interface.

 Edit: This menu gives access to functions for manipulating the

current program.

1. Undo: Restores the program to what it was before the last action.

2. Redo: Restores the program to what it was before an undo.

3. Cut: Removes a selected line or lines from the program and

copies them to be pasted later.

4. Copy: Copies a selected line or lines to be pasted later.

5. Paste: Inserts previously copied lines into a program.

6. Select all: Selects all lines of the program.

 Mode: The third menu item toggles between the Realtime Mode and

Program Mode.

 79

 Drive Commands: This menu allows access to various drive

functions.

1. Display Table of Contents: Gives a listing of the programs on

the drive and their page locations. Also provides a graphical

representation of the used space in the drive.

2. Set Startup Program: Used to choose what program, if any,

should begin execution when the drive starts up.

3. Delete Program: Used to remove programs from the drive.

4. Input Simulation: This item toggles the drive between using

the true input status, or the simulated status through the user

interface

5. Set Drive Address: Used to change the address of the current

drive.

6. Set/Change Password: Used to configure the password of the

drive.

7. Restore Factory Defaults: Removes password protection from

the drive, and removes all programs on the drive.

8. Firmware Version: Used to find the firmware version of the

drive.

9. Update Firmware: Used to reprogram the drive with the

firmware version that was most recent when the user interface

was installed.

 Communications Mode: Opens the communications mode dialog

box. This allows for switching between the for communications

modes.

 Programs on Drive: Shows a list of the programs that are on the

drive. Clicking on a program loads that program to the program area.

The startup program, if one exists, appears in bold on this list.

 80

 Help: Allows access to information about the user interface and

drives.

1. About: Displays a brief description of Haydon Kerk and its

products.

2. User’s Manual: Displays this manual.

3. Communications Manual: Opens the communications manual.

4. Hardware Manuals: Manuals for individual products.

 81

Glossary:

Abort: Stops movement of the actuator with holding current and ends any

running program.

Accel Boost: When set to “Yes”, the move profile will include a 30%

increase in RMS current per phase during the beginning of the acceleration

ramp.

Accel Rate: The acceleration rate to be used with a move.

Clear: Clear the entire program from the program screen

Comment: Allows the user to insert comments within the program

Copy: Allows the user to copy a given program line or lines and insert them

elsewhere in the program

Current position box: Indicates the current position of the motor

Decel Boost: When set to “Yes”, the move profile will include a 30%

increase in RMS current per phase during the end of the deceleration ramp.

Decel Rate: The deceleration rate to be used with a move.

Delay Time (in reference to a move): The time between when the last step in

a move profile is taken, and when the current it set to the hold current.

Delay Time (in reference to a “Wait” command): The amount of time that

the wait command should delay execution of the next command.

Destination: The address to which the program should branch.

Distance: How far a move should go.

Download: Allows the program to be downloaded into drive

E-Stop: Abruptly stops the actuator without any deceleration

Encoder: A feedback device that converts position data to an electronic

signal that the drive keeps track of.

End Speed: The speed at the end of a move profile; determines the time

between the last and second to last step.

Extend: Extends the actuator shaft forward. The user inputs the distance

and speed. Items such as run current and hold current are auto populated

based on the part number of the actuator. These values can be over ridden

provided the inserted value does not exceed the devices limitations.

 82

Go at Speed: Extends or retracts the actuator at a given speed.

Goto: Branching statement for programming. Branches to a destination

label.

Goto if: Branching statement for programming. Branches to a destination

label if the input conditions are met.

Goto Sub: Branching statement for programming that navigates the

program to a subroutine.

Hold Current: The RMS current per phase that should be applied to the

motor windings when the motor is at a standstill.

I/O box: Displays the state of each general purpose I/O.

Int on Input: Interrupt on Input. This is an interrupt tha occurs when an

input changes state.

Int on Pos: Interrupt on Position. This is an interrupt that occurs when the

actuator reaches a specific position.

Interrupt: An asynchronous event that causes the execution of a

subroutine.

Jump N times: Allows the program to jump N times to a specified label

Label: A string that identifies a command. Used to branch to the command.

Move to: Moves the actuator to a specified position.

Paste: Used in conjunction with the copy or cut functions. After one or

more commands are selected, another location in the program is then

highlighted by the user. The paste button is then pressed and the line or

lines are inserted above the highlighted line.

Plot: Any move can be shown as a plot of speed vs time. Highlight the

move command of interest then press the plot button.

Position: A location based upon the drive’s internal position counter, or

encoder counter, when enabled.

Priority: The determining factor in which interrupts are serviced first.

Program name box: This is the location on the screen where the name of

the program is inputted by the user. The program is stored in the drive

under this name.

 83

Program to run box: This is a drop down menu that list the programs

stored on the drive. Double clicking on a given name populates the

program into the program screen and creates that program as the active

program in the drive.

Remove: This is used to remove one or more lines from a program.

Highlight the lines to be removed. Then click the remove button.

Reset: This command simulates turning the drive off and on again.

Retract: Retracts the actuator shaft. The user inputs the distance and

speed. Items such run current and hold current are auto populated based

on the part number of the actuator. These values can be over ridden

provided the inserted value does not exceed the devices limitations.

Return: Used in conjunction with the goto sub command or interrupts. At

the end of a subroutine the “return” command returns to the program to

the very next line after the Goto sub line command, or the command that

was going to be executed before the interrupt was triggered.

Return to: Used in conjunction with the goto sub command or interrupts. At

the end of a subroutine the “return to” command returns to the command

at a specified label location.

Run Current: The RMS current per phase to be applied to the motor

windings during a move.

Set outputs: Allow the programmer to set general purpose outputs.

Set position: Used to change the current position. Using this command the

position counter can be adjusted, usually after a homing routine. Then

other commands such as “move to” or “interrupt on position” can be used

in relationship with this set position.

Speed: The desired top speed for a move.

Start (Large green button): Starts running a program.

Start Speed: The speed that a move profile should start at; determines the

time between the first and second step.

Step Mode: Sets how many microsteps are taken for each full step of the

motor.

 84

Stop: Stops the movement of the actuator with a specified deceleration

Stop (Large red button): Immediately stops the motor and program when

pressed.

Subroutine: A section of code used that is entered by using an interrupts,

or the “Goto Sub” command. Subroutines must end with a “Return” or

“Return To” command.

View / Edit: After highlighting a specific line in a program, the “View / Edit”

button can be pressed causing the details for that line to display. These

details can then be modified and updated.

Wait: Allows the programmer to put in a time specific time delay.

Wait for move: Delays execution of the next line of the program until the

motor has come to a stop.

	IDEA Drive Software User Manual
	Table of Contents
	Revision History
	Introduction
	Part Numbers
	IDEA Drive Software Basics
	Startup
	Getting Started
	Drive Startup

	Features and Concepts
	Unit conversion
	Communications Modes
	Maximum Speed
	Ramping
	Saving Programs to the Drive
	Removing Programs
	Table of Contents
	Startup Program
	Saving/Loading/Combining Programs
	Autosave
	Over Current Protection
	Accel/Decel Current Boost
	Password Protection
	Inputs and Outputs
	Debugger
	Encoder
	Subroutines
	Interrupts
	Errors
	View Command String

	Explanation of Commands
	Extend/Index CW
	Retract/Index CCW
	Move To
	Go At Speed
	Stop
	E-Stop
	Jump N Times
	Goto
	Goto If
	Return
	Return To
	Goto Sub
	Wait
	Wait For Move
	Int on Pos
	Int on Input
	Encoder
	Set Outputs
	Set Position
	Reset
	Abort
	Comment

	Programming Examples
	Example One
	Example Two
	Example Three
	Example Four
	Example Five
	Example Six:

	The IDEA Drive Menu Items:
	Glossary:

