SMI* Introduction

\
- ".: '
| . S} - f .
QU’C ( ! a & , . d e Install the SMI Software Establish Communication SMI Tools SMI Standard Control Interface

an_ e Tﬁf ' ™ To establish communication between the PC and SmartMotor, use :
Sy ok N 1 : . e . Menu bar TR o e i b =
.- fo r Cl - 9 .5 Y oo r m: Download SMI from the Find Motors button. , . pen® e e eh

animatics.com/smi, then follow the on-screen SMI Tools offer an array of
SMARTMOTOR instructions to complete the installation. . . . /i.
gl i oy ; advanced functionality for

. INTERFACE Pl Db Vs Db ey
SMI_3_x.msi e e the application developer.
e [T ‘;,j:_"',,'_“"““‘ = For instructions, refer to L A
e . = oo N\l SMI's online help or see the | cou i
mm;mhmmm : ' : _ BE . SmartMotor Developer's © s

Configuration
window

Since

Terminal /
window

Program /

editor

TH

L

o Talte e’ § 11 SR .
vertion 3.0.0.29 [with integMotonntersce 1.1.5.5) - s B, : | P N —— Guide.

I TERERERRNEARTT

aegl
g

e e Information
Hemp DFsaF o ED window

mad | sl w)

Jiestmresifer s glezeesitl Menu bar: All of the windows and functions of the SMI software
the motor icon appears, indicating

the hardware connections and = ' can be _accessed throug_h the menu bar. Many of these are also
software installation are correct. accessible through the icons on the toolbar.

B SmanMator Inteace Setup - - -- , o — - Toolbar: Used for accessing the primary features of the SMI
Welcome to the SmartMotor B = T — e A software. Depending on the current state of the SMI software

R e Ma, Y.

Interface Installation Wizard i [ ; i e edhadhadle and the currently active window, some toolbar buttons may be

It stronghy recommensled that you et all'Windown programy ' . g i m - disabled.

Lo nuarwang thes pebugy poogram. Do =T
- = ] T iy T E a a f S .
R T R T o e ey [ % - s — op e Configuration window: Displays all connections to PC, all

o v e, G, N b cuntane e ot 3% Pt | Vgt s s motors connected to PC, and status on all motors.
. ) ] . WIBFIHING: This progean is pestectid by copysight baw and re = ot o o Vit o [ o ot oM | o mar o . . . .
For complete installation and programming details, see rirsnopces esves : pool Gl 00 B e S8 Fami s o Terminal window: Used to directly access real-time command

™ f L = . il Lol o1 L ] . J,r @ﬁ?‘?ﬁ_ﬁ:ﬁwﬁl
the Class 5 SmartMotor™ Installation and Startup Guide L P | S &y et L/ = = " | [S and control of the motor.

= y T puetion ol oL may 1l el ared cenmnal penales. ared R i :
and the SmartMotor™ Developer's Guide. e et e e i i : : : e Hamkn @

I I g el | Fadleg

. : ¥ Program editor: Used to manage, edit and print the user
'n - i s : program that will be sent to the motor.

Double-click the

ik Carcel ' ' - motor icon. The Motor View shows . Information window: Display the results of user operations.
key information, including position,

I
‘ > firmware version and model.

IJV[ATI CD

*SMI: SmartMotor™ Interface

Basic Wiring Basic Operating Instructions I1/0 Control and Application
Enter the following in the Program Editor window.

Single RS-232 Communication Send Commands to the Motor I/O Configuration Instructions I/O Control Program Example

Use the Terminal window to enter single commands. EIGN(W,0) ‘Disable hardware limits The SmartMotor has seven pins (/O 0 - 6)

— P —— s Clearall current faults to provide digital input (DI), digital output 000006000 I/O Applications Introduced
SmartMotor Combo Connector PC RS-232 Connector e Type the Clears e posiive and MP ‘Set position mode (DO) and analog input (Al); the following is a (15Y14Y13Y1 21111101 0 ) PP

- --a--':n.“_f:.:h-.:t-u'l » d: negative limits ADT=100 'Set accel/decel target . . K 'Di imi
: - 2‘,’,;;“’"" g Clears all current faults VT=32768 'Set velocity target description of the SmartMotor 15-pin I/O: EISGN(W'O) Djsable hardware limits

'Clear all current faults

be PRT=4000 'Set relati\_/e position target
| " Limits are enabled by default. Class 5 motors ¢ Start mofion OR (4) 'Reset 1/0 port 4 output OFF (0V)

are designed to use normally closed (NC) limit TWAIT "Wait for the previous action to complete, then continue
switches for safety. WAIT=1000 ‘Set wait time (1sec=1000) 15 PIN D-Sub I/O GOSUB (1) "Execute C1 'Move to sensor’ subroutine

1 2 -, Il i " " . . g
Al A2 s S Eoh ot VO -0 GPorEnoAorStep put /10 RS-232 Transmit R R e e A
HOE ¢ 1/0 — 1 GP or Enc B or Direction Input For -CDS/7, CAN-L only . gexecute the code within T
I/0O — 2 Positive Over Travel or GP 11 RS-232 Receive; VT=500000

I/0 — 3 Negative Over Travel or GP For -CDS/7, CAN-H only /(\sDT=1OO
/0 -4 GP, IIC or RS-485 A (Com ch. 1) [|12 +5 VDC Out WAIT=1000 'Pause 1 second

I/0 -5 GP, IIC or RS-485 B (Com ch.1) ||{13 Common Ground (typ. SIG Ground) GOSUB (2)  'Execute C2 "Toggle I/0 port output' subroutine
/O -6 GP, Index Input or “G” Command ||14 Common Ground VT=-VT/2 'Reverse direction and run at 1/2 previous velocity

. . ) . Phase A Encoder Output 15 Main Power: +20-48 VDC; if DE option, ADT=100
Terminal Window - Sending Control Commands to the Motor Phase B Encoder Output Control Power separate from Main Power G

7 Pin Combo D-Sub Connection Vet Halorsseconds WAIT=1000 'Pause 1 second -
Position Mode introduced G GOSUB (2) 'Execute C2 'Toggle I/O port output' subroutine
“G” Command: . NOTES:
1/10-6 GP, Index |nput or “G” Co and, MP Set Position Mode (default power-up mode)

ADT=100 Set acceleration to 100 (1 rev / sec * 2 = 4, default is 0) WAIT=100073 Dt o s T +1/0 2 — Positive overtravel limit (for the CW direction of motor shaft) ENDIF End of the IF structure
FOI" 'CDS?, CAN'L Only VT=32768 Set speed to 32768 (1 rps = 32768 = 60 rpm, default is 0) TWAIT 'Wait for the previous action to complete, then continue « 1/0 3 — Negative overtravel limit (for the CCW direction of motor shaft) 'End of the WHILE loop
PRT=4000 Set the relative position of 4000 (1 rev = 4000, default is 0) MT Set torque mode

. > = . +1/0 6 — Enables motor movement (equivalent to the G command)
+5 VDC Out; For -CDS7, CAN-H onl G Start motion ‘(r; 1601 Set torque . . _ .
’ ’ y RPA Returns the absolute position of the motor « /O ports input impedance = 5 kohm (5 kohm pull-up resistor)

RS-232 Transmit (TX) 0=0 The current position set to 0 WAIT=1000"3 "Wait for 3 seconds * GP 1/0O 0-6 are 25 mAmp Sink or Source, 10 Bit 0-5 VDC A/D ' ‘Move to sensor' subroutine

PT=40000 Set the absolute position of 40000 (10rev) -(r;=1761 Settorque "Motor will move in one direction until input 1 goes high

RS-232 Receive (Rx) VT=327680 Set speed to 327680 (10revis) 'Velocity Mode

: = * "Wai A 'Set accel and decel target
S Start motion " T 00 'é\gﬂt;?;jeseconds More programs are available at 'Set velocity target
Common Ground (typ SIG Grou nd) RPA Returns the absolute position of the motor G imati / le- . . OUT(3)=0 ‘Set output 3 low to indicate motion
. ) animatics.com/sampie-programs |/O Confl uration Example , !
M . P +20 48 VDC Velocity Mode introduced g p G Start moving
. - : WAIT=1000*3 'Wait for 3 seconds
aih Fower. 4 St oo e o128t Set torque WHILE IN(1)==0 "While input 1 is low, keep moving

G Start motion —~1000* Wait for n
A2 Common Ground (I"eq’d. POWER Ground) VT=VT/2 Set half the rate of speed ivAIT 1000 "é)V:cte:ﬁoBstsoepco o (Use Pin 5, (Use Pin 1, NPN Sensor LOOP

G Start motion END Program end 1/0 4 for Output)  1/0 O for Input) (Ex: OMRON EE-SX671) OUT(3)=1 'Set output 3 high to indicate stop
VT=-VT Motor reverse X 'Decelerate to a stop

The following commands can be entered in the Terminal window. TWAIT "Wait for the previous action to complete, then continue

WAIT=1000
Power Ground NOTE' Comments on Wh|te background are for information Only PRINT(“Current Position=*,PA #13) 'Show the actual position, then go to the next line

Mv 'Set velocity mode
and cannot be typed. ©

+20 to +48 VDC WAIT=1000"4 "Wait for 4 seconds

VT=VT/2

G

O©CoO~NOOPAWN =

. Start motion O
9 PIN RS-232 Connection Motor decelerates to a stop WHILE IN(1)==1 "While input 1 is high, don't move
Torque Mode introduced LOOP

2 RS-232 Receive (Rx) Set Torque Mode Download Program to the SmartMotor

. Set the torque to ~5% (range +/- 32767)
3  RS-232 Transmit (Tx) Start motion B
5 RS-232 Ground (Gnd)

OUT(3)=0 'Set output 3 low to indicate motion
G 'Start moving again

@

(Out)Black
(+)Brown

—
i

Motor reverse e RETURN

= i e i
Start motion DwWy R TR L
Double the commanded torque o it | i et
Start motion D i R | ; ae e ] 0S (4) 'Set I/0 port 4 output ON (5V)
Motor decelerates to a stop . e . e 0 6 e o o 9 o € port 4 outpu
" . ; ; " Insty WAIT=2000 'Pause 2 seconds
NOTE: Do not reverse the positive and negative leads e ariabie a valus [0 123 o : S e e OR (4) ‘Reset /0 port 4 output OFF (0V)
Click 'Compile and Download . sl (15014Y13)12)11J101 9] WAIT=2000 ‘Pause 2 seconds

XO-Ho

from the power supply. Returns the value of a variable .
& 20 Set variable b value to the variable a plus 2 Program' then click 'Run’ or 'Reset' RETURN

High-speed operation of the application requires 48 Returns the value of variable b or power the motor off/on. The

. Turn off power to the motor coils and terminate motion . .
VDC Input. Total reset, equivalent to power off and then on motor will aUtomatlca"y run the
program.

Wiring diagram example



http://animatics.com/smi
http://animatics.com/sample-programs

I/0 Control and Application Multi-Axis Control Instructions

Application of the Basic Program Flow
Motor to Follow the Movement and the

Analog Input Application Example Use of Electronic Gearing

Type the following commands in the Terminal window.

Basic Logic Structures
IF, ELSEIF, ELSE, ENDIF structure:

Torque Control Mode

IF a<b MT 'Enter Torque Mode

PRINT ("a is less than b", #13) T=16000 'Set torque value
ELSEIF q==123 G 'Go
PRINT ("q equals 123", #13) WAIT=500

ELSE 'if no condition above was true - " —"
PRINT ("nothing above was true", #13) OEIGN(W,0) All motors, set local I/0 in word 1 as gen-use, disable travel limits

ENDIF WHILE VA > 5000 "While moving faster than 1 RPM 0ZS All motors, clear all current faults
LOOP OMP All motors, set to position mode

0ADT=500 All motors, set accel/decel to 500 (4 = 1 rev/ sec * 2)
0VT=32768 All motors, set velocity target 32768 (32768 = 1rps = 60 rpm)
a=0 MP 'Enter Position Mode OPRT=4000 All motors, set position relative target 4000 (4000 = 1rev)
WHILE a1<1 0 ADT=100 'Set Accel/Decel Value All motors, start motion
a=a+ _ , . Motor 1, report the position
LOOP VT=3200 Set Velocity - Motor 2, report the position
PRINT (“loop code executed 10 times”, #13) PT=-400 ‘Set target position All motors, set current position to 0
G 'Go Motor 1, set to velocity mode
Motor 1, set velocity target 300000
Motor 1, set accel/decel to 25
Motor 1, start motion
Motor 1, slow motion to stop
ELSEIF b>c Motor 1, set velocity target -100000

GOSUB5 END Motor 1, start motion
ENDIF Motor 1, slow motion to stop

GOTO6 Watchdog for Serial Communication Based off Motor 2, set o torque made

q g c5 Motor 2, set torqug 1600
Master Encoder outputs on pins 8 and 9, Slave receives PRINT (s greater than ¢ #1%) Interrupts and TMR Command Motor 2, start motion
'Setup portion of code

) » ) external Encoder signals on pins 1 and 2. RETURN Motor 2, slow motion to stop
Changes in Motor Position Using Analog Input c6 'Set up watchdog timer: Interrupt 0, Word 4, Bit 0, trigger low, subroutine 88

Motor 2, set velocity target -1280
END ITR(0,4,0,0,88)

NOTE: Comments on white background are for information
only and cannot be typed.
Master Motor Slave Motor

Terminal Window - Sending Commands to Multiple Axes

'Give the motor time to start moving

Variable resistor: 1KQ

J
J

WHILE, LOOP structure:

Set a connection as
Analog Input
b=INA(V1,0)

(The analog value
stored in variable b)
V1=0...5000mV

SA7X6X5/04X3X2)X1
15X14X13X12X11X10X 9

7X6,(5X4X3X2X1
15X14X13X12011X10X 9

GOTO, GOSUB structure:

C1 TWAIT
IF a>b

GOTO1

'Wait for move to complete
PRINT("Move complete",#13)

0006006000
121 %1331 281 14108 o

\

Q;

Motor 2, start motion
Motor 2, slow motion to stop

'Start the timer 0 for 1 second
TMR(0,1000)

SWITCH, CASE, BREAK structure:
SWITCH v
CASE 1

VT= 100000
ADT=100 :Set acceleration PRINTC v = 1 "#12) “Turn on the interrupt
WHILE 1 Loop (1 for infinite loop) '(Shows use of MFO, MFDIV and MFMUL) BREAK EITR(0)
b=INA(A,0) 'Declare I/O for the Analog CASE 2 . . TRE
input, and receive value into EIGN(W.0) PRINT("v=2"#13)

:vanable b 'disable travel limits CASES
A=0...32767 VA 'Clear all current faults BREAK
' _ MFO 'Reset CTR(1) DEFAULT
'FFOIITII variable b, set the MEDIV=-10 'Divisor = -10 BREAK érggrrupt subroutine
position target value MFMUL=21 'Multiplier = 21 DITR(0)

. '

Execute action ' P— S 'Stops motors abruptly

Loop MFR 'Calculgte Ratl_o, input -10 external counts WHILE ABS(VA)>0 LOOP While velocity is not 0
Resulting motion 21 counts

, WAIT=100 'Just to make sure the system is settled
Program end G 'Start following external encoder

‘Set speed Mode Follow with Ratio (Electronic Gearing)

NMOO G
e ANIMATICS

'Main program loop
WHILE 1 'Forever
'[Stuff h: h
PRINT(" v = -23 " #13) LOOF[> uff happens here]

END 'End of program

'‘Make all onboard I/0 general inputs; BREAK . ~
More programs are available at

animatics.com/sample-programs

Failisre to follow these sa rl‘:!','-ﬁstrul: tians can result i damage to the motor snd hazards 1o personnel

AVIDID HOT PLUGGING: Miver canapct the matar under waltage (hat plug). Hot plugging can chuse
damage to the motar and ather electrical components

OBSERVE POLARITY: Always ensure that the correct pelarity |+ / -) s used when connecting the motes
toits power source. .

APPLY CONTROL POWER FIRST: For DE and M-5Style motors, aways connect and activate contral
porver first and then drive power Abways power down in reverse order.

PRINT(" v IS NOT 1, 2 OR -23" #13)

USE SHUNTS: Shunts are nocded to protect the serva controlber and drive stages from overvoltage.
whith arginates fram

= Bl EMF dus ta Back dri'-'ir.gmb matar = Sudden or hard decglecations
= Hard stop crashes = Vertical losd diops

READ THE GUIDES: Alway read the ingtaliation, programming and related guides before attempting to

WHILE 1 'To keep the program in this error mode
OFF 'Freewheel

Multi-Axis Control Wiring and Addressing

RS-232 Series

Computer with RS-232 Port

Motor 1 Motor 2

RxD

TxD|GND

2 RS-232 Receive (Rx)
3 RS-232 Transmit (Tx)
5 RS-232 Ground (Gnd)

7 Pin Combo D-Sub

A1 +20 to +48 VDC
A2 Power Ground

1/0 6; For -CDS7, CAN-L only
+5V Out; For -CDS7, CAN-H only

RS-232 Transmit (Tx)
RS-232 Receive (Rx)
RS-232 Ground (Gnd)

RS-485 Connection

Computer with RS-232 Port

Motor 1

.

E

B |GND

RS232485T Adapter
(RS-232 to RS-485 converter)

RS232485T Adapter

1 +5VDC
2 GND

3 RS-485A
4 RS-485B

12 +5VDC out
13 Ground

5 1/104

6 1/05

* RS-485A connected to 1/0 4, RS-485B connected to I/O 5.
* Adapters provided by Moog Animatics have built-in biasing resistors.
However, extensive networks should add bias at the very last motor in

the chain.

* Proper cabling would include a shielded twisted pair to minimize

transmission interference.

* RS232485T adapter’s +5 VDC power requirement should be provided
by an external (non-motor) power supply.

Addressing

Objective: To be able to communicate instructions to the specified motor,

each motor must first have a unique address within the whole system.

Methods: SmartMotor provides two ways to define the motor address:

1. Automatic Addressing (Auto-Addressing): after each reboot, the system
automatically sets the motor's address based on its order in the serial
chain.

2. Pre-Addressing: The motor's address is stored within each motor's user
program.

Auto-Addressing

On the Toolbar, click | 4 (Find
Motors) or Find Motors in the
Configuration window.

The computer determines the
order based on the motor's
position in the serial chain —
the closest to the computer is
motor 1, followed by motor 2,
etc. NOTE: If some are pre-
addressed, you can re-address
all motors, which may change
the existing motor addresses.

Computer with RS-232 Port
Motor 1 Motor 2 Motor 3

e e

RxD |TxD |GND RxD |TxD |GND RxD | TxD |GND

Configuration

Find Motars

g [I_l__elecled Configuration
When completed, the system B & Com (R5232-9600 bps)
displays the detected motors, '
their assigned addresses and _— otor3-Com (5.0.3.23)

firmware versions as shown. E‘Shg'”e‘

Pre-Addressing

Enter the following commands into the motor's user program to have the
SmartMotor self address:

SADDRn 'Pre-motor address, wheren =1,2,3 ...
ECHO  'Open response (see NOTE below)
END

NOTE: For RS-232 multi-axis, all of the motor responses must be open
(ECHO). For RS-485 multi-axis, all of the motor responses must be
closed (ECHO_OFF).

Restart the power supply (Reset). After the motors have powered on,
click (Detect Motors). SMI finds the pre-addressed motors and
displays them in the Configuration window.

NOTE: If some motors are addressed and some are not, then you can
choose to re-address all motors. This will probably change the address
of any previously addressed motor.

Computer with RS-232 Port
SADDR2

Motor 2

LL.C A RxD|TxD RxD|TxD RxD[TxD|GND

HMI with RS-232 Port

Specification and information are subject to change without prior notice. Refer to the website, www.animatics.com, for
the latest information. Moog Animatics and the Moog Animatics logo, SmartMotor and the SmartMotor logo, Combitronic
and the Combitronic logo, and SMI are all trademarks of Moog Inc., Animatics. Other trademarks are the property of
their respective owners.

© 2018 Moog Animatics  MA1023-0518

LOOP
RETURNI

Common SmartMotor Commands

Quick Reference for Frequently Used Commands

install of program the moter. Seo wweammatics com'manusls

. NO TOOLS: Never use tools to tighten M-style connectors - they must he finger tightened only!
Use of a tool can cause overtightening of the connection, which may damage it and will void the

warranty.

www.animatics.com

*Gmw RED TEXT commands optionally support Combitronic™ syntax, which requires "-C, -DE, -CDS,
-CDS7" or "CANopen or DeviceNet" product option.

REFERENCE KEY:

# - is the I/O Bit Number

m - is the mask value of which bits are
affected

W - defines it as a word (16 bits)

expression - an expression must con-
tain no more than a total maximum of
32 operators, values, and parenthesis.

value - a number, variable or math
expression with one operand

constant - means a fixed integer

gen# Trajectory generator number:
1or2

i - Interrupt number, valid values are
fromOto 7

COMMUNICATION COMMANDS:

CCHN(RS2,0) Close communication
channel command

GETCHR Get the next character from
channel 0

OCHN(RS2,0,N,9600,1,8,C,1000)
Default: (RS-232,chan=0, no parity,
9600 baud,1 stop bit, 8 data bits,
command,1000 ms timeout)

PRINT(“Hello World” #13) Print com-
mand to say “Hello World”, see print
section for more detailed examples

PROGRAM FLOW COMMANDS:

CASE expression Switch case
statement

C constant Subroutine label, e.g.,
C10 for subroutine 10, must have a
RETURN for each C label

DEFAULT Default action for switch case
statement

DITR(i) Individual interrupt disable

EITR(i) Individual interrupt enable

ELSEIF expression Used for IF
statements to test another condition, if
expression is true, then execute code

END End program execution

ENDIF End statement for IF code
structures

ENDS Command for end of switch case
statement

GOSUB(value) Call a subroutine, value
up to 999

GOTO(value) Jump program execution
to a label, value up to 999

IF expression Conditional Test, expres-
sion can be multiple math operations

ITR(i, status_wrd#, bit#, s, label#)
Interrupt setup

ITRD Global interrupt scanner disable

ITRE Global interrupt scanner enable

LOOP Loop command for while loops

PAUSE Pause program execution, used
for interrupts

RETURN Return from subroutine

RETURNI Return from interrupt

RUN Start program execution

RUN? Wait at this point for RUN com-
mand before program starts to execute

SWITCH expression Switch case
statement

TWAIT Wait for trajectory to complete,
only used in program

TWAIT(gen#) Wait for trajectory genera-
tor (gen#) to complete its move

WAIT=expression Set wait time in
milliseconds

WHILE expression

1/0 COMMANDS:

EIGN(#) Assign a single I/O point as
general use input

EILN Set port C (1/0-2) as negative over
travel limit

EILP Set port D (I/0-3) as positive over
travel limit

EIRE Set /0 6 to capture external
encoder’s current value

EIRI Set I/O 6 to capture internal encod-
er’s current value

EOBK(#) Configure a given output to
control an external brake

IN(#) x=IN(#), assign the state of a spe-
cific /0 to a variable (x in this case)

INA(A #) x=INA(A #), raw analog read-
ing: 10 bit resolution spanned over
signed 16 bit range

INA(V1,#) x=INA(V1,#), scaled 0-5
VDC reading in millivolts directly, 3456
would be 3.456 VDC

OR(value) Reset output (turn off)

0OS(value) Set output (turn on)

OUT(#)=expression if expression LSB
=1, thenit's true (1); otherwise, it's
false (0)

MATH COMMANDS:

- Subtract

!| Bitwise exclusive OR

!= Not equal to

% Modulo (remainder) division

& Bitwise AND

* Multiply

I Divide

A Power limited to 4th power and below,
integers only

| Bitwise inclusive OR

+Add

<Less than

<= Less than or equal to

== Equal to

> Greater than

>= Greater than or equal to

ABS(value) Absolute Value

ACOS(value) Arc Cosine

ASIN(value) Arc Sine

ATAN(value) Arc Tangent

COS(value) Cosine

FABS(value) Floating point absolute
value

FSQRT(value) Floating point square
root

RANDOM=expression Set the random
seed value 0 to 2731 -1

RRANDOM Report the next available
random number in the range 0 to
2731 -1

SIN(value) Sine

SQRT(value) Square Root

TAN(value) Tangent

TMR(x,t) Sets timer x for t milliseconds

MOTION COMMANDS:

ADT=expression Set the accel/decel at
once for a move

Ai(0) Arm index rising edge of internal
encoder

Ai(1) Arm index rising edge of external
encoder

AMPS=expression Current limit value.
0-1023

BREAK Break out of while loop

BRKENG Manually Engage the brake

BRKRLS Manually Release the brake

BRKSRYV Brake Servo, engage the
brake when the drive is not active
(default)

BRKTRJ Brake Trajectory

CTR(0) Present value of internal
encoder

CTR(1) Present value of external
encoder

DEL=expression Set maximum allow-
able derivative error limit

DT=expression Set the deceleration
target for a move

EL=expression Set maximum allowable
following error limit

ENCO Enable internal encoder for servo

ENC1 Enable external encoder for servo

F Set tuning values

G Go, initiates all buffered modes of
operation

G(gen#) Go, initiate motion in trajectory
generator (gen#)

KA=expression Feed forward gain

KD=expression Derivative gain
coefficient

KG=expression Gravity offset

Kl=expression PID integral gain

KL=expression PID integral limit

KP=expression PID proportional gain

KS=expression Differential sample rate

KV=expression Velocity feed forward
gain

MC Initiate electronic camming

MC(2) Set Trajectory Generator 2 to run
in electronic camming

MDB Enable Trajectory Overshoot
Brake (TOB) when in one of the 2
trapezoidal modes

MDE Set motor to enhanced trapezoidal
mode commutation by using encoder

MDS Set motor to sine mode commu-
tation

MDT Set motor to trapezoidal mode
commutation using hall sensors
(default mode)

MFA(value) Accel over value master

distance. Default is zero (off)

MFD(value) Decel over value master
distance. Default is zero (off)

MFDIV=expression Assign Incoming
counts Divisor

MFMUL=expression Assign Incoming
counts Multiplier

MFO Initiate and zero counter, but do
not follow

MFR Select follow mode using quadra-
ture encoder input.

MFSLEW(value) Stay at slew for value
distance, then decel

MINV(0) Default motor commutation
direction

MINV(1) Invert commutation, shaft
rotates opposite direction

MP Initiate Position Mode

MSR Calculate Mode Step Ratio and
prepare to follow

MT Initiate Torque Mode (Open Loop)

MTB Enable mode torque brake

MV Initiate Velocity Mode

O=expression Set origin, set present
position to some value

OFF Turn the amplifier off

OSH=expression Origin shift of position
counter on the fly

PML=expression Sets the position
modulo limit wrap value

PMT=expression Set the position
modulo target

PRT=expression Set the relative target
position

PT=expression Set the absolute target
position

S Instantly stop motor

S(gen#) Instantly stop trajectory gener-
ator (gen#)

T=expression Set the commanded
torque while in MT mode

TH=expression Set maximum allowable
thermal limit (degrees C)

VT=expression Set the velocity target
for a move

X Decelerate to a stop at present decel-
eration rate

MULTI-AXIS COMMANDS:

(All associated motors must be on same

Combitronic™ CANbus network)

ADT=expression Set the accel/decel at
once for a move

ADTS=expression Set sync accel/decel
at once for a move

ATS=expression Set sync acceleration
target for a move

DTS=expression Set sync deceleration
for a move

GS Go synchronized, initiates linear
interpolated moves

PRTS=(dist1;axis1,dist2;ax-
is2,dist3;axis3) Set synchronized
relative target position

PRTSS=(dis1;axis) Set supplemental

synchronized relative target position

PTS=(dist1;axis1,dist2;axis2,dist3;ax-
is3) Set synchronized absolute target
position

PTSD Stores the synchronized target
move linear distance

PTSS=(dis1;axis) Set supplemental
synchronized absolute target position

PTST Stores the time for synchronized
move to target position

TSWAIT Wait for synchronized trajectory
to complete

VTS=expression Set synchronized
velocity target for a move

STATUS COMMANDS:

Ba Over current bit, status word 0, bit 4
status word 1, bit 3

Be Excessive position error, status word
0, bit 6

Bh Excessive temperature occurred,
status word 0, bit 5

Bl Left (-) over travel limit, status word
0, bit 13

Bm Left (-) over travel limit active, status
word 0, bit 15

Bo Motor is off, status word 0, bit 1

Bp Right (+) over travel limit active,
status word 0, bit 14

Br Right (+) over travel limit, status word
0, bit 12

Bt Trajectory in progress, status word
0, bit 2

Bv Velocity limit, status word 0, bit 7

CLK=expression System Clock value
in milliseconds

RAC Report commanded acceleration

RAT Report target acceleration

RB(sw,b) Report status bit, b, from
status word, sw

RCKS Report Checksum

RCLK Report system clock in milli-
seconds

RCTR(0) Report present value of
internal encoder

RCTR(1) Report present value of
external encoder

RDEA Report actual derivative error

RDEL Report commanded derivative
error limit

RDT Report target deceleration

REA Report actual following error

REL Report commanded following
error limit

RI(0) Report where the rising edge of
the internal index was detected

RIN(#) Report the state of a /0

RIN(W,0) Report the first word of local
110

RINA(V1,#) Reports voltage level
(scaled 0-5 VDC) of analog input value
for a given I/O defined by #

RJ(0) Report where the falling edge of
the internal index was detected

RJ(1) Report where the falling edge of

the external index was detected

RPA Report present actual position

RPC Report present commanded
position

RPC(gen#) Report commanded position
for trajectory generator (gen#)

RPMA Report the current modulo
counter

RPML Report position modulo limit

RPMT Report the most recent setting of
PMT (position modulo target)

RPRA Report actual relative position

RPRC Report commanded relative
position

RPRT Report present relative target
position

RPT Report present target position

RRES Report encoder resolution of
motor

RSP Report sampling rate and firmware
version

RT Report commanded torque

RTMR(x) Report timer x (present time
left in milliseconds)

RUIA Reports current (Amps=UIA/1000)

RUJA Reports bus voltage (Volts=U-
JA/1000)

RVC Report commanded velocity

RVT Report target velocity

RW(value) Report status word

Z(sw,b) Clears/zeros status word bits

Za Reset over current bit

Ze Reset position error bit

Zh Reset over temperature bit

Z| Reset left(-) historical limit bit

Zr Reset right(+) historical limit bit

ZS Clear all errors, reset system latches
to power up state

Zw Reset wraparound bit

VARIABLE COMMANDS:
a=expression Variable, 32 bit signed
integers, a-z, aa-zz, aaa-zzz, 78 total
variables
ab[x]=expression Array variables, 8 bit
byte arrays, x can be 0-203
af[x]=expression Floating point array
variables, x can be 0-7
al[x]=expression Array variables, 32 bit
long arrays, x can be 0-50
aw[x]=expression Array variables, 16
bit word arrays, x can be 0-101
EPTR=expression EEPROM pointer,
non-volatile memory, use before VLD
and VST commands
VLD(variable,quantity) Load values
from EEPROM to variables starting at
EPTR location
VST(variable,quantity) Store values
to EEPROM from variables starting at
EPTR location

NOTE: See the SmartMotor Developer's
Guide for a complete list of commands,
full syntax and code examples.



http://animatics.com/sample-programs



