Can－Stack Stepper Motor Linear Actuators

（ Can Stack馬達相較Hybrid馬達成本較低，適用大量需求的應用
（ح）整體體積較小，適用於儀器類應用
（ 大 大尺寸的花鍵設計，提升馬達的堅固性及耐用性
（ ）外觀圓型設計，方便手持
（マ）不需外部傳動機件，馬達可直接完成直線動作
（ 控制及配線方式簡單，與傳統旋轉步進相同

G4 19000 Series
 $\varnothing 20 \mathrm{~mm}$ (.79-in) Can-Stack Stepper Motor Linear Actuators

Utilizing high energy rare earth (neodymium) magnets, the G4 Series linear actuators consistently deliver exceptional performance. All units are built with dual ball bearings.
The highest force of any similar size linear actuator stepper motor

Multiple versions available

- Captive
- Non-Captive
- External Linear

Specifications

Ø 20 mm (.79-in) Motor				
Captive	1944	$\square{ }^{\dagger}$	1954	\dagger
Part No. Non-Captive	1934	\square	1984	\square^{\dagger}
External Linear*	E1944	\square^{\dagger}	E1954	-
Wiring	Bipolar			
Step angle	7.5°		15°	
Winding Voltage	5 VDC	12 VDC	5 VDC	12 VDC
Current (RMS)/phase	350 mA	160 mA	338 mA	140 mA
Resistance/phase	14.0Ω	74.5Ω	14.8Ω	85.5Ω
Inductance/phase	6.24 mH	31.2 mH	6.84 mH	37.8 mH
Power Consumption	3.38 W			
Insulation Class	Class B			
Weight	$1.24 \mathrm{oz} \mathrm{(35} \mathrm{g)}$			
Insulation Resistance	$20 \mathrm{M} \Omega$			

Linear Travel		Lead	$\begin{array}{c}\text { Order } \\ \text { Code I.D. }\end{array}$
step	$\mathrm{mm} /$ step	$\mathrm{mm} / \mathrm{rev}$	

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted. Standard motors are Class B rated for maximum temperature of $130^{\circ} \mathrm{C}\left(266^{\circ} \mathrm{F}\right)$.

Captive Lead Screw

Dimensions $=(\mathrm{mm})$ inches

Non-Captive Lead Screw

Dimensions $=(\mathrm{mm})$ inches
Up to 6.3 -in (160 mm) standard screw lengths.
Longer screw lengths are available.

External Linear

Dimensions $=(\mathrm{mm})$ inches
Up to $6.3-\mathrm{in}(160 \mathrm{~mm})$ standard screw lengths.
Longer screw lengths are available.

Connector

FORCE vs. PULSE RATE

- L/R Drive
- Bipolar
- 100\% Duty Cycle

FORCE vs. PULSE RATE

- L/R Drive
- Bipolar
- 25\% Duty Cycle

Obtained by a special winding or by running a standard motor at double the rated current.

FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 100\% Duty Cycle

FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 25\% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

Identifying the Can-Stack Number Codes when Ordering

E	19	5	4	2	05	1005
Prefix (include only when using the following) E= External K= External with 40° thread form $\mathbf{P}=$ Proximity Sensor S= Home Position Switch	Series Number Designation $19=19000$ (Series numbers represent approximate diameters of motor body)	$\begin{aligned} \quad \text { Style } \\ 3=7.5^{\circ} \end{aligned}$ Non-Captive $4=7.5^{\circ}$ Captive or External (use "E" or "K" Prefix for External version) $\mathbf{5}=15^{\circ}$ Captive or External (use "E" or "K" Prefix for External version $8=15^{\circ}$ Non-Captive	Coils 4 = Bipolar (4 wire)	Code ID Resolution Travel/Step $\begin{aligned} & \mathbf{1}=.001-\mathrm{in}(.0254) \\ & \mathbf{2}=.002-\mathrm{in}(.051) \\ & \mathbf{3}=.0005-\mathrm{in}(.013) \\ & \mathbf{4}=.004-\mathrm{in}(.102) \end{aligned}$	Voltage $\begin{gathered} \mathbf{0 5}=5 \mathrm{VDC} \\ \mathbf{1 2}=12 \mathrm{VDC} \end{gathered}$ Custom V available	Suffix Stroke Example: - 1005 $=$ captive 13 mm stroke with leads -XXX = Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 2037567441.

Can-Stacks:Wiring

BIPOLAR

Can-Stacks:Stepping Sequence

Bipolar
而
Q2-Q3
Step
1

TFE Coated Lead Screws for applications that require a permanent, dry lubricant

Ideal for applications where conventional oils and greases cannot be used for lead screw lubrication.
Non-lubricated TFE Coated Lead Screw provides improved performance in both life and thrust as compared to a "dry" stainless steel lead screw. TFE can be applied to a wide variety of lead screw pitches. Available captive, non-captive and external linear. Typical applications: where contamination from grease or lubricants must be avoided; silicon wafer handling, clean rooms, medical equipment or laboratory instrumentation.

Lead Screw Comparison: FORCE vs. PULSE RATE

- L/R Drive - 100\% Duty Cycle

Home Position Switch monitors movements more precisely for greater control and improved quality control

Miniature electronic home position switch capable of monitoring the home positions of linear actuators. The switch mounts on the rear sleeve of captive linear motors and allows the user to identify start, stop or home positions. Depending on your preference, contacts can be normally open or normally closed. The contact closure is repeatable to within one step position, identifying linear movements as low as $0.0005-\mathrm{in}(0.0013 \mathrm{~cm})$ per step. Multiple contact switches are also available.
Activation force of $10 \mathrm{oz}(2.78 \mathrm{~N})$ required therefore may not be appropriate for smaller can-stack actuators.
When ordering motors with the home position switch, the part number should be preceded by an "S".

Specifications	
Contact Ratings (Standard)	1.00 AMP @ 120 VAC 1.00 AMP @ 28 VDC
Operating Temperature	$-30^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
Electrical Life	<20 milliohms typ. initial at $2-4 \mathrm{~V} \mathrm{DC}, 100 \mathrm{~mA}$ Tested to 60,000 make-and-break cycles at full load
Schematic	Multiple contact options available.

Stroke inches $(\mathbf{m m})$	Dim "A" Extended inches $(\mathbf{m m})$	Dim "B" Retracted inches $(\mathbf{m m})$
$.512(13)$	$1.385(35.17)$	$.841(21.37)$
$.708(18)$	$1.802(45.77)$	$1.050(26.67)$
$.984(25)$	$2.353(59.77)$	$1.325(33.67)$
$1.22(31)$	N/A Contact Customer Service	

End of Stroke Proximity Sensor incorporates a hall effect device, activated by a rare earth magnet embedded in the end of the internal screw

Compact profile of the sensor allows for installation in limited space applications. Virtually unlimited cycle life. Special cabling and connectors available.

Specifications		
Supply Voltage (VDC)		3.8 min. to 24 max .
Current Consumption		10 mA max.
Output Voltage (operated)		0.15 typ., 0.40 max. Sinking 20 mA max.
Output Current		20 mA max.
Output Leakage Current (released)		$10 \mu \mathrm{~A}$ max. @ Vout = $24 \mathrm{VDC} ;$ Vcc $=24 \mathrm{VDC}$
Output Switching Time	$\begin{gathered} \text { Rise, } \\ 10 \text { to } 90 \% \end{gathered}$. $05 \mu \mathrm{~s}$ typ., $1.5 \mu \mathrm{~s}$ max. @ Vcc $=12 \mathrm{~V}, \mathrm{RL}=1.6 \mathrm{KOhm}$
	$\begin{gathered} \text { Fall, } \\ 90 \text { to } 10 \% \end{gathered}$. $15 \mu \mathrm{~s}$ typ., $1.5 \mu \mathrm{~s}$ max. @ CL $=20 \mathrm{pF}$
Temperature		-40 to $+150^{\circ} \mathrm{C}$

NOTE: Sensor is category 2 ESD sensitive per DOD-STD-1686A. Assembly operations should be performed at workstations with conductive tops and operators grounded

Stroke inches (mm)	Dim "A" Extended inches (mm)	Dim "B" Retracted inches (mm)
$.512(13)$	$1.360(34.55)$	$.73(18.55)$
$.708(18)$	$1.569(39.85)$	$.94(23.85)$
$.984(25)$	$1.844(46.85)$	$1.21(30.85)$
$1.22(31)$	$2.081(52.85)$	$1.45(36.85)$

The sensor has virtually unlimited cycle life. Special cabling and connectors can also be provided.

G4 25000 Series
 $\varnothing 25$ mm (1.0-in) Can-Stack Stepper Motor Linear Actuators

High durability and exceptional performance. All units are built with dual ball bearings.
Generates higher force than other competitors
Multiple versions available

- Captive
- Non-Captive
- External Linear

Specifications

Ø 25 mm (1.0-in) Motor				
Captive	2544		2554	
Part No. Non-Captive	2534	${ }^{\dagger}$	2584	\dagger
External Linear*	E2544	\dagger	E2554	- \square^{\dagger}
Wiring	Bipolar			
Step angle	7.5°		15°	
Winding Voltage	5 VDC	12 VDC	5 VDC	12 VDC
Current (RMS)/phase	385 mA	160 mA	385 mA	160 mA
Resistance/phase	13Ω	72Ω	13Ω	72Ω
Inductance/phase	10.8 mH	60 mH	8.08 mH	48 mH
Power Consumption	3.85 W			
Rotor Inertia	$1.07 \mathrm{gcm}^{2}$			
Insulation Class	Class B			
Weight	$1.74 \mathrm{oz}(49 \mathrm{~g})$			
Insulation Resistance	$20 \mathrm{M} \Omega$			

Linear Travel		Lead	Order Code I.D.
step	$\mathrm{mm} / \mathrm{step}$	$\mathrm{mm} / \mathrm{rev}$	
7.5°	0.013	0.6240	3
Angle	0.0254	1.2192	1
	0.051	2.4480	2
15°	0.0254	0.6096	1
Angle	0.051	1.2240	2
	0.102	2.4480	4

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted. Standard motors are Class B rated for maximum temperature of $130^{\circ} \mathrm{C}\left(266^{\circ} \mathrm{F}\right)$.
†Part numbering information on page 4.

Captive Lead Screw
Dimensions $=(\mathrm{mm})$ inches

STROKE (Minimum)	FRONT SLEEVE A	$\begin{gathered} \text { RETRACTED } \\ \text { B } \end{gathered}$	$\begin{gathered} \text { EXTENDED } \\ C \end{gathered}$	REAR SLEEVE D	CODE with CONNECTOR	CODE with LEADS
$\begin{gathered} (13 \mathrm{~mm}) \\ .512 \end{gathered}$	$\begin{gathered} (11.99 \pm 0.25) \\ .472 \pm .010 \end{gathered}$	$19.99 \pm 0.64)$ $.787 \pm .025$	$\begin{aligned} & (33.76 \pm 0.38) \\ & 1.329 \pm .015 \end{aligned}$	$\begin{gathered} (28.65 \text { Max.) } \\ \text { 1.128 Max. } \end{gathered}$	-905	- 1005
$\begin{gathered} (18 \mathrm{~mm}) \\ .708 \\ \hline \end{gathered}$	$\begin{gathered} (17.28 \pm 0.25) \\ .680 \pm .010 \end{gathered}$	$\begin{array}{\|c} \hline(25.25 \pm 0.64) \\ .994 \pm .025 \end{array}$	$\begin{gathered} (44.27 \pm 0.38) \\ 1.743 \pm .015 \end{gathered}$	$\begin{gathered} \text { (33.94 Max.) } \\ \text { 1.336 Max. } \end{gathered}$	-907	- 1007
$\begin{gathered} (25 \mathrm{~mm}) \\ .984 \end{gathered}$	$\left\lvert\, \begin{gathered} (24.26 \pm 0.25) \\ .955 \pm .010 \end{gathered}\right.$	$\begin{array}{\|c} (32.23 \pm 0.64) \\ 1.269 \pm .025 \end{array}$	$\begin{gathered} (58.24 \pm 0.38) \\ 2.293 \pm .015 \end{gathered}$	$\begin{aligned} & (40.92 \text { Max.) } \\ & \text { 1.611 Max. } \end{aligned}$	-910	- 1010
$\begin{gathered} (31 \mathrm{~mm}) \\ 1.22 \end{gathered}$	$\left(\begin{array}{c} (30.25 \pm 0.25) \\ 1191+010 \end{array}\right.$	(38.23 ± 0.64) $1.505 \pm .025$	$\begin{gathered} (70.23 \pm 0.38) \\ 2.765 \pm .015 \end{gathered}$	$\begin{gathered} (46.91 \text { Max.) } \\ \text { 1.847 Max. } \end{gathered}$	-912	- 1012

Non-Captive Lead Screw

Dimensions $=(\mathrm{mm})$ inches

External Linear

Dimensions $=(\mathrm{mm})$ inches
Up to $6.3-\mathrm{in}(160 \mathrm{~mm})$ standard screw lengths.
Longer screw lengths are available.

Connector

Part Number	Dimension "A"
$56-1318-4$	$(24 \pm 0.39) 610 \pm 10 \mathrm{~mm}$
$56-1318-3$	$(18 \pm 0.39) 450 \pm 10 \mathrm{~mm}$
$56-1318-2$	$(12 \pm 0.39) 305 \pm 10 \mathrm{~mm}$
$56-1318-1$	$(6 \pm 0.39) 150 \pm 10 \mathrm{~mm}$

FORCE vs. PULSE RATE

- L/R Drive
- Bipolar
- 100\% Duty Cycle

FORCE vs. PULSE RATE

- L/R Drive
- Bipolar
- 25\% Duty Cycle

Obtained by a special winding or by running a standard motor at double the rated current.

FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 100\% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

Identifying the Can-Stack Number Codes when Ordering

E	25	5	4	4	12	1010
Prefix (include only when using the following) E=External K= External with 40° thread form $\mathbf{P}=$ Proximity Sensor S = Home Position Switch	Series Number Designation $25=25000$ (Series numbers represent approximate diameters of motor body)	Style $3=7.5^{\circ}$ Non-Captive $4=7.5^{\circ}$ Captive or External (use "E" or "K" Prefix for External version) $5=15^{\circ}$ Captive or External (use "E" or "K" Prefix for External version $8=15^{\circ}$ Non-Captive	Coils 4 = Bipolar (4 wire)	Code ID Resolution Travel/Step $\begin{aligned} & \mathbf{1}=.001-\mathrm{in}(.0254) \\ & \mathbf{2}=.002-\mathrm{in}(.051) \\ & 3=.0005-\mathrm{in}(.013) \\ & \mathbf{4}=.004-\mathrm{in}(.102) \end{aligned}$	Voltage $\begin{gathered} \mathbf{0 5}=5 \mathrm{VDC} \\ \mathbf{1 2}=12 \mathrm{VDC} \end{gathered}$ Custom V available	Suffix Stroke Example: -1010 $=$ captive 25 mm stroke with leads -XXX = Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 2037567441.

Can-Stacks: Wiring

BIPOLAR

Can-Stacks:Stepping Sequence

$\underset{\sim}{\square}$	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8
	Step				
$\underset{\square}{7}$	1	ON	OFF	ON	OFF
\bigcirc	2	OFF	ON	ON	OFF
\sum	3	OFF	ON	OFF	ON
	4	ON	OFF	OFF	ON
\checkmark	1	ON	OFF	ON	OFF

Note: Half stepping is accomplished by inserting an off state between transitioning phases.

TFE Coated Lead Screws for applications that require a permanent, dry lubricant

Ideal for applications where conventional oils and greases cannot be used for lead screw lubrication.
Non-lubricated TFE Coated Lead Screw provides improved performance in both life and thrust as compared to a "dry" stainless steel lead screw. TFE can be applied to a wide variety of lead screw pitches. Available captive, non-captive and external linear. Typical applications: where contamination from grease or lubricants must be avoided; silicon wafer handling, clean rooms, medical equipment or laboratory instrumentation.

Lead Screw Comparison: FORCE vs. PULSE RATE

- L/R Drive - 100\% Duty Cycle

Home Position Switch monitors movements more precisely for greater control and improved quality control

Miniature electronic home position switch capable of monitoring the home positions of linear actuators. The switch mounts on the rear sleeve of captive linear motors and allows the user to identify start, stop or home positions. Depending on your preference, contacts can be normally open or normally closed. The contact closure is repeatable to within one step position, identifying linear movements as low as $0.0005-\mathrm{in}(0.0013 \mathrm{~cm})$ per step. Multiple contact switches are also available.
Activation force of 10 oz (2.78 N) required therefore may not be appropriate for smaller can-stack actuators.

When ordering motors with the home position switch, the part number should be preceded by an "S".

Specifications	
Contact Ratings (Standard)	1.00 AMP @ 120 VAC 1.00 AMP @ 28 VDC
Operating Temperature	$-30^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
Electrical Life	<20 milliohms typ. initial at $2-4 \mathrm{~V} \mathrm{DC}, 100 \mathrm{~mA}$ Tested to 60,000 make-and-break cycles at full load
Schematic	Multiple contact options available.

Stroke inches (mm)	Dim "A" Extended inches (mm)	Dim "B" Retracted inches (mm)
$.512(13)$	$1.329(33.76)$	$.787(19.99)$
$.708(18)$	$1.743(44.27)$	$.994(25.25)$
$.984(25)$	$2.293(58.24)$	$1.269(32.23)$
$1.22(31)$	$2.765(70.23)$	$1.505(38.23)$

End of Stroke Proximity Sensor incorporates a hall effect device, activated by a rare earth magnet embedded in the end of the internal screw

Compact profile of the sensor allows for installation in limited space applications. Virtually unlimited cycle life. Special cabling and connectors available.

Specifications	
Supply Voltage (VDC)	3.8 min. to 24 max.
Current Consumption	10 mA max.
Output Voltage (operated)	0.15 typ., 0.40 max. Sinking 20 mA max.
Output Current	
Output Leakage Current (released)	20 mA max.
Output Switching Time	Rise, 10 to 90%
Fall, 90 to 10%	

NOTE : Sensor is category 2 ESD sensitive per DOD-STD-1686A. Assembly operations should be performed at workstations with conductive tops and operators grounded.

Stroke inches (mm)	Dim "A" Extended inches (mm)	Dim "B" Retracted inches (mm)
$.512(13)$	$1.248(31.71)$	$.632(16.05)$
$.708(18)$	$1.449(36.81)$	$.833(21.15)$
$.984(25)$	$1.723(43.76)$	$1.106(28.10)$
$1.22(31)$	$1.959(49.76)$	$1.343(34.10)$

The sensor has virtually unlimited cycle life. Special cabling and connectors can also be provided.

G4 25000 Series E8T Encoder

G4 25000 Series E8T Transmissive Optical Encoder is designed to provide the digital quadrature encoder feedback for high volume, compact space applications.

- Resolutions from 180 to 720 - Single-ended / Differential
- Frequency response to 100 kHz •Low power consumption, 5 V @ 30 mA max
- High retention polarized connector

Assembly Options:

- Differential line driver with complementary outputs
- Detachable cable
- Through-hole cover

Stroke inches (mm)	Dim "A" Extended inches (mm)
$.512(13)$	N / A
$.708(18)$	N / A
$.984(25)$	$.071(1.80)$
$1.22(31)$	$.307(7.80)$

G4 37000 Series
 Ø 36 mm (1.4-in) Can-Stack Stepper Motor Linear Actuators

Outstanding durability and high performance.
The G4 Series features high energy neodymium magnets and dual ball bearings.

Exceptionally high linear force-to-size ratio, ideal for precision motion
Multiple versions available

- Captive
- Non-Captive
- External Linear
$\varnothing 37 \mathrm{~mm}$ (1.4-in)
Non-Captive

Specifications

Ø 36 mm (1.4-in) Motor				
Captive	3744	${ }^{\dagger}$	3754	-
Part No. Non-Captive	3734	\dagger	3784	- \quad -
External Linear	E3744	$\square \square^{\dagger}$	E3754	- \quad +
Wiring	Bipolar			
Step angle	7.5°		15°	
Winding Voltage	5 VDC	12 VDC	5 VDC	12 VDC
Current (RMS)/phase	561 mA	230 mA	561 mA	230 mA
Resistance/phase	8.9Ω	52Ω	8.9Ω	52Ω
Inductance/phase	11.6 mH	65 mH	8.5 mH	46 mH
Power Consumption	5.6 W			
Rotor Inertia	$8.5 \mathrm{gcm}^{2}$			
Insulation Class	Class B			
Weight	$4.2 \mathrm{oz}(120 \mathrm{~g})$			
Insulation Resistance	$20 \mathrm{M} \Omega$			

Linear Travel		Lead	Order Code I.D.
step	$\mathrm{mm} / \mathrm{step}$	$\mathrm{mm} / \mathrm{rev}$	
7.5°	0.013	0.6240	3
Angle	0.0254	1.2192	1
	0.051	2.4480	2
15°	0.0254	0.6096	1
Angle	0.051	1.2240	2
	0.102	2.4480	4

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted. Standard motors are Class B rated for maximum temperature of $130^{\circ} \mathrm{C}\left(266^{\circ} \mathrm{F}\right)$.
†Part numbering information on page 4.

Captive Lead Screw

Dimensions $=(\mathrm{mm})$ inches

STROKE (Minimum)	FRONT SLEEVEA	$\begin{gathered} \text { RETRACTED } \\ \text { B } \end{gathered}$	$\begin{gathered} \text { EXTENDED } \\ \mathbf{C} \end{gathered}$	REAR SLEEVE D	Suffix Code
$\begin{gathered} (16.0 \mathrm{~mm}) \\ 0.631 \end{gathered}$	$\begin{gathered} (13.67 \pm 0.25) \\ .538 \pm .010 \end{gathered}$	$\begin{aligned} & (17.19 \pm 0.64) \\ & 677 \pm \pm 025 \end{aligned}$	$\begin{aligned} & (34.24 \pm 0.38) \\ & 1.348 \pm .015 \end{aligned}$	$\begin{aligned} & \text { (33.85 Max.) } \\ & \text { 1.333 Max. } \end{aligned}$	- 905
$\begin{gathered} (25.4 \mathrm{~mm}) \\ 1.00 \end{gathered}$	$\begin{gathered} (26.37 \pm 0.25) \\ 1.038 \pm .010 \end{gathered}$	$\begin{gathered} (29.89 \pm 0.64) \\ 1.177 \pm .025 \end{gathered}$	$\begin{gathered} (56.94 \pm 0.38) \\ 2.348 \pm .015 \end{gathered}$	$\begin{aligned} & \text { (46.55 Max.) } \\ & \text { 1.833 Max. } \end{aligned}$	- 910
$\begin{gathered} (38.1 \mathrm{~mm}) \\ 1.50 \end{gathered}$	$\begin{gathered} (39.07 \pm 0.25) \\ 1.538 \pm .010 \end{gathered}$	$\begin{gathered} (42.59 \pm 0.64) \\ 1.677 \pm .025 \end{gathered}$	$\begin{aligned} & (85.04 \pm 0.38) \\ & 3.348 \pm .015) \end{aligned}$	$\begin{aligned} & \text { (59.25 Max.) } \\ & \text { 2.333 Max. } \end{aligned}$	-915

Non-Captive Lead Screw

Dimensions $=(\mathrm{mm})$ inches
Up to $6.3-\mathrm{in}(160 \mathrm{~mm})$ standard screw lengths. Longer screw lengths are available.

External Linear

Dimensions $=(\mathrm{mm})$ inches

Up to $6.3-\mathrm{in}(160 \mathrm{~mm})$ standard screw lengths.
Longer screw lengths are available.

Connector

CONNECTOR:
JST PHR-4
TERMINAL: JST SPH-002T-PO.5S

Part	Dimension
Number	"A"
$56-1436-1$	(6.0 ± 0.39)
	$152 \pm 10 \mathrm{~mm}$
$56-1436-2$	(12 ± 0.39)
	$305 \pm 10 \mathrm{~mm}$

FORCE vs. PULSE RATE

- L/R Drive
- Bipolar
- 100\% Duty Cycle

FORCE vs. PULSE RATE

- L/R Drive
- Bipolar
- 25\% Duty Cycle

Obtained by a special winding or by running a standard motor at double the rated current.

FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 100\% Duty Cycle

FORCE vs. PULSE RATE

- Chopper Drive
- Bipolar
- 25\% Duty Cycle

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.

Identifying the Can-Stack Number Codes when Ordering

E	37	4	4	2	05	1015
Prefix (include only when using the following) E=External K = External with 40° thread form $\mathbf{P}=$ Proximity Sensor S=Home Position Switch	Series Number Designation $37=37000$ (Series numbers represent approximate diameters of motor body)	$\begin{aligned} \quad \text { Style } \\ 3=7.5^{\circ} \end{aligned}$ Non-Captive $4=7.5^{\circ}$ Captive or External (use "E" or "K" Prefix for External version) $5=15^{\circ}$ Captive or External (use "E" or "K" Prefix for External version $8=15^{\circ}$ Non-Captive	Coils 4 = Bipolar (4 wire)	Code ID Resolution Travel/Step $\begin{aligned} & 1=.001-\mathrm{in}(.0254) \\ & \mathbf{2}=.002-\mathrm{in}(.051) \\ & \mathbf{3}=.0005-\mathrm{in}(.013) \\ & \mathbf{4}=.004-\mathrm{in}(.102) \end{aligned}$	Voltage $\begin{aligned} \mathbf{0 5} & =5 \mathrm{VDC} \\ \mathbf{1 2} & =12 \mathrm{VDC} \end{aligned}$ Custom V available	Suffix Stroke Example: $-1015=$ captive 38.1 mm stroke with leads -XXX = Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 2037567441.

Can-Stacks:Wiring

BIPOLAR

Can-Stacks:Stepping Sequence

	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8
	Step				
	1	ON	OFF	ON	OFF
	2	OFF	ON	ON	OFF
	3	OFF	ON	OFF	ON
	4	ON	OFF	OFF	ON
	1	ON	OFF	ON	OFF

TFE Coated Lead Screws for applications that require a permanent, dry lubricant

Ideal for applications where conventional oils and greases cannot be used for lead screw lubrication.
Non-lubricated TFE Coated Lead Screw provides improved performance in both life and thrust as compared to a "dry" stainless steel lead screw. TFE can be applied to a wide variety of lead screw pitches. Available captive, non-captive and external linear.
Typical applications: where contamination from grease or lubricants must be avoided; silicon wafer handling, clean rooms, medical equipment or laboratory instrumentation.

Lead Screw Comparison: FORCE vs. PULSE RATE

- L/R Drive - 100\% Duty Cycle

Home Position Switch monitors movements more precisely for greater control and improved quality control

Miniature electronic home position switch capable of monitoring the home positions of linear actuators. The switch mounts on the rear sleeve of captive linear motors and allows the user to identify start, stop or home positions. Depending on your preference, contacts can be normally open or normally closed. The contact closure is repeatable to within one step position, identifying linear movements as low as $0.0005-\mathrm{in}(0.0013 \mathrm{~cm})$ per step. Multiple contact switches are also available.
Activation force of $10 \mathrm{oz}(2.78 \mathrm{~N})$ required therefore may not be appropriate for smaller can-stack actuators.

When ordering motors with the home position switch, the part number should be preceded by an "S".

Specifications	
Contact Ratings (Standard)	1.00 AMP @ 120 VAC 1.00 AMP @ 28 VDC
Operating Temperature	$-30^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
Electrical Life	<20 milliohms typ. initial at $2-4 \mathrm{VDC}, 100 \mathrm{~mA}$ Tested to 60,000 make-and-break cycles at full load
Schematic	Multiple contact options available.

Stroke inches (mm)	Dim "A" Extended inches (mm)	Dim "B" Retracted inches (mm)
$.512(13)$	$1.329(33.76)$	$.787(19.99)$
$.708(18)$	$1.743(44.27)$	$.994(25.25)$
$.984(25)$	$2.293(58.24)$	$1.269(32.23)$
$1.22(31)$	$2.765(70.23)$	$1.505(38.23)$

End of Stroke Proximity Sensor incorporates a hall effect device, activated by a rare earth magnet embedded in the end of the internal screw

Compact profile of the sensor allows for installation in limited space applications. Virtually unlimited cycle life. Special cabling and connectors available.

Specifications	
Supply Voltage (VDC)	3.8 min . to 24 max.
Current Consumption	10 mA max.
Output Voltage (operated)	0.15 typ., 0.40 max. Sinking 20 mA max.
Output Current	

Stroke inches (mm)	Dim "A" inches (mm)	Dim "B" inches (mm)
$.631(16)$	$1.404(35.65)$	$.695(17.65)$
$1.00(25.4)$	$1.906(48.41)$	$1.197(30.41)$
$1.50(38.1)$	$2.409(61.18)$	$1.700(43.18$

The sensor has virtually unlimited cycle life. Special cabling and connectors can also be provided.

NOTE: Sensor is category 2 ESD sensitive per DOD-STD-1686A. Assembly operations should be performed at workstations with conductive tops and operators grounded

G4 37000 Series E8T Encoder

G4 37000 Series E8T Transmissive Optical Encoder is designed to provide the digital quadrature encoder feedback for high volume, compact space applications.

- Resolutions from 180 to 720
- Single-ended / Differential
- Frequency response to 100 kHz
- Low power consumption, 5 V @ 30 mA max
- High retention polarized connector

Assembly Options:

- Differential line driver with complementary outputs
- Detachable cable
- Through-hole cover

Stroke inches (mm)	Dim "A" Extended inches (mm)
$.631(16)$	N/A
$1.00(25.4)$	$.098(2.50)$
$1.50(38.1)$	$.598(15.20)$

15000 Series

$\varnothing 15$ mm (.59-in) Can-Stack Stepper Motor Linear Actuators

Delivering force of up to $8 \mathrm{lbs}(35 \mathrm{~N})$ without compromising long life or cost. Lightweight models can also be microstepped for even finer resolution. Bi-directional travel motor.

The world's smallest commercial linear stepper motor

Multiple versions available

- Captive
- External Linear
- External Linear with ZBMR Nut

Specifications

$\varnothing 15 \mathrm{~mm}$ (.59-in) Motor			
Part No.	Captive	LC1574 -	\dagger
	External Linear	LE1574	\dagger
Wiring	Bipolar		
Step angle	18°		
Winding Voltage	4 VDC	5 VDC	12 VDC
Current (RMS)/phase	0.2 A	0.16 A	0.07 A
Resistance/phase	20Ω	31Ω	180Ω
Inductance/phase	5.6 mH	8.7 mH	48.8 mH
Power Consumption	1.6 W		
Rotor Inertia	$0.09 \mathrm{gcm}^{2}$		
Insulation Class	Class B (Class F available)		
Weight	1 oz (28 g)		
Insulation Resistance	$20 \mathrm{M} \Omega$		
Stroke	0.5-in. (12.7 mm)		

Linear Travel		Lead	$\begin{array}{c}\text { Order } \\ \text { Code I.D. }\end{array}$
Step	$\mathrm{mm} / \mathrm{step}$	$\mathrm{mm} / \mathrm{rev}$	

*Values truncated

Available Standard Connectors for Series 15000				
Connector	PIN			
	1	2	3	4
JST PHR-4	Red	White	Green	Black
Molex 51021-0400	Black	Green	White	Red

Available Flying Leads	
Length	Order Code I.D. Suffix (add to end on I.D.)
12 inches $(304.8 \mathrm{~mm})$	-999

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted. Standard motors are Class B rated for maximum temperature of $130^{\circ} \mathrm{C}\left(266^{\circ} \mathrm{F}\right)$.

Identifying the Can-Stack Number Codes when Ordering

LC	15	7	4	W	04	999
Prefix LC= Captive LE= External Linear	Series Number Designation $15=15000$ (Series numbers represent approximate diameters of motor body)	$\begin{gathered} \text { Style } \\ 7=18^{\circ} \\ \text { Captive } \end{gathered}$	$\mathbf{4}=\begin{gathered} \text { Coils } \\ \text { Bipolar } \\ (4 \text { wire }) \end{gathered}$	Code ID Resolution Travel/Step $\begin{aligned} \mathbf{W} & =.00079-\mathrm{in}(.02) \\ \mathbf{A Q} & =.00098-\mathrm{in}(.025) \\ \mathrm{BH} & =.00197-\mathrm{in}(.05) \\ \mathbf{D C} & =.00394-\mathrm{in}(.10) \end{aligned}$	Voltage $\begin{aligned} \mathbf{0 4} & =4 \mathrm{VDC} \\ \mathbf{0 5} & =5 \mathrm{VDC} \\ \mathbf{1 2} & =12 \mathrm{VDC} \end{aligned}$ Custom V available	Suffix Stroke Example: -999 = 12-in leads -XXX = Proprietary suffix assigned to a specific customer application. The identifier can apply to either a standard or custom part.

NOTE: Dashes must be included in Part Number (-) as shown above. For assistance call our Engineering Team at 2037567441.

Captive Lead Screw

Dimensions $=(\mathrm{mm})$ inches

External Linear

Dimensions $=(\mathrm{mm})$ inche

Up to 2.36 -in (59.9 mm)
standard screw lengths.
Consult factory for longer screws.

$\varnothing[11.48 \pm 0.03$
$.452 \pm .001$

MICRO Series

Dimensions $=(\mathrm{mm})$ inches
Standard nut styles. Consult the factory for custom solutions.

MICRO Series Nut Styles

Part No.	BFW Nut Style	Dynamic Load lbs (Kg)	Drag Torque oz-in (NM)
BFWB	Barrel Mount	$10(4.5)$	Free Wheeling
BFWR	Rectangular Flange		

Barrel Nut Style

Rectangular Nut Style

NOTE: All chopper drive curves were created with a 5 volt motor and a 40 volt power supply.
Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

15000 Series • Can-Stack Stepper Motor Linear Actuators Wiring \& Stepping Sequence

Can-Stacks:Wiring

BIPOLAR

Can-Stacks:Stepping Sequence

	Bipolar	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8	4
	Step					
	1	ON	OFF	ON	OFF	3
	2	OFF	ON	ON	OFF	
	3	OFF	ON	OFF	ON	O
	4	ON	OFF	OFF	ON	
\checkmark	1	ON	OFF	ON	OFF	$\stackrel{\text { ¢ }}{\text { ® }}$

